


The product formed is

- (A) 1-methylcyclohexanol
- (C) methylcyclohexane

- (B) 2-methylcyclohexanol
- (D) cyclohexanol

| 8.          | Propene on reaction with ICl produces mainly -                                                                                      |                                                                            |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|             | (A) 1-chloro-2-iodopropene                                                                                                          | (B) 2-chloro-1-iodopropane                                                 |
|             | (C) (±)–2–chloro–1–iodopropane                                                                                                      | (D) (±)–1–chloro–2–iodopropane                                             |
| 9.          | Consider the reaction                                                                                                               |                                                                            |
|             | $\begin{bmatrix} CH_{3} \\ +I \\ -H_{2}CH_{2}CH_{2}CH_{3} \\ -H_{3} \end{bmatrix} OH - \underbrace{Heat}_{Heat} \rightarrow CH_{3}$ |                                                                            |
|             | Which of the following is formed in major amount                                                                                    |                                                                            |
|             | (A) $CH_2 = CH_2$                                                                                                                   | (B) $CH_3CH=CH_2$                                                          |
|             | (C) Both (A) and (B) in equal amount                                                                                                | (D) None, as no reaction takes place                                       |
| 10.         | In the addition of HBr to propene in the absence                                                                                    | of a peroxide, the first step involves the addition of -                   |
|             | (A) H <sup>+</sup> (B) Br <sup>-</sup>                                                                                              | (C) $H^{j}$ (D) $Br^{j}$                                                   |
| 11.         | In the reaction                                                                                                                     |                                                                            |
|             | $CH_3CH_2CH=CH_2$ ; $H_2^{(1)}$ , $H_2^{(2)}$ , $H_2^{(2)}$ , $H_2^{(2)}$                                                           |                                                                            |
|             | the product obtained is -                                                                                                           |                                                                            |
|             | (A) CH <sub>3</sub> CH <sub>2</sub> CHOHCH <sub>2</sub> D                                                                           | (B) CH <sub>3</sub> CH <sub>2</sub> CHDCH <sub>2</sub> OH                  |
|             | (C) $CH_3CH_2CD(OH)CH_3$                                                                                                            | (D) $CH_3CH_2CD_2CH_2OH$                                                   |
| 12.         | The major product obtained in the reaction of 1,3 (100°C or above) is                                                               | -Butadiene with HCl (1 mole) at a higher temperature                       |
|             | (A) 3,4-dichloro-1-butene                                                                                                           | (B) 3-chloro-1-butene                                                      |
|             | (C) 1-chloro-2-butene                                                                                                               | (D) 2-chloro-2-butene                                                      |
| 13.         |                                                                                                                                     | drogenation gives an optically inactive compound (Y),                      |
|             | $C_6H_{14}$ . The hydrocarbon (X) is-                                                                                               | (D) 2 mothed 2 montane                                                     |
|             | (A) 3-methyl-1-pentene<br>(C) 2-ethyl-1-butene                                                                                      | <ul><li>(B) 3-methyl-2-pentene</li><li>(D) 3-methylcyclopentene</li></ul>  |
| 14.         | The addition of HCl to 1-phenylpropene gives-                                                                                       | (D) 5-memycyclopemene                                                      |
| <b>1</b> 1. | (A) $C_6H_5CHClCH_2CH_3$                                                                                                            | (B) C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> CHClCH <sub>3</sub>      |
|             | (C) $C_6H_5CH_2CH_2CH_2CI$                                                                                                          | (D) $C_6H_5CH(CH_3)CH_2Cl$                                                 |
| 15.         | The reduction of 4-octyne with $H_2$ in the present                                                                                 |                                                                            |
|             | (A) trans-4-octene                                                                                                                  | (B) cis-4-octene                                                           |
|             | (C) a mixture of cis-and trans-4-octene                                                                                             | (D) a completely reduced product $C_8 H_{18}$                              |
| 16.         | The ease of formation of free radicals follows the                                                                                  | e order -                                                                  |
|             | (A) 3°Ψ2°Ψ1°ΨĊH <sub>3</sub>                                                                                                        | (B) CH <sub>3</sub> Ψ1°Ψ2°Ψ3°                                              |
|             | (C) 1º Ψ2º Ψ3º ΨCH <sub>3</sub>                                                                                                     | (D) $2^{\circ}\Psi 1^{\circ}\Psi 3^{\circ}\Psi CH_{3}$                     |
| 17.         | Which of the following has the lowest heat of hy                                                                                    | drogenation per mole -                                                     |
|             | (A) cis-2-Butene (B) trans-2-Butene                                                                                                 | (C) 1–Butene (D) 1,3–Butadiene                                             |
| 18.         | The intermediate formed during the addition of H                                                                                    |                                                                            |
|             | (A) $CH_3CHCH_2Cl$ (B) $CH_3CH_2CH_2$                                                                                               | (C) $CH_3 \overset{\Gamma}{C}HCH_3$ (D) $CH_3 CH_2 \overset{\Gamma}{C}H_2$ |
|             |                                                                                                                                     |                                                                            |

**19**. The order of stability of the alkenes

20.

| (A) CH <sub>3</sub> C∫CH | (B) (CH <sub>3</sub> ) <sub>2</sub> CH−C JH | $(C) CH_3C ]CCH_3$  | (D) HC∫CH  |
|--------------------------|---------------------------------------------|---------------------|------------|
| (,;                      | (2) (01-3)2011 0111                         | (0) 01 -301 0 01 -3 | (2)1101011 |

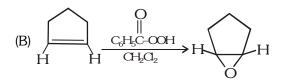
| CHEC | K YO | K YOUR GRASPANSWER KEYEXERCISE -1 |   |   |   |   |   |   |   | ANSWER KEY |    |    |    |    |    |    |    |    |    |    |
|------|------|-----------------------------------|---|---|---|---|---|---|---|------------|----|----|----|----|----|----|----|----|----|----|
| Que. | 1    | 2                                 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10         | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Ans. | С    | В                                 | А | А | С | В | В | В | А | А          | А  | С  | А  | А  | В  | А  | D  | С  | А  | С  |

| SELE | CT THE COR                            | RECT ALT                              | ERNATIVES (                       | ONE OR M                 | IORE THEN O                                          | NE CORF              | RECT ANSWERS)                                     |
|------|---------------------------------------|---------------------------------------|-----------------------------------|--------------------------|------------------------------------------------------|----------------------|---------------------------------------------------|
| 1.   | Which of the                          | following re                          | eactions will resu                | ult in the for           | mation of a chiral                                   | l centre in          | the product -                                     |
|      | (A) CH <sub>3</sub> CH=               | CHCH <sub>3</sub> +HI                 | Br 🕊 🕊                            | (B) CH <sub>3</sub> CI   | H=CH <sub>2</sub> +HOBr @                            | í á                  |                                                   |
|      | (C) CH <sub>3</sub> CH <sub>2</sub> ( | CH=CH <sub>2</sub> +F                 | lBr <b>é ë°€</b>                  | (D                       | )) CH <sub>3</sub> CH <sub>2</sub> CH=C              | CH <sub>2</sub> +HBr | ćć                                                |
| 2.   | Propene on r                          | eaction with                          | n N–bromosucci                    | nimide in Co             | Cl <sub>4</sub> produces -                           |                      |                                                   |
|      | (A) 1, 2-dibro                        | omopropan                             | 5                                 | (E                       | s) 3-bromoprope                                      | ne                   |                                                   |
|      | (C) 1–bromoj                          | oropene                               |                                   | (D                       | )) 2-bromoprope                                      | ne                   |                                                   |
| 3.   | cis-2-Butene                          | on reaction                           | n with Br <sub>2</sub> in CC      | Cl <sub>4</sub> produces | mainly -                                             |                      |                                                   |
|      | (A) 1–bromo-                          | -2-butene                             |                                   | (E                       | ) 2,3-dibromobu                                      | tane                 |                                                   |
|      | (C) meso-2,3                          | -dibromobu                            | ıtane                             | (E                       | ) (±) 2,3-dibrom                                     | obutane              |                                                   |
| 4.   | The bond d                            | issociation e                         | energies of the f                 | following                |                                                      |                      |                                                   |
|      | CH₃-H (                               | H3CH2-H                               |                                   | Н С.Н                    | Н                                                    |                      |                                                   |
|      | Ι                                     | П                                     | Ш                                 | IV                       |                                                      |                      |                                                   |
|      | vary in the                           | order :                               |                                   |                          |                                                      |                      |                                                   |
|      | (A) I > II >                          | III > IV                              | (B) IV > III >                    | > II > I                 | (C) $IV > I > II$                                    | > III                | (D) $II > I > IV > III$                           |
| 5.   | Which of th                           | ne following                          | decolourises a                    | lkaline KMr              | $\rm NO_4$ solution                                  |                      |                                                   |
|      | (A) $C_3 H_8$                         |                                       | (B) C <sub>2</sub> H <sub>4</sub> |                          | (C) CH <sub>4</sub>                                  |                      | (D) CCl <sub>4</sub>                              |
| 6.   | Compound                              | s capable of                          | reacting with a                   | ammonical A              | AgNO <sub>3</sub> solution a                         | re                   |                                                   |
|      | (A) CH <sub>3</sub> —(                | H−C≡C<br>H₃                           | H (B)HC≡CH                        | ł                        | (C) 1- Butyne                                        |                      | (D) all the above                                 |
| 7.   | A hydrocar<br>(A) Benzene             |                                       | lecolourises KM<br>(B) Acetylend  | •                        | es not give any p<br>(C) Butyne                      | recipitate           | with ammoniated AgNO <sub>3</sub><br>(D) 2–Butene |
| 8.   | -                                     |                                       | -                                 | -                        | -                                                    |                      | lc. KOH gives gas 'C', which<br>ompound. 'A' is : |
|      | (A) C <sub>2</sub> H <sub>6</sub>     |                                       | (B) C <sub>2</sub> H <sub>4</sub> |                          | (C) C <sub>4</sub> H <sub>10</sub>                   |                      | (D) C <sub>2</sub> H <sub>5</sub> Cl              |
| 9.   | Which reag                            | ent convert                           | s propene to 1                    | -propanol                |                                                      |                      |                                                   |
|      | (A) H <sub>2</sub> O, H               | $I_2SO_4$                             |                                   |                          | (B) B <sub>2</sub> H <sub>6</sub> , H <sub>2</sub> C | 0 <sub>2</sub> , OH⁻ |                                                   |
|      | (C) Hg(OAd                            | c) <sub>2</sub> ,NaBH <sub>4</sub> /1 | H <sub>2</sub> O                  |                          | (D) Aq. KOH                                          |                      |                                                   |
| 10.  | Which one<br>[R = Alkyl               |                                       |                                   | vill react fas           | ter with $H_2$ unde                                  | er catalytic         | : hydrogenation conditions :                      |
|      | R,                                    | R                                     | R, J                              | R                        | R, R                                                 |                      | R, H                                              |
|      | (A) R                                 | R                                     | (B) (B)                           | -1                       | (C) R H                                              |                      | (D) R H                                           |
|      |                                       |                                       | 1                                 | -                        |                                                      |                      | ** **                                             |

11. Arrange the following in order of increase/decrease in boiling point.

|     | $CH_3CH_2CH_2CH_3$                      | (CH3)2CHCH2CH3          | (CH <sub>3</sub> ) <sub>4</sub> C     |                                                      |
|-----|-----------------------------------------|-------------------------|---------------------------------------|------------------------------------------------------|
|     | Ι                                       | II                      | Ш                                     |                                                      |
|     | (A) $I > II > III$                      | (B) $II > I > III$      | (C) $III > I > II$                    | (D) $III < II < I$                                   |
| 12. | What are the products c                 | btained upon the ozono  | olysis of 2-pentene ?                 |                                                      |
|     | (A) CH <sub>3</sub> CH <sub>2</sub> CHO | (B) CH <sub>3</sub> CHO | (C) CH <sub>3</sub> COCH <sub>3</sub> | (D)CH <sub>3</sub> COCH <sub>2</sub> CH <sub>3</sub> |
|     |                                         |                         |                                       |                                                      |

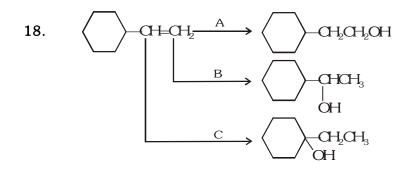
**13.** Which of the following can be used for the preparation of propane ?


(A)  $CH_3CH=CH_2 \notin \mathbb{Z}_{CH_3COOH}^{LB_2H_2}$ 

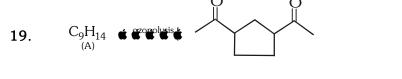
(B) 
$$CH_3CH_2CH_2Cl \stackrel{\bullet}{\leftarrow} \stackrel{\text{M}}{\underset{2.H_2O}{\overset{\bullet}{\leftarrow}} \stackrel{\text{dhef}}{\overset{\bullet}{\leftarrow}} \stackrel{\text{dhef}}{\overset{\text{dhef}}{\overset{\bullet}{\leftarrow}} \stackrel{\text{dhef}}{\overset{\bullet}{\leftarrow}} \stackrel{\text{dhef}}{\overset{\text{dhef}}{\overset{\bullet}{\leftarrow}} \stackrel{\text{dhef}}{\overset{\text{dhef}}{\overset{\bullet}{\leftarrow}} \stackrel{\text{dhef}}{\overset{\text{dhef}}{\overset{\bullet}{\leftarrow}} \stackrel{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\bullet}{\leftarrow}}} \stackrel{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\text{dhef}}}{\overset{\text{dhef}}{\overset{\text{dhef}}{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\overset{\text{dhef}}}{\overset{\overset{\overset{\text{dhef}}}}{\overset$$

(C)  $CH_3CH_2CH_2I \notin \mathbb{P} \oplus \mathbb{P} \oplus \mathbb{P} \oplus \mathbb{P} \oplus \mathbb{P}$ 

14. Which of the following are correct :





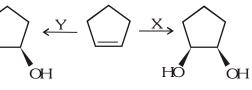


- 15. 2-Bromo-3-phenylpropane can be synthesised by
  (A) C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>CH(OH)CH<sub>3</sub>+PBr<sub>3</sub> € €
  (B) C<sub>6</sub>H<sub>5</sub>CH=CHCH<sub>3</sub>+HBr+ benzoyl peroxide € €
  (C) C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>+Br<sub>2</sub>+ light € €
  (D) none of these
- **16.** The nitration of propane with concentrated  $HNO_3$  gives :

 $\begin{array}{cccc} \text{(A)} \ \text{CH}_3\text{CH}_2\text{CH}_2\text{NO}_2 & \text{(B)} \ \text{CH}_3\text{CH}_3\text{CH}_3 & \text{(C)} \ \text{CH}_3\text{CH}_2\text{NO}_2 & \text{(D)} \ \text{CH}_3\text{NO}_2 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$ 

17.Which of the follwing will react with sodium metal :<br/>(A) Ethyne(B) 1-Butyne(C) 2-Butyne(D) Ethane



- A, B and C are :
- (A) simple hydration
- (B) hydroboronation, mercuration-demercuration, hydration
- (C) hydration, hydroboronation, mercuration-demercuration
- (D) mercuration-demercuration, hydration, hydroboronation




Hence A is :

ΗÒ



20.



Select X and Y out of :

```
I: MnO_4^Z/OH^- II:HCO_3H
```

|  |  | (A) X -I, Y- II | (B) X -II, Y- I | (C) X -I, Y- I | (D) X -II, Y- II |
|--|--|-----------------|-----------------|----------------|------------------|
|--|--|-----------------|-----------------|----------------|------------------|

| BRAIN | BRAIN TEASERS ANSWER KEY |      |    |    |    |   |   |   |   | E  | EXERCIS | SE -2 |        |        |     |
|-------|--------------------------|------|----|----|----|---|---|---|---|----|---------|-------|--------|--------|-----|
| Que.  | 1                        | 2    | 3  | 4  | 5  | 6 | 7 | 8 | 9 | 10 | 11      | 12    | 13     | 14     | 15  |
| Ans.  | A, B,D                   | В    | D  | С  | В  | D | D | А | В | В  | A, D    | Α, Β  | A,BC,D | A,BC,D | A,B |
| Que.  | 16                       | 17   | 18 | 19 | 20 |   |   |   |   |    |         |       |        |        |     |
| Ans.  | A,BC,D                   | А, В | В  | В  | А  |   |   |   |   |    |         |       |        |        | ĺ   |

## EXERCISE-03

## TRUE OR FALSE :

- 1. Although acetylene acidic in nature it does not react with NaOH/KOH.
- 2. Although C—H bond in acetylene has greatest bond energy of all C—H bond, yet it is most acidic.
- 3.  $CH_2 = CH$  is less basic than  $HC \downarrow | C$
- 4.  $-C \downarrow C$  has two  $\Leftrightarrow$  bond yet it is less reactive than -C = C towards electrophilic addition reaction.
- 5. Partial reduction of alkynes is either syn or anti.

## FILL IN THE BLANKS :

- **1**. Out of cis-2 butene and trans-2-butene, ..... has the lower melting point.
- 2. A four-carbon alkyne having weakly acidic character is .....
- 3. Alkanes undergo ..... reactions whereas alkynes give ..... reaction.
- 4. ..... is a versatile method for locating the position of the double bond in an alkene.
- 5. The valence atomic orbital on carbon in silver acetylide is ...... hybridized.

## MATCH THE COLUMN

**1**. Match the column I with column II.

|     | Column-I                    | $\bigcap$ | Column-II                           |
|-----|-----------------------------|-----------|-------------------------------------|
| (A) | Wurtz reaction              | (p)       | Electrophilic substitution reaction |
| (B) | Hydration of alkenes        | (q)       | Free radical substitution           |
| (C) | Nitration of alkane         | (r)       | Electrophilic addition reaction     |
| (D) | Reaction of alkene with NBS | (s)       | Nucleophilic substitution           |

**2**. Match the column I with column II.

|              | Column-I                                                                                                    | Column-II  |                                   |  |
|--------------|-------------------------------------------------------------------------------------------------------------|------------|-----------------------------------|--|
| ari-ari-ari- | (A)<br>→ CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Br<br>(B)<br>→ CH <sub>3</sub> CHBrCH <sub>3</sub> | (p)<br>(q) | HBr<br>HBr + peroxide             |  |
| - 3 2        | (C)<br>CH3CHBrCH2Br                                                                                         | (r)        | NBS                               |  |
|              | (D) $BrCH_2$ -CH=CH <sub>2</sub>                                                                            | (s)        | Br <sub>2</sub> , low temp., dark |  |

**3**. Match the column I with column II.

| $\square$ | Column-I                    | $\neg$ | Column-II                    |
|-----------|-----------------------------|--------|------------------------------|
| (A)       | Dehydrohalogenation         | (p)    | Kolbe reaction               |
|           | of alkyl halides            |        |                              |
| (B)       | Electrolysis of sodium salt | (q)    | Alc. KOH                     |
| (C)       | Ozonolysis                  | (r)    | Addition product of ethylene |
| (D)       | Dichloro ethylene           | (s)    | Sodalime                     |
| (E)       | Decarboxylation             | (t)    | Alkene                       |