EXERCISE-01

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER) 1. The element having no neutron in the nucleus of its atom is -(A) hydrogen (D) boron (B) nitrogen (C) helium **s2. The particles present in the nucleus of an atom are -(A) the proton and the electron (B) the electron and the neutron (C) the proton and the neutron (D) none of these 3. The fraction of volume occupied by the nucleus with respect to the total volume of an atom is -(C) 10^{-30} (D) 10^{-10} (A) 10^{-15} (B) 10⁻⁵ 4. Which of the following is iso-electronic with neon - $(A) O^{2-}$ (B) F^{+} (C) Mg (D) Na 5. The approximate size of the nucleus of ${}^{64}_{28}N_i$ is -(A) 3 fm (B) 4 fm (C) 5 fm (D) 2 fm 6. Which is true about an electron -(A) rest mass of electron is $9.1 \text{ H} 10^{-28} \text{ g}$ (B) mass of electron increases with the increase in velocity (C) molar mass of electron is $5.48 \text{ H} 10^{-4} \text{ g/mole}$ (D) e/m of electron is $1.7 \text{ H} 10^8$ coulomb/g An isotone of $^{76}_{32}$ Ge is -7. (A) ⁷⁷₃₂Ge (B) ⁷⁷₃₃As (C) ⁷⁷₃₄Se (D) ⁷⁸₃₄Se 8. When alpha particles are sent through a thin metal foil, most of them go straight through the foil because -(A) alpha particles are much heavier than electrons (B) alpha particles are positively charged (C) most part of the atom is empty space (D) alpha particles move with high speed 9. Many elements have nonintegral atomic masses because -(A) they have isotopes (B) their isotopes have non-integral masses (C) their isotopes have different masses (D) the constituents, neutrons, protons and electrons combine to give fractional masses 10. The MRI (magnetic resonance imaging) body scanners used in hospitals operate with 400 MHz radio frequency energy. The wavelength corresponding to this radio frequency is -(A) 0.75 m (B) 0.75 cm (C) 1.5 m (D) 2 cm 11. Photon of which light has maximum energy -(A) Red (B) Blue (C) Violet (D) Green The value of Planck's constant is 6.63 $\text{ H } 10^{-34}$ Js. The velocity of light is 3 $\text{ H } 10^{8}$ m/sec. Which value is 12. closest to the wavelength in nanometer of a quantum of light with frequency of $8 \text{ H } 10^{15} \text{ sec}^{-1}$ -(D) 2 Y 10⁻²⁵ $(A) 5 4 10^{-18}$ $(C) 3 4 10^7$ $(B) 4 4 10^{1}$

13. Bohr's theory is not applicable to -(A) He (B) Li²⁺

(C) He²⁺

(D) the H-atom

14.	What is likely to be prind if we assume Bohr orbit				20 nm of the hydrogen atom intum number ?
	(A) 10	(B) 14	(0	C) 12	(D) 16
15.	Which is the correct rela	tionship -			
	(A) $E_1 \text{ of } H = 1/2 E_2 \text{ of }$	$He^+ = 1/3 E_3 \text{ of } Li^{2+} =$	1/4 E	E ₄ of Be ³⁺	
	(B) $E_1(H) = E_2(He^+) = E_3$	$(\text{Li}^{2+}) = E_4(\text{Be}^{3+})$			
	(C) $E_1(H) = 2E_2(He^+) = 3$	$BE_{3}(Li^{2+}) = 4E_{4}(Be^{3+})$			
	(D) No relation				
16.	If the value of $E = -78$	4 kcal/mole, the order	of the	orbit in hydrogen atom	is -
	(A) 4	(B) 3	•	C) 2	(D) 1
**s17.	If velocity of an electron	in 1^{st} orbit of H atom is			of 3 rd orbit of Li ⁺² -
	(A) V	(B) V/3	(0	C) 3 V	(D) 9 V
18.					e (1) to a final state (2), the
	difference in the orbit ra				
10	$(A) 5 \rightarrow 1$	(B) $25 \rightarrow 1$	(0	$C) 8 \rightarrow 3$	(D) $7 \rightarrow 5$
19.	Match the following -	· · · · · · · · ·	(*)		
	(a) Energy of ground		(i)		
		of I orbit of H-atom II excited state of He ⁺	(ii) (iii)		
	(c) Kinetic energy of(d) Ionisation potenti		(iiv)		
	(d) $(A) = A - (i), B - (ii), C - (ii)$. ,	B) A – (iv), B – (iii), C –	(ii) $D = (i)$
	(C) $A - (iv), B - (ii), C - (ii)$		-	D) A – (ii), B – (iii), C –	,
20.		,		, , , , , , , , , , , , , , , , , , , ,	of the level corresponding to
	(A) –0.54 eV	(B) –5.40 eV	((C) –0.85 eV	(D) –2.72 eV
21.	Total no. of lines in Lyn	()			(=) = = = = :
21.	(where $n = no$. of orbits				
	(A) n	′ (B) n − 1	((C) n – 2	(D) n (n + 1)
**s22.	The spectrum of He^+ is	()			(D) II (II + 1)
522.	-	-			
	(A) Li ⁺	(B) He		C) H	(D) Na
23.	What possibly can the	ratio be of the de Brog			1 1 1 1 1 1
	energy and accelerated	through 50 volts and 20			trons having the same initial
	energy and accelerated (A) 3 : 10)0 volt		trons having the same initial (D) 2 : 1
24.	(A) 3 : 10	through 50 volts and 20 (B) 10 : 3 nomentum of an electror	00 volt ((rs ? C) 1 : 2	
24.	(A) 3 : 10 The uncertainty in the m	through 50 volts and 20 (B) 10 : 3 nomentum of an electror g m ² s ⁻¹) -	0 volt ((n is 1.(rs ? C) 1 : 2	(D) 2 : 1 uncertainty of its position will
24. 25.	(A) $3 : 10$ The uncertainty in the m be (h = 6.626 $ ext{ H } 10^{-34} ext{ k}$ (A) $1.05 ext{ H } 10^{-28} ext{ m}$	through 50 volts and 20 (B) 10 : 3 nomentum of an electror g m ² s ⁻¹) - (B) 1.05 Y 10 ⁻²⁶ m	00 volt ((n is 1.(((rs ? C) 1 : 2) 4 10 ⁻⁵ kg m s ⁻¹ . The C) 5.27 4 10 ⁻³⁰ m	(D) 2 : 1 uncertainty of its position will
	(A) $3:10$ The uncertainty in the m be (h = 6.626 $4 10^{-34}$ k (A) $1.05 4 10^{-28}$ m An α -particle is accelera	through 50 volts and 20 (B) 10 : 3 nomentum of an electror g m ² s ⁻¹) - (B) 1.05 Y 10 ⁻²⁶ m	00 volt ((n is 1.(((differen	rs ? C) 1 : 2) 4 10 ⁻⁵ kg m s ⁻¹ . The C) 5.27 4 10 ⁻³⁰ m	(D) 2 : 1 uncertainty of its position will (D) 5.25 4 10 ⁻²⁸ m
	(A) $3:10$ The uncertainty in the m be (h = 6.626 $4 \cdot 10^{-34}$ k (A) $1.05 \cdot 4 \cdot 10^{-28}$ m An α -particle is accelera associated with it is -	through 50 volts and 20 (B) 10 : 3 nomentum of an electron g m ² s ⁻¹) - (B) 1.05 $ H 10^{-26} m$ ted through a potential of (B) $\frac{0.286}{\sqrt{V}} A^{\circ}$	00 volt ((n is 1.(((differen	rs ? C) 1 : 2) 4 10 ⁻⁵ kg m s ⁻¹ . The C) 5.27 4 10 ⁻³⁰ m nce of V volts from rest	(D) 2 : 1 uncertainty of its position will (D) 5.25 Y 10 ⁻²⁸ m . The de-Broglie's wavelength
25.	(A) 3 : 10 The uncertainty in the m be (h = 6.626 $ ext{ } 10^{-34} ext{ k}$ (A) 1.05 $ ext{ } 10^{-28} ext{ m}$ An α -particle is accelerated associated with it is - (A) $\sqrt{\frac{150}{V}} ext{A}^{\circ}$	through 50 volts and 20 (B) 10 : 3 nomentum of an electron g m ² s ⁻¹) - (B) 1.05 $ H 10^{-26} m$ ted through a potential of (B) $\frac{0.286}{\sqrt{V}} A^{\circ}$	00 volt ((n is 1.(((differen	rs ? C) 1 : 2) 4 10 ⁻⁵ kg m s ⁻¹ . The C) 5.27 4 10 ⁻³⁰ m nce of V volts from rest	(D) 2 : 1 uncertainty of its position will (D) 5.25 Y 10 ⁻²⁸ m . The de-Broglie's wavelength

27.	Which of the following is	electronic configuration of	$f Cu^{2+} (Z = 29) -$		
	(A) $[Ar]4s^1 3d^8$	(B) $[Ar]4s^2 3d^{10}4p^1$	(C) $[Ar]4s^1 3d^{10}$	(D) [Ar] 3d ⁹	
28.	The electronic configura	tion of the ${\rm Mn}^{4_+}$ ion is -			
	(A) $3d^44s^0$	(B) $3d^24s^1$	(C) $3d^{1}4s^{2}$	(D) $3d^34s^0$	
29.	Which of the following id	ons has the maximum num	ber of unpaired d-electrons	-	
	(A) Zn^{2+}	(B) Fe^{2+}	(C) Ni ³⁺	(D) Cu ⁺	
30.	The total spin resulting t	rom a d ⁷ configuration is -			
	(A) 1	(B) 2	(C) 5/2	(D) 3/2	
31.	Given K L M	1 N			
		1 2			
	The number of electrons				
	(A) 3	(B) 6	(C) 5	(D) 4	
32.	The configuration $1s^2 2s^2$	$s^2 2p^5 3s^1$ shows the -			
	(A) ground state of the f	uorine atom	(B) excited state of the fl	uorine atom	
	(C) excited state of the r	leon atom	(D) excited state of O_2^- ion		
33.	The value ℓ and m for the	he last electron in the Cl^- is	on are -		
	(A) 1 and 2	(B) 2 and +1	(C) 3 and -1	(D) 1 and -1	
34.	In which transition, one	quantum of energy is emit	ted -		
	(A) $n = 4 \rightarrow n = 2$	(B) $n = 3 \rightarrow n = 1$	(C) $n = 4 \rightarrow n = 1$	(D) $n = 2 \rightarrow n = 1$	
**s35.	Choose the correct relat	ion on the basis of Bohr's tl	heory -		
	(A) velocity of electron 🕫	<u>1</u> n	(B) frequency of revolution	$\operatorname{pn} \propto \frac{Z^2}{n^3}$	
	(C) radius of orbit $\propto n^2 Z$		(D) force on electron ∞	$\frac{Z^3}{n^4}$	
36.	The magnitude of the sp	in angular momentum of a	n electron is given by -		
	$(A) S = \sqrt{s(s+1)} \frac{h}{2\pi}$	(B) S = $s \frac{h}{2\pi}$	(C) S = $\frac{\sqrt{3}}{2} \times \frac{h}{2\pi}$	(D) S = $\pm \frac{1}{2} \times \frac{h}{2\pi}$	
37.	The change in orbital ar can be -	ngular momentum correspo	onding to an electron trans	ition inside a hydrogen atom	
	(A) $\frac{h}{4\pi}$	(B) $\frac{h}{\pi}$	(C) $\frac{h}{2\pi}$	(D) $\frac{h}{8\pi}$	
38.	In which of these option	s do both constituents of th	he pair have the same mag	gnetic moment -	
	(A) Zn^{2+} and Cu^{+}	(B) Co^{2+} and Ni^{2+}	(C) Mn^{4+} and Co^{2+}	(D) Mg^{2+} and Sc^+	

CHEC	CHECK YOUR GRASP ANSWER KEY EXERCISE -1							SE -1							
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	А	С	А	А	С	A,B,C,D	B,D	A,C	A,C	А	С	В	A,C	В	В
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	С	А	А	С	А	В	С	D	С	С	А	D	D	В	D
Que.	31	32	33	34	35	36	37	38							
Ans.	А	С	D	A,B,C,D	A,B,D	A,C	B,C	A,C							

EXERCISE-02

BRAIN

<u>SELEC</u>	T THE CORRECT	ALTERNATIVES (O	NE OR MORE THEN	N ONE CORRECT ANSWERS)	
**s1.	The maximum ener	gy is present in any e	lectron at :-		
	(A) Nucleus		(B) Ground	state	
	(C) First excited stat	te	(D) Infinite	distance from the nucleus	
2.	Which electronic le	vel would allow the hy	drogen atom to absorb	a photon but not to emit a photon :	-
	(A) 3s	(B) 2p	(C) 2s	(D) 1s	
3.	The third line in Balr	ner series corresponds	to an electronic transition	n between which Bohr's orbits in hydrog	gen :-
	$(A) 5 \rightarrow 3$	(B) $5 \rightarrow 2$	(C) $4 \rightarrow 3$	(D) $4 \rightarrow 2$	
4.	Correct set of four	quantum numbers for	valence electron of rub	pidium (Z = 37) is :-	
	(A) 5, 0, 0, + $\frac{1}{2}$	(B) 5, 1, 0, +	$\frac{1}{2}$ (C) 5, 1, 1,	$x + \frac{1}{2}$ (D) 6, 0, 0, $+ \frac{1}{2}$	
5.	The orbital diagram	n in which the Aufbau	s principle is violated is	5 :-	
	$(A) \stackrel{2s}{\uparrow\downarrow} \stackrel{2p_x}{\uparrow\downarrow} \stackrel{2p_y}{\uparrow\downarrow} \stackrel{2p_y}{\uparrow}$	^{2p_z} (B) $\uparrow^{2s} \uparrow^{2p_x}$	$ \stackrel{2\mathbf{p}_{y}}{\uparrow} \stackrel{2\mathbf{p}_{z}}{\uparrow} (C) \stackrel{2\mathbf{s}}{\uparrow} \stackrel{2\mathbf{p}_{z}}{\uparrow} $	$ \stackrel{x}{\wedge} \stackrel{2p_y}{\uparrow} \stackrel{2p_z}{\uparrow} (D) \stackrel{2s}{\uparrow\downarrow} \stackrel{2p_x}{\uparrow\downarrow} \stackrel{2p_y}{\uparrow\downarrow} \stackrel{2p_y}{\downarrow} 2p_$	p _z ↑
6.	The total number o	f neutrons in dipositiv	e zinc ions with mass n	number 70 is :-	
	(A) 34	(B) 40	(C) 36	(D) 38	
7.	Which of the follow	ving sets of quantum r	numbers represent an in	mpossible arrangement :-	
	n <i>l</i>	m m _s			
	(A) 3 2	-2 $\frac{1}{2}$			
	(B) 4 0	$0 \frac{1}{2}$			
	(C) 3 2	-3 $\frac{1}{2}$			
	(D) 5 3	$0 \frac{1}{2}$			
8.	The explanation for	the presence of thre	e unpaired electrons in	the nitrogen atom can be given by :-	
	(A) Pauli's exclusion	s principle	(B) Hund's i	rule	
	(C) Aufbau's princip			ainty principle	
9.		iguration of an eleme	nt is 1s ² 2s ² 2p ⁶ 3s ² 3p	5^{6} $3d^{5}$ $4s^{1}$. This represents its :-	
	(A) Excited state	(B) Ground sta			
10.		-	-	ron (atomic number of Fe 26) :-	
	(A) Fe	(B) Fe (II)	(C) Fe (III)	(D) Fe (IV)	
11.	-		th Schrodinger equation		
	(A) Principal	(B) Azimuthal	(C) Magneti	· · · -	
12.			coelectric emission, λ w Broglie wavelength of er	vavelength of light falling on the surfa mitted electron is :-	ce of

$$(A) \left[\frac{h(\lambda \lambda_0)}{2mc(\lambda_0 - \lambda)} \right]^{\frac{1}{2}} \qquad (B) \left[\frac{h(\lambda_0 - \lambda)}{2mc\lambda\lambda_0} \right]^{\frac{1}{2}} \qquad (C) \left[\frac{h(\lambda - \lambda_0)}{2mc\lambda\lambda_0} \right]^{\frac{1}{2}} \qquad (D) \left[\frac{h\lambda \lambda_0}{2mc} \right]^{\frac{1}{2}}$$

**s13.				neutron is assumed to half of its ue then the atomic mass of ${}^{14}_{6}$ C
	(A) same		(B) 25 % more	
	(C) 14.28 % more		(D) 28.5 % less	
14.	Give the correct order	of initials T (true) or F (fa	alse) for following statements	s :-
		ectrons in K shell, 8 electi in that element is 6.	rons in L shell and 6 electron	ns in M shell, then number of S
	(II) The maximum nu	umber of electrons in a su	ibshell is given by $2n^2$	
	(III) If electron has ma	agnetic quantam number	-1, then it cannot be presen	t in s-orbital.
	(IV) Only one radial n	ode is present in 3p orbi	tal.	
	(A) TTFF	(B) FFTF	(C) TFTT	(D) FFTF
15.	The shortest waveleng is :-	th of He^+ in Balmer series	s is x, then longest wavelengt	h in the Paschene series of Li ⁺²
	(A) $\frac{36x}{5}$	(B) $\frac{16x}{7}$	(C) $\frac{9x}{5}$	(D) $\frac{5x}{9}$
16.	An electron in a hydro wavelength of the emi		tate absorbs energy equal to	ionisation energy of Li ⁺² . The
	(A) 3.32 Y 10 ⁻¹⁰ m	(B) 1.17 E	(C) 2.32 Y 10 ⁻⁹ nm	(D) 3.33 pm
17.	In compound FeCl ₂ the Magneton) of this com		um of last electron in its cation	n & magnetic moment (in Bohr
		-		
	(A) (√6)ħ,√35	(B) $(\sqrt{6})\hbar, \sqrt{24}$	(C) 0, √ <u>35</u>	(D) none of these
18.	An electron, a proton	(B) $(\sqrt{6})\hbar, \sqrt{24}$	e kinetic energy of 16 E, 4E	(D) none of these and E respectively. What is the
18.	An electron, a proton	(B) $(\sqrt{6})\hbar,\sqrt{24}$ and an alpha particle hav	e kinetic energy of 16 E, 4E	
18.	An electron, a proton qualitative order of the	(B) $(\sqrt{6})\hbar,\sqrt{24}$ and an alpha particle hav	e kinetic energy of 16 E, 4E s :-	
18. 19.	An electron, a proton qualitative order of the (A) $\lambda_e > \lambda_p = \lambda_{\alpha}$	(B) $(\sqrt{6})\hbar,\sqrt{24}$ and an alpha particle hav eir de Broglie wavelength	e kinetic energy of 16 E, 4E s :- (B) $\lambda_{\rm p} = \lambda_{\alpha} > \lambda_{\rm e}$	
	An electron, a proton of qualitative order of the (A) $\lambda_e > \lambda_p = \lambda_\alpha$ (C) $\lambda_p > \lambda_e > \lambda_\alpha$ Question : Is the specific	(B) $(\sqrt{6})\hbar,\sqrt{24}$ and an alpha particle hav eir de Broglie wavelength	e kinetic energy of 16 E, 4E s :- (B) $\lambda_{p} = \lambda_{\alpha} > \lambda_{e}$ (D) $\lambda_{\alpha} < \lambda_{e} >> \lambda_{p}$	
	An electron, a proton of qualitative order of the (A) $\lambda_e > \lambda_p = \lambda_\alpha$ (C) $\lambda_p > \lambda_e > \lambda_\alpha$ Question : Is the specific	(B) $(\sqrt{6})\hbar, \sqrt{24}$ and an alpha particle hav eir de Broglie wavelength ie paramagnetic ? c number of specie is 29.	e kinetic energy of 16 E, 4E s :- (B) $\lambda_{p} = \lambda_{\alpha} > \lambda_{e}$ (D) $\lambda_{\alpha} < \lambda_{e} >> \lambda_{p}$	
	An electron, a proton of qualitative order of the (A) $\lambda_e > \lambda_p = \lambda_\alpha$ (C) $\lambda_p > \lambda_e > \lambda_\alpha$ Question : Is the species STATE-1 : The atomic STATE-2 : The charge	(B) $(\sqrt{6})\hbar, \sqrt{24}$ and an alpha particle hav eir de Broglie wavelength ie paramagnetic ? c number of specie is 29.	e kinetic energy of 16 E, 4E s :- (B) $\lambda_{p} = \lambda_{a} > \lambda_{e}$ (D) $\lambda_{a} < \lambda_{e} >> \lambda_{p}$	
	An electron, a proton of qualitative order of the qualitative order of the (A) $\lambda_e > \lambda_p = \lambda_\alpha$ (C) $\lambda_p > \lambda_e > \lambda_\alpha$ Question : Is the species STATE-1 : The atomic STATE-2 : The charge (A) Statements (1) alor	(B) $(\sqrt{6})\hbar, \sqrt{24}$ and an alpha particle hav eir de Broglie wavelength ie paramagnetic ? c number of specie is 29. e on the specie is +1.	e kinetic energy of 16 E, 4E s :- (B) $\lambda_{p} = \lambda_{a} > \lambda_{e}$ (D) $\lambda_{a} < \lambda_{e} >> \lambda_{p}$ ent (2) is not sufficient	
	An electron, a proton a qualitative order of the qualitative order of the (A) $\lambda_e > \lambda_p = \lambda_\alpha$ (C) $\lambda_p > \lambda_e > \lambda_\alpha$ Question : Is the species STATE-1 : The atomic STATE-2 : The charge (A) Statements (1) along (B) Statement (2) along	(B) $(\sqrt{6})\hbar, \sqrt{24}$ and an alpha particle hav eir de Broglie wavelength ie paramagnetic ? c number of specie is 29. e on the specie is +1. he is sufficient but statem e is sufficient but stateme	e kinetic energy of 16 E, 4E s :- (B) $\lambda_{p} = \lambda_{a} > \lambda_{e}$ (D) $\lambda_{a} < \lambda_{e} >> \lambda_{p}$ ent (2) is not sufficient	and E respectively. What is the
	An electron, a proton qualitative order of the qualitative order of the $(A) \lambda_e > \lambda_p = \lambda_\alpha$ (C) $\lambda_p > \lambda_e > \lambda_\alpha$ Question : Is the species STATE-1 : The atomic STATE-2 : The charge (A) Statements (1) alors (B) Statement (2) along (C) Both statement tog (D) Statement (1) & (2)	(B) $(\sqrt{6})\hbar, \sqrt{24}$ and an alpha particle hav eir de Broglie wavelength ie paramagnetic ? c number of specie is 29. e on the specie is +1. the is sufficient but statem e is sufficient but stateme gether are sufficient but n	e kinetic energy of 16 E, 4E s :- (B) $\lambda_p = \lambda_a > \lambda_e$ (D) $\lambda_a < \lambda_e >> \lambda_p$ ent (2) is not sufficient nt (1) is not sufficient weither statement alone is suf	and E respectively. What is the
	An electron, a proton qualitative order of the qualitative order of the $(A) \lambda_e > \lambda_p = \lambda_\alpha$ (C) $\lambda_p > \lambda_e > \lambda_\alpha$ Question : Is the species STATE-1 : The atomic STATE-2 : The charge (A) Statements (1) alors (B) Statement (2) along (C) Both statement tog (D) Statement (1) & (2)	(B) $(\sqrt{6})\hbar, \sqrt{24}$ and an alpha particle have eir de Broglie wavelength ie paramagnetic ? c number of specie is 29. e on the specie is +1. the is sufficient but stateme gether are sufficient but stateme gether are not sufficient but not sufficient but not sufficient e sess Li (g) \longrightarrow Li ⁺³ (g) + 3	e kinetic energy of 16 E, 4E s :- (B) $\lambda_p = \lambda_a > \lambda_e$ (D) $\lambda_a < \lambda_e >> \lambda_p$ ent (2) is not sufficient nt (1) is not sufficient weither statement alone is suf	and E respectively. What is the
19.	An electron, a proton a qualitative order of the (A) $\lambda_e > \lambda_p = \lambda_a$ (C) $\lambda_p > \lambda_e > \lambda_a$ Question : Is the species STATE-1 : The atomic STATE-2 : The charge (A) Statements (1) alon (B) Statement (2) along (C) Both statement tog (D) Statement (1) & (2) Given Δ H for the proc	(B) $(\sqrt{6})\hbar, \sqrt{24}$ and an alpha particle have eir de Broglie wavelength ie paramagnetic ? c number of specie is 29. e on the specie is +1. the is sufficient but stateme gether are sufficient but stateme gether are not sufficient but not sufficient but not sufficient e sess Li (g) \longrightarrow Li ⁺³ (g) + 3	e kinetic energy of 16 E, 4E s :- (B) $\lambda_p = \lambda_a > \lambda_e$ (D) $\lambda_a < \lambda_e >> \lambda_p$ ent (2) is not sufficient nt (1) is not sufficient weither statement alone is suf	and E respectively. What is the
19.	An electron, a proton a qualitative order of the (A) $\lambda_e > \lambda_p = \lambda_a$ (C) $\lambda_p > \lambda_e > \lambda_a$ Question : Is the species STATE-1 : The atomic STATE-2 : The charge (A) Statements (1) alon (B) Statement (2) alone (C) Both statement tog (D) Statement (1) & (2) Given Δ H for the proc Li ⁺ are respectively (ap (A) 11775, 7505 (C) 11775, 19280	(B) $(\sqrt{6})\hbar, \sqrt{24}$ and an alpha particle have eir de Broglie wavelength ie paramagnetic ? c number of specie is 29. e on the specie is +1. the is sufficient but stateme gether are sufficient but stateme gether are not sufficient but stateme gether are not sufficient e sess Li (g) \longrightarrow Li ⁺³ (g) + 3 opprox value) :-	e kinetic energy of 16 E, 4E s :- (B) $\lambda_p = \lambda_a > \lambda_e$ (D) $\lambda_a < \lambda_e >> \lambda_p$ ent (2) is not sufficient nt (1) is not sufficient weither statement alone is sufficient B) 19280, 520 (D) Data insufficient	and E respectively. What is the ficient for Li is 520 then ${\rm IE}_2$ & ${\rm IE}_1$ of
19.	An electron, a proton a qualitative order of the (A) $\lambda_e > \lambda_p = \lambda_a$ (C) $\lambda_p > \lambda_e > \lambda_a$ Question : Is the species STATE-1 : The atomic STATE-2 : The charge (A) Statements (1) alor (B) Statement (2) alone (C) Both statement tog (D) Statement (1) & (2) Given Δ H for the proton Li ⁺ are respectively (ap (A) 11775, 7505 (C) 11775, 19280 The ratio of difference	(B) $(\sqrt{6})\hbar, \sqrt{24}$ and an alpha particle have eir de Broglie wavelength ie paramagnetic ? c number of specie is 29. e on the specie is +1. the is sufficient but stateme gether are sufficient but stateme gether are not sufficient but stateme gether are not sufficient e sess Li (g) \longrightarrow Li ⁺³ (g) + 3 opprox value) :-	e kinetic energy of 16 E, 4E s :- (B) $\lambda_p = \lambda_a > \lambda_e$ (D) $\lambda_a < \lambda_e >> \lambda_p$ ent (2) is not sufficient nt (1) is not sufficient theither statement alone is sufficient d 19280, 520 (D) Data insufficient and 2 nd lines of Lyman series	and E respectively. What is the
19. 20.	An electron, a proton a qualitative order of the (A) $\lambda_e > \lambda_p = \lambda_a$ (C) $\lambda_p > \lambda_e > \lambda_a$ Question : Is the species STATE-1 : The atomic STATE-2 : The charge (A) Statements (1) alor (B) Statement (2) alone (C) Both statement tog (D) Statement (1) & (2) Given Δ H for the proton Li ⁺ are respectively (ap (A) 11775, 7505 (C) 11775, 19280 The ratio of difference	(B) $(\sqrt{6})\hbar, \sqrt{24}$ and an alpha particle have eir de Broglie wavelength ie paramagnetic ? c number of specie is 29. e on the specie is +1. he is sufficient but stateme gether are sufficient but stateme gether are sufficient but n c) together are not sufficient e is sufficient i but stateme gether are sufficient but n c) together are not sufficient cress Li (g) \longrightarrow Li ⁺³ (g) + 3 c) prox value) :-	e kinetic energy of 16 E, 4E s :- (B) $\lambda_p = \lambda_a > \lambda_e$ (D) $\lambda_a < \lambda_e >> \lambda_p$ ent (2) is not sufficient nt (1) is not sufficient theither statement alone is sufficient d 19280, 520 (D) Data insufficient and 2 nd lines of Lyman series	and E respectively. What is the ficient for Li is 520 then ${\rm IE}_2$ & ${\rm IE}_1$ of

- **22.** Which of the following statement is INCORRECT.
- (A) $\frac{e}{m}$ ratio for canal rays is maximum for hydrogen ion. (B) $\frac{e}{m}$ ratio for cathode rays is independent of the gas taken. (C) The nature of canal rays is dependent on the electrode material. (D) The $\frac{e}{m}$ ratio for electron is expressed as $\frac{E^2}{2B^2V}$, when the cathode rays go undeflected under the influence of electric field (E), magnetic field (B) and V is potential difference applied across electrodes. 23. The quantum numbers of four electrons (e1 to e4) are given below :l m s n 0 +1/23 0 e1 e2 4 0 1 1/22 eЗ 3 2 -1/23 1 1/2e4 -1 The correct order of decreasing energy of these electrons is : (A) e4 > e3 > e2 > e1(B) $e^2 > e^3 > e^4 > e^1$ (C) $e^3 > e^2 > e^4 > e^1$ (D) none If radius of second stationary orbit (in Bohr's atom) is R. Then radius of third orbit will be :-24. (C) R/9 (D) 2.25 R (A) R/3 (B) 9R 25. The wavelength associated with a gold weighing 200 g and moving at a speed of 5 m/h is of the order :-(B) 10⁻²⁰ m (C) 10^{-30} m (A) 10^{-10} m (D) 10^{-40} m If the nitrogen atom had electronic configuration $1 s^7$, it would have energy lower that of normal ground 26. state configuration $1s^2 2s^2 2p^3$, because the electrons would be closer to the nucleus. Yet $1s^7$ is not observed because it violates :-(A) Heisenberg uncertainty principle (B) Hunds rule (C) Pauli's exclusion principle (D) Bohr postulate of stationary orbits 27. From the following observations predict the type of orbital : Observation 1 : x y plane acts as nodal plane Observation 2: The angular function of the orbital intersect the three axis at origin only. Observation 3 : $R^{2}(r)v/s$ r curve is obtained for the orbital is $\frac{1}{r}$ (C) $6d_{x^2-y^2}$ (B) 6d (A) 5p_ (D) 6 d 28. Question : Is the orbital of hydrogen atom $3p_{v}$? STATE 1 : The radial function of the orbital is $R(r) = \frac{1}{9\sqrt{6}a_0^{3/2}} (4 - \sigma)\sigma e^{-\sigma/2}, \sigma = \frac{r}{2}$
 - STATE 2: The orbital has 1 radial node & 0 angular node.
 - (A) Statement (1) alone is sufficient.
 - (C) Both together is sufficient
- (B) Statement (2) alone is sufficient(D) Neither is sufficient

29. Consider the following nuclear reactions involving X & Y.

 $X \longrightarrow Y + {}^{4}_{2}He$ $Y \longrightarrow {}^{8}O^{18} + {}^{1}_{1}H^{1}$

If both neutrons as well as protons in both the sides are conserved in nuclear reaction then identify period number of X & moles of neutrons in 4.6 g of X

(A) 3, 2.4
$$N_{A}$$
 (B) 3, 2.4 (C) 2, 4.6 (D) 3, 0.2 N_{A}

30. Electromagnetic radiations having $\lambda = 310$ E are subjected to a metal sheet having work function = 12.8 eV. What will be the velocity of photoelectrons with maximum Kinetic Energy....

(A) 0, no emission will occur	(B) 2.18 Ч 10° m∕s
(C) $2.18\sqrt{2}$ 4^{10^6} m/s	(D) 8.72 H 10 ⁶ m/s

31. If in Bohr's model, for unielectronic atom, time period of revolution is represented as $T_{n,z}$ where **n** represents shell no. and **z** represents atomic number then the value of $T_{1,2}$: $T_{2,1}$ will be :-(A) 8 : 1 (B) 1 : 8 (C) 1 : 1 (D) None of these

- **32.** Column I & Column II contain data on Schrondinger Wave-Mechanical model, where symbols have their usual meanings. Match the columns :-
 - Column I

L

Column II (Type of orbital)

(A)
$$\Psi_r$$
 (p) 4s

(B)
$$\Psi_r^2 4\pi r^2$$
 (q) $5p_j$

(C)	Ψ (θ , ϕ) = K (independent of θ & ϕ)	(r)	3s
-----	--	-----	----

- (D) at least one angular node is present (s) $6d_{xy}$
- **33.** Which orbital is non-directional :-

34. A hydrogen - like atom has ground state binding energy 122.4 eV. Then :

(A) its atomic number is 3

(B) an electron of 90 eV can excite it to a higher state

(C) an 80 eV electron cannot excite it to a higher state

(D) an electron of 8.2 eV and a photon of 91.8 eV are emitted when a 100 eV electron interacts with it

35. Uncertainty in position is twice the uncertainty in momentum Uncertainty in velocity is :-

(A)
$$\sqrt{\frac{h}{\pi}}$$
 (B) $\frac{1}{2m}\sqrt{\frac{h}{\pi}}$ (C) $\frac{1}{2m}\sqrt{\hbar}$ (D) $\frac{h}{4\pi}$

36. For which orbital angular probability distribution is maximum at an angle of 45° to the axial direction :-(A) $d_{x^2-y^2}$ (B) d_{z^2} (C) d_{xy} (D) P_x

37.	Which orbit would be the	e first to have 'g' subshell :-		
	(A) 3 rd	(B) 4 th	(C) 5 th	(D) 6 th
38.	The decreasing order of	energy of the 3d, 4s, 3p,	3s orbitals is :-	
	(A) 3d > 3s > 4s > 3p	(B) 3s > 4s > 3p > 3d	(C) 3d > 4s > 3p > 3s	(D) $4s > 3d > 3s > 3p$
39.	If n and ℓ are respectively the total number of elect		al quantum numbers, then	the expression for calculating
	(A) $\sum_{\ell=1}^{\ell=n} 2(2\ell+1)$	(B) $\sum_{\ell=1}^{\ell=n-1} 2(2\ell+1)$	(C) $\sum_{\ell=0}^{\ell=n+1} 2(2\ell+1)$	(D) $\sum_{\ell=0}^{\ell=n-1} 2(2\ell+1)$
40.	If wavelength is equal to	the distance travelled by th	ne electron in one second,	then :-
	(A) $\lambda = \frac{h}{p}$	(B) $\lambda = \frac{h}{m}$	(C) $\lambda = \sqrt{\frac{h}{p}}$	(D) $\lambda = \sqrt{\frac{h}{m}}$
41.	According to Schrodinge	er model nature of electron	in an atom is as :-	
	(A) Particles only		(B) Wave only	
	(C) Both simultaneously		(D) Sometimes waves an	d sometimes particle
42.	Which describes orbital :	-		
	(A) ψ	(B) ψ ²	(C) $ \psi^2 \psi$	(D) All
43.		e wavelength for the electre ectron velocity/neutron ve		ron (mass m _n) their velocities
	(A) m_n / m_e	(B) $m_n H m_e$	(C) m_e/m_n	(D) one
44.	The quantum numbers +	-1/2 and $-1/2$ for the elec	tron spin represent :-	
	(A) Rotation of the electr	on in clockwise and anticle	ockwise direction respectiv	rely.
	(B) Rotation of the electr	on in anticlockwise and clo	ockwise direction respectiv	ely.
	(C) Magnetic moment of	the electron pointing up a	nd down respectively.	
	(D) Two quantum mecha	nical spin states which hav	ve no classifical analogue.	
45.	Which is true about ψ :-			
		bability of finding an electr	on around the nucleus	
		litude of the electron wave		
	(C) Both A and B			
4.6	(D) None of these	, the second		
46.		he n ^{er} orbit of a hydrogen a ns of the de Broglie wavele		he circumference of the orbit -
	(A) (0.529) nλ	(B) $\sqrt{n\lambda}$	(C) (13.6) λ	(D) nλ
47.		n a certain velocity has a de ity 75% that of X, debrogli		 If particle Y has a mass of e :-
	(A) 3 A°	(B) 5.33 A°	(C) 6.88 A°	(D) 48 A°
48.		ne orbital angular momente		
	(A) 0, 0, $\sqrt{6}\hbar, \sqrt{2}\hbar$	(B) 1, 1, $\sqrt{4}\hbar, \sqrt{2}\hbar$	(C) 0, 1, $\sqrt{6}\hbar, \sqrt{3}\hbar$	(D) 0, 0, $\sqrt{20}\hbar, \sqrt{6}$
49.	If m = magnetic quantum	n number and ℓ = azimuth	al quantum number then :-	-
	(A) m = ℓ + 2	(B) m = $2\ell^2 + 1$	$(C) \ \ell = \frac{m-1}{2}$	(D) $\ell = 2m + 1$

50.	The number of unpaire	d electrons in Mn^{4+} (Z = 25) is :-	
	(A) Four	(B) Two	(C) Five	(D) Three
51.	After np orbitals are fill	ed, the next orbital filled wi	ll be :-	
	(A) (n + 1) s	(B) (n + 2) p	(C) (n + 1) d	(D) (n + 2) s
52.	The value of the magne	etic moment of a particular	ion is 2.83 Bohr magneto	n. The ion is :-
	(A) Fe ²⁺	(B) Ni ²⁺	(C) Mn ²⁺	(D) Co ³⁺
53.		nydrogen atom the ratio bet of the revolution of the elec		ion of an electron in the orbit
	(A) 1 : 2	(B) 2 : 1	(C) 1 : 4	(D) 1 : 8
54.	=	of the series limit of the L the frequency of the series	=	quency of the first line of the :-
	(A) $\upsilon_1 - \upsilon_2 = \upsilon_3$	(B) $v_2 - v_1 = v_3$	(C) $v_3 = 1/2 (v_1 - v_3)$	(D) $v_1 + v_2 = v_3$
55.	of wavelengths λ_1, λ_2 are then which of the follow	ad $\lambda_3^{}$ are emitted due to the ving relations is correct :-	atomic transitions C to B, I	$E_A < E_B < E_C$. If the radiations 3 to A and C to A respectively
	(A) $\lambda_1 + \lambda_2 + \lambda_3 = 0$	$\textbf{(B)} \ \lambda_3 = \lambda_1 + \lambda_2^2$	(C) $\lambda_3 = \lambda_1 + \lambda_2$	(D) $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$
56.	The wavelengths of phoand λ_2 respectively. Th		ansition between two simil	ar levels in H and He $^{\scriptscriptstyle +}$ are λ_1
	(A) $\lambda_2 = \lambda_1$	(B) $\lambda_2 = 2\lambda_1$	(C) $\lambda_2 = \lambda_1/2$	(D) $\lambda_2 = \lambda_1/4$
57.	If first ionization potent	ial of an atom is 16 V, ther	n the first excitation potent	ial will be :-
	(A) 10.2 V	(B) 12 V	(C) 14 V	(D) 16 V
58.	In which transition min	mum energy is emitted :-		
	$(A) \infty \to 1$	(B) $2 \rightarrow 1$	(C) $3 \rightarrow 2$	(D) $n \rightarrow (n-1)$ ($n \ge 4$)
59.	No. of visible lines whe	n an electron returns from	5 th orbit to ground state in	H spectrum :-
	(A) 5	(B) 4	(C) 3	(D) 10

BRAIN	N TEAS	ERS				l	ANSW	/ER ł	KEY	EXERCISE -2					
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	D	D	В	А	В	В	С	В	В	С	D	А	С	С	В
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	В	В	А	С	А	В	С	С	D	С	С	D	В	В	С
Que.	31	32(A)	(B)	(C)	(D)	33	34	35	36	37	38	39	40	41	42
Ans.	D	р	p,q,s	p,r	q,s	А	A,C,D	С	С	С	С	D	D	В	В
Que.	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57
Ans.	А	D	В	D	В	А	С	D	А	В	D	А	D	D	В
Que.	58	59													
Ans.	D	С													

EXERCISE-03

TRUE / FALSE

- **1.** The electron density in xy plane of $3d_{x^2-v^2}$ orbital is zero.
- **2.** $3d^6$ configuration is more stable than $3d^5$.
- **3**. The potential energy of an electron in an orbit is twice in magnitude as compared to its kinetic energy.
- **4.** The increasing order for the values of e/m (charge/mass) for electron (e), proton (p), neutron (n) and alpha particle (α) is $n < \alpha < p < e$.
- **5**. The orbital $3d_{xy}$ has no probability of finding electron along x and y-axis.

FILL IN THE BLANKS

- 1. Nitrogen has an atomic number of 7 and oxygen has an atomic number of 8. The total number of electrons in the nitrate ion (NO_3^-) is
- **2.** h/π is the angular momentum of the electron in the orbit of He⁺.
- 3. An emission spectrum has electromagnetic radiation of definite
- **4.** The maximum number of electrons that can be accommodated in all the orbitals for which $\ell = 3$ is
- **5.** The values of n₁ and n₂ in the Paschen spectral series of hydrogen atom are and respectively.

MATCH THE COLUMN

Column-I			Column-II		
(A)	Aufbau principle	(p)	Line spectrum in visible region		
(B)	de broglie	(q)	Orientation of an electron in an orbital		
(C)	Angular momentum	(r)	Photon		
(D)	Hund's rule	(s)	$\lambda = h/mv$		
(E)	Balmer series	(t)	Electronic configuration		
(F)	Planck's law	(u)	mvr		

2.

1.

	Column-I	Column-II		
(A)	Cathode rays	(p)	Helium nuclei	
(B)	dumb-bell	(q)	Uncertainty principle	
(C)	Alpha particles	(r)	Electromagnetic radiation	
(D)	Moseley	(s)	p-orbital	
(E)	Heisenberg	(t)	Atomic number	
(F)	X-ray	(u)	Electrons	

3.

Frequency = f, Time period = T, Energy of n^{th} orbit = E_n , radius of n^{th} orbit = r_n , Atomic number = Z, Orbit number = n :

\square	Column-I	\bigcap	Column-II
(A)	f	(p)	n ³
(B)	Т	(q)	Z^2
(C)	E _n	(r)	$\frac{1}{n^2}$
(D)	$\frac{1}{r_n}$	(s)	Z

\bigcap	Column-I		Column-II
(A)	Lyman series	(p)	maximum number of spectral line observed $= 6$
(B)	Balmer series	(q)	maximum number of spectral line observed = 2
(C)	In a sample $5 \rightarrow 2$	(r)	2^{nd} line has wave number $\frac{8R}{9}$
(D)	In a single isolated H-atom for	(s)	2^{nd} line has wave number $\frac{3R}{4}$
	$3 \rightarrow 1$ transition	(t)	total number of spectral line is 10

ASSERTION & REASON

4.

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true ; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true ; Statement-II is NOT a correct explanation for statement-I
- (C) Statement-I is true, Statement-II is false
- (D) Statement-I is false, Statement-II is true

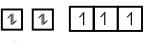
Statement-I : Nodal plane of p_x atomic orbital is yz plane.
 Because
 Statement-II : In p_x atomic orbital electron density is zero in the yz plane.

Statement-I : No two electrons in an atom can have the same values of four quantum numbers.
 Because

Statement-II : No two electrons in an atom can be simultaneously in the same shell, same subshell, same orbitals and have same spin.

- 3. Statement-I : p-orbital has dumb-bell shape.
 - Because

Statement-II: Electrons present in p-orbital can have one of three values for 'm', i.e. 0, +1, -1


- 4. Statement-I : The ground state configuration of Cr is $3d^5 4s^1$.
 - Because

Statement-II : A set of exactly half filled orbitals containing parallel spin arrangement provide extra stability.

- Statement-I : Mass numbers of most of the elements are fractional.
 Because
 Statement-II : Mass numbers are obtained by comparing with the mass number of carbon taken as 12.
- 6. Statement-I : Limiting line in the balmer series has a wavelength of 36.4 μm. Because

Statement-II : Limiting lines is obtained for a jump of electron from $n = \infty$ to n = 2 for Balmer series.

7. Statement-I : The electronic configuration of nitrogen atom is represented as :

not as

Because

Statement-II : The configuration of ground state of an atom is the one which has the greatest multiplicity.

- Statement-I : The configuration of B atom cannot be 1s² 2s³.
 Because
 Statement-II : Hund's rule demands that the configuration should display maximum multiplicity.
- Statement-I: 2p orbitals do not have spherical nodes.
 Because
 Statement-II: The number of spherical nodes in p-orbitals is given by (n 2).

10. Statement-I : In Rutherford's gold foil experiment, very few α - particles are deflected back. Because

Statement-II : Nucleus present inside the atom is heavy.

11. Statement-I : Each electron in an atom has two spin quantum numbers.

```
Because
```

Statement-II : Spin quantum numbers are obtained by solving Schrodinger wave equation.

12. Statement-I : There are two spherical nodes in 3s-orbital.

Because

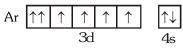
Statement-II : There is no angular node in 3s-orbital.

COMPREHENSION BASED QUESTIONS

Comprehension # 1

Read the following rules and answer the questions at the end of it.

- Electrons in various suborbits of an orbit are filled in increasing order to their energies.
- Pairing of electrons in various orbitals of a suborbit takes place only after each orbital is half-filled.
- No two electrons in an atom can have the same set of quantum number.
- 1. Cr (Z = 24), Mn^+ (Z = 25), Fe^{2+} (Z = 26) and Co^{3+} (Z = 27) are isoelectronic each having 24 electrons. Thus,
 - (A) all have configurations as [Ar] $4s^1 3d^5$
 - (B) Cr and Mn^+ have configurations as [Ar] $4s^1 3d^5$ while Fe^{2+} and Co^{3+} have configurations as [Ar] $3d^5$.
 - (C) all have configurations as [Ar] $3d^6$
 - (D) all have configurations as [Ar] $4s^2 3d^6$
- **2.** A compound of vanadium has a magnetic moment of 1.73 BM. Electronic configuration of the vanadium ion in the compound is :


(A) [Ar] $4s^0 3d^1$

```
(C) [Ar] 4s^1 3d^0 (D) [Ar] 4s^0 3d^5
```

3. Which of these ions are expected to be paramagnetic and coloured in aqueous solution ? (A) Fe^{3+} , Ti^{3+} , Co^{3+} (B) Cu^+ , Ti^{4+} , Sc^{3+} (C) Fe^{3+} , Ni^{2+} , V^{5+} (D) Cu^+ , Cu^{2+} , Fe^{2+}

(B) [Ar] $4s^2 3d^3$

- **4**. While writing the following electronic configuration of Fe some rules have been violated :
 - I : Aufbau rule,
 - II : Hund's rule
 - III : Pauli's exclusion principle

(A) I, II	(B) II, III	(C) I, III	(D) I, II, III
	(D) II, III	(C) 1, 111	(D) I, II, III

5. How many elements would be in the second period of the periodic table if the spin quantum number

(m_s) could have the value of $-\frac{1}{2}$, 0, $+\frac{1}{2}$? (A) 8 (B) 10

(C) 12 (D) 18

6. The sub-shell that arises after f sub-shell is called g sub-shell.

(A) it contains 18 electrons and 9 orbitals

(B) it corresponds to ℓ = 4 and first occurs in 5th energy level

(C) a g-orbital can have maximum of two electrons

(D) all the above statements are true.

ISCELLANEOUS	TYPE QUESTION	A	NSWER K	EY		EXERCISE -3				
<u>True / Fal</u>	lse									
1 . F	2. F 3 .	Т	4. T	5. T						
<u>Fill in the</u>	<u>Blanks</u>									
1. 32	2. 2 nd	3 . freq	uency or wave	elength	4 . 14	5. 3, (4, 5, 6,				
<u>Match the</u>	<u>Column</u>									
1. (A) \rightarrow t; (B) \rightarrow s ; (C) \rightarrow u ; (D) \rightarrow q ; (E) \rightarrow p; (F) \rightarrow r										
2. (A) \rightarrow u ;	2. (A) \rightarrow u ; (B) \rightarrow s ; (C) \rightarrow p ; (D) \rightarrow t ; (E) \rightarrow q ; (F) \rightarrow r									
3. (A) \rightarrow q ;	$(B) \to p \ ; \ (C) \to q, r \ ;$	(D) \rightarrow r,s								
4. (A) \rightarrow r ; ((B) \rightarrow s; (C) \rightarrow p; (D)	\rightarrow q								
<u>Assertion</u>	- Reason Questi	<u>ons</u>								
1 . A	2 . A	3 . B	4. A		5. E	6 . A				
7 . A	8. B	9. A	10 . B		11. E	12 . B				
<u>Comprehe</u>	nsion Based Qu	<u>estions</u>								
Comprehen	nsion #1 : 1. (B)	2. (A)	3. (A)	4 . (D)	5. (C)	6. (D)				

EXERCISE-04 [A]

CONCEPTUAL SUBJECTIVE EXERCISE

- 1. How long would it take a radio wave of frequency $6 \text{ H } 10^3 \text{ sec}^{-1}$ to travel from mars to the earth, a distance of $8 \text{ H } 10^7 \text{ km}$?
- 2. The energy levels of hypothetical one electron atom are shown below.

 $0 \text{ eV} - n = \infty$ -0.50 eV - n = 5 -1.45 eV - n = 4 -3.08 eV - n = 3 -5.3 eV - n = 2 -15.6 eV - n = 1

- (a) Find the ionisation potential of atom?
- (b) Find the short wavelength limit of the series terminating at n = 2?
- (c) Find the wave no. of photon emitted for the transition made by the electron from third orbit to first orbit ?
- (d) Find the minimum energy that an electron will have after interacting with this atom in the ground state, if the initial kinetic energy of the electron is (i) 6eV (ii) 11 eV ?
- **3.** Suppose 10^{-17} J of light energy is needed by the interior of the human eye to see an object. How many photons of green light ($\lambda = 550$ nm) are needed to generate this minimum amount of energy?
- **4**. Find the number of photons of radiation of frequency $5 \vee 10^{13} \text{ s}^{-1}$ that must be absorbed in order to melt one g ice when the latent heat of fusion of ice is 330 J/g.
- 5. The eyes of certain member of the reptile family pass a single visual signal to the brain when the visual receptors are struck by photons of wavelength 850 nm. If a total energy of $3.15 \text{ Y} 10^{-14} \text{ J}$ is required to trip the signal, what is the minimum number of photons that must strike the receptor?
- 6. The wavelength of a certain line in the Paschen series is 1093.6 nm. What is the value of n_{high} for this line [$R_{H} = 1.0973 \text{ H } 10^{+7} \text{ m}^{-1}$].
- 7. Wavelength of the Balmer H_{α} line (first line) is 6565 E. Calculate the wavelength of H_{β} (second line).
- **8**. Calculate the Rydberg constant R if He⁺ ions are known to have the wavelength difference between the first (of the longest wavelength) lines of Balmer and Lyman series equal to 133.7 nm.
- **9**. Calculate the energy emitted when electrons of 1.0 g atom of hydrogen undergo transition giving the spectral line of lowest energy in the visible region of its atomic spectrum.
- 10. A photon having $\lambda = 854$ E causes the ionization of a nitrogen atom. Give the I.E. per mole of nitrogen in KJ.
- Calculate energy of electron which is moving in the orbit that has its radius, Sixteen times the radius of first Bohr orbit for H-atom.
- 12. The electron energy in hydrogen atom is given by $E_n = \frac{-21.7 \times 10^{-12}}{n^2}$ ergs. Calculate the energy required to remove an e⁻ completely from n = 2 orbit. What is the largest wavelength in cm of light that can be used to cause this transition.

- **13.** Calculate the wavelength in angstrom of photon that is emitted when an e^- in Bohr orbit n = 2 returns to the orbit n = 1. The ionization potential of the ground state of hydrogen atom is 2.17 $H \ 10^{-11} \ erg/atom$.
- 14. The velocity of e^{-in} a certain Bohr orbit of the hydrogen atom bears the ratio 1 : 275 to the velocity of light. What is the quantum no. "n" of the orbit and the wave no. of the radiation emitted for the transition form the quantum state (n + 1) to the ground state.
- **15.** A doubly ionised lithium atom is hydrogen like with atomic number Z = 3. Find the wavelength of the radiation required to excite the electron in Li^{2+} from the first to the third Bohr orbit.
- 16. Estimate the difference in energy between I and II Bohr Orbit for a hydrogen atom. At what minimum At. no. a transition from n = 2 to n = 1 energy level would result in the emission of X-rays with $\lambda = 3.0 \text{ H} 10^{-8} \text{ m}$? Which hydrogen like species does this At. no. correspond to:
- 17. 1.8 g atoms of hydrogen are excited to radiations. The study of spectra indicates that 27% of the atoms are in 3rd energy level and 15% of atoms in 2nd energy level and the rest in ground state. If I.P. of H is 21.7 4 10⁻¹² erg. Calculate.
 - (i) No. of atoms present in III & II energy level.
 - (ii) Total energy evolved when all the atoms return to ground state.
- 18. One mole He⁺ ions are excited. Spectral analysis showed existence of 50% ions in 3rd orbit, 25% in 2nd and rest in ground state. Calculate total energy evolved when all the ions return to the ground state.
- **19.** The energy of an excited H-atom is -3.4 eV. Calculate angular momentum of e^{-} .
- 20. The vapours of Hg absorb some electrons accelerated by a potential difference of 4.5 volt as a result of it light is emitted. If the full energy of single incident e⁻ is supposed to be converted into light emitted by single Hg atom, find the wave no. of the light.
- **21.** The hydrogen atom in the ground state is excited by means of monochromatic radiation of wavelength $x A^0$. The resulting spectrum consists of 15 different lines. Calculate the value of x.
- **22.** If the average life time of an excited state of H atom is of order 10^{-8} sec, estimate how many orbits an e^{-} makes when it is in the state n = 2 and before it suffers a transition to n = 1 state.
- **23.** Calculate the frequency of e⁻ in the first Bohr orbit in a H-atom.
- **24.** A single electron orbits around a stationary nucleus of charge +Ze where Z is a constant from the nucleus and e is the magnitude of the electric charge. The hydrogen like species required 47.2 eV to excite the electron from the second Bohr orbit to the third Bohr orbit. Find -
 - (i) the value of Z give the hydrogen like species formed.
 - (ii) the kinetic energy and potential energy of the electron in the first Bohr orbit.
- 25. A stationary He⁺ ion emitted a photon corresponding to a first line of the Lyman series. The photon liberated a photoelectron from a stationary H atom in ground state. What is the velocity of photoelectron ?
- 26. To what series does the spectral lines of atomic hydrogen belong if its wave number is equal to the difference between the wave number of the following two lines of the Balmer series 486.1 and 410.2 nm. What is the wavelength of this ?

- 27. A particle of charge equal to that of an electron and mass 208 times the mass of the electron moves in a circular orbit around a nucleus of charge +3e. Assuming that the Bohr model of the atom is applicable to this system, (a) derive an for the radius of the nth bohr orbit, (b) find the value of n for which the radius of the orbit is approximately the same as that of the first Bohr orbit for the hydrogen atom, and (c) find the wavelength of the radiation emitted when the revolving particle jumps from the third orbit to the first.
- **28.** A neutrons breaks into a proton and an electron. This decay of neutron is accompanied by release of energy. Assuming that 50% of the energy is produced in the form of electromagnetic radiation, what will be the frequency of radiation produced. Will this photon be sufficient to cause ionization of Aluminium. In case it is able to do so what will be the energy of the electron ejected from the Aluminum atom. IE_1 of AI = 577 kJ/mol.
- **29.** Calculate the threshold frequency of metal if the binding energy is $180.69 \text{ kJ mol}^{-1}$ of electron.
- 30. Calculate the binding energy per mole when threshold wavelength of photon is 240 nm.
- **31.** A metal was irradiated by light of frequency $3.2 \ \text{U} \ 10^{15} \ \text{s}^{-1}$. The photoelectron produced had its KE, 2 times the KE of the photoelectron which was produced when the same metal was irradiated with a light of frequency $2.0 \ \text{U} \ 10^{15} \ \text{s}^{-1}$. What is work function ?
- **32.** U.V. light of wavelength 800 A° & 700 A° falls on hydrogen atoms in their ground state & liberates electrons with kinetic energy 1.8 eV and 4 eV respectively. Calculate planck's constant.
- **33.** A potential difference of 20 kV is applied across an X-ray tube. Find the minimum wavelength of X-ray generated.
- **34.** The K.E. of an electron emitted from tungsten surface is 3.06 eV. What voltage would be required to bring the electron to rest.
- **35.** What is de-Broglie wavelength of a He-atom in a container at room temperature. $\left(\text{Use U}_{avg.} = \sqrt{\frac{8kT}{\pi m}}\right)$
- **36.** Through what potential difference must an electron pass to have a wavelength of 500 A°.
- **37.** A proton is accelerated to one tenth of the velocity of light. If its velocity can be measured with a precision \pm 1%. What must be its uncertainty in position ?
- **38**. To what effective potential a proton beam be subjected to give its protons a wavelength of $1 \ \text{y} \ 10^{-10} \text{m}$.
- **39.** Calculate the number of exchange pairs of electrons present in configuration of Cu according to Aufbau principle considering 3d orbitals.
- **40.** He atom can be excited to $1s^1 2p^1$ by $\lambda = 58.44$ nm. If lowest excited state for He lies 4857 cm⁻¹ below the above. Calculate the energy for the lower excitation state.
- 41. A certain dye absorbs 4530 A° and fluoresence at 5080 A° these being wavelengths of maximum absorption that under given conditions 47% of the absorbed energy is emitted. Calculate the ratio of the no. of quanta emitted to the number absorbed.
- **42.** The reaction between H_2 and Br_2 to form HBr in presence of light is initiated by the photo decomposition of Br_2 into free Br atoms (free radicals) by absorption of light. The bond dissociation energy of Br_2 is 192 kJ/mole. What is the longest wavelength of the photon that would initiate the reaction?
- 43. The quantum yield for decomposition of HI is 0.2. In an experiment 0.01 moles of HI are decomposed.Find the number of photons absorbed.

- **44**. Calculate the wavelength of the radiation that would cause photo dissociation of chlorine molecule if the Cl Cl bond energy is 243 kJ/mol.
- **45.** The dissociation energy of H_2 is 430.53 kJ/mol. If H_2 is exposed to radiant energy of wavelength 253.7 nm, what % of radiant energy will be converted into K.E ?
- 46. Iodine molecule dissociates into atoms after absorbing light of 4500 A⁰ If one quantum of radiation is absorbed by each molecule, calculate the K.E. of iodine atoms.
 (Bund any new of L = 240 b L(mal))

(Bond energy of $I_2 = 240$ kJ/mol)

- 47. X-rays emitted from a copper target and a molybdenum target are found to contain a line of wavelength 22.85 nm attributed to the K_{α} line of an impurity element. The K_{α} lines of a copper (Z = 29) and molybdenum (Z = 42) have wavelength 15.42 nm and 7.12 nm respectively. Using Moseley's law, $\gamma^{1/2} = a (Z b)$. Calculate the atomic number of the impurity element.
- 48. What is de-Broglie wavelength associated with an e^- accelerated through P.D. = 100 kV ?
- **49.** Calculate the de-broglie wavelength associated with motion of earth (mass $6 \ \text{Y} \ 10^{24} \text{ kg}$) orbiting around the sun at a speed of $3 \ \text{Y} \ 10^6 \text{ m/s}$.
- **50.** A base ball of mass 200 g is moving with velocity $30 \text{ H} 10^2 \text{ cm/s}$. If we can locate the base ball with error equal in magnitude to the λ of the light used (5000 E), how will the uncertainty in momentum compared with the total momentum of base ball ?
- 51. An electron has a speed of 40 m/s, accurate up 99.99 %. What is the uncertainty in locating position?

CO	NCEPTUAL SUBJE	CTIVI	E EXERCISE	ANS	SWER KEY					EXERCISE-4(A)
1.	2.66 Ч 10 ² sec	2.	(a) 15.6 eV	. ,	233.9 nm, i) electron will r	• •				7 eV
3.	28 photons	4.	10 ²²	5 . 1	$1.35 ext{ } 4 ext{ } 10^5$	6.	6	7 . 4	1863	3 A°
8.	$1.096 \text{ H} 10^7 \text{ m}^{-1}$	9.	1.827 Ч 10 ⁵ J/mol	10.	1403 kJ/mol	11.	. –1.36 Ч 1	$0^{-19} J_{0}$	oule	S
12.	$5.425 ext{ H } 10^{-12} ext{ erg}$	gs, 3.	7 Ч 10^{-5} ст	13.	1220 A°	14	. 2;9.75 ^u	10^{4}	cm ⁻	1
15.	113.74 A°	16.	10.2 eV, Z=2	17.	292.68 Ч 10 ²	¹ ato	oms, 162.60	Ч 10) ²¹ a	toms, 832.50 kJ
18.	331.13Ч10 ⁴ Ј	19.	h/π	20.	$3.63410^{6} \text{m}^{-1}$			21.	93	8 A°
22.	8Ч10 ⁶	23.	6530 Ч 10 ¹² Нz	24.	(i) $Z = 5$,	(ii) 3	340 eV, –68	80 eV		
25.	3.09 Ч 10 ⁸ ст/з	sec		26.	Brackett ; 2.6	3Ч	$10^{-4} \mathrm{~cm}$			
27.	$r_n = \frac{n^2 h}{4K\pi^2 \times 3e^2}$	2 ×208	$\frac{1}{3m_e}$; n = 25; 55	.2 pm	1	28.	. 9.15 Ч 10) ¹⁹ Hz	, ye	s, 58.5 Y 10 ⁻¹⁵ J
29.	$4.5 \ \text{H} \ 10^{^{14}} \ \text{s}^{^{-1}}$	30.	497 kJ/mol	31.	319.2 kJ/mo	l		32.	6.5	7Ч10 ⁻³⁴ Js
33.	0.62 A°	34.	3.06 V	35.	0.79 A°	36.	6.03Ч10 ⁻⁴	volt		
37.	1.05 Ч 10 ⁻¹³ m	38.	0.0826 volts	39.	16	40.	3.3 Ч 10 ⁻¹⁴	⁸ J		
41.	0.527	42.	6235 A°	43.	$3\mathrm{H}\mathrm{10}^{22}$	44.	4.9 Ч 10 ⁻⁷	m		
45.	8.68 %	46.	$2.186 \mathrm{H}10^{-20}$ Joul	es		47.	24	4	8.	3.88 pm
49.	3.68 Ч 10 ⁻⁶⁵ m	50.	1.75 Ч 10 ⁻²⁹	51.	0.0144 m					

EXERCISE-04 [B]

BRAIN STORMING SUBJECTIVE EXERCISE

- 1. To what series does the spectral lines of atomic hydrogen belong if its wave number is equal number is equal to the difference between the wave numbers of the following two lines of the Balmer series 486.1 and 410.2 nm? What is the wavelength of this line ?
- 2. Energy required for the excitation of H-atom its ground state to the 2^{nd} excited state is 2.67 times smaller than dissociation energy of H₂(g). If H₂ (g) placed in 1.0 litre flask at 27°Cand 1.0 bar is to be excited to their 2^{nd} excited state, what will be the total energy consumption ?
- **3.** Find the quantum number 'n' corresponding to the excited state of He⁺ ion if on transition to the ground state that ion emits two photons in succession with wavelengths 108.5 and 30.4 nm.
- **4.** A gas of identical H-like atom has some atoms in the lowest (ground) energy level A and some atoms in a particular upper (excited) energy level B and there are no atoms in any other energy level. The atoms of the gas make transition to a higher energy level by absorbing monochromatic light of photon energy 2.7 eV. Subsequently, the atoms emit radiation of only six different photons energies. Some of the emitted photons have energy 2.7 eV. Some have more and some have less than 2.7 eV.
 - (a) Find the principal quantum number of initially excited level B.
 - (b) Find the ionisation energy for the gas atoms.
 - (c) Find the maximum and the minimum energies of the emitted photons.
- 5. A hydrogen like atom (atomic number Z) is in a higher excited state of quantum number n. This excited atom can make a transition to the first excited state by successively emitting two photons of energies 10.20 eV and 17.00 eV respectively. Alternatively, the atom from the same excited state can make a transition to the second excited state by successively emitting two photons of energy 4.25 eV and 5.95 eV respectively. Determine the values of n and z (ionisation energy of hydrogen atom = 13.6 eV).
- 6. Hydrogen atom in its ground state is excited by means of monochromatic radiation of wavelength 975 A°. How many different lines are possible in the resulting spectrum? Calculate the longest wavelength amongst them.
- 7. An alpha particle after passing through a potential difference of $2 \text{ Y } 10^6$ volt falls on a silver foil. The atomic number of silver is 47. Calculate (i) the K.E. of the alpha-particle at the time of falling on the foil. (ii) K.E. of the α -particle at a distance of $5 \text{ Y } 10^{-14} \text{ m}$ from the nucleus, (iii) the shortest distance from the nucleus of silver to which the α -particle reaches.
- 8. Suppose the potential energy between electron and proton at a distance r is given by $-\frac{ke^2}{3r^3}$. Use Bohr's theory to obtain energy of such a hypothetical atom.
- **9.** An energy of 68 eV is required to excite a hydrogen like atom from its second Bohr orbit to the third. The nuclear charge is Ze. Find the value of Z, the kinetic energy of the electron in the first Bohr orbit and the wavelength of the radiation required to eject the electrons from the first Bohr orbit to infinity.
- 10. The ionisation energy of a H-like Bohr atom is 4 Rydbergs.
 - (i) What is the wavelength of radiation emitted when the e⁻jumps from the first excited state to the ground state?
 - (ii) What is the radius of first Bohr orbit for this atom? [1 Rydberg = $2.18 \text{ H} 10^{-18} \text{ J}$]
- 11. Photon having wavelength 12.4 nm was allowed to strike a metal plate having work function 25 eV. Calculate the -

- (a) Maximum kinetic energy of photoelectrons emitted in eV.
- (b) Wavelength of electron with maximum kinetic energy in A° .
- (c) Calculate the uncertainity in wavelength of emitted electron, if the uncertainity in the momentum is $6.62 \text{ H } 10^{-28} \text{ kg m/sec.}$
- **12.** Electron present in single electron species jumps from energy level 3 to 1. Emitted photons when passed through a sample containing excited He⁺ ion causes further excitation to some higher energy level (Given

 $E_n = 13.6 \frac{Z^2}{n^2}$) : Determine .

- (i) Atomic number of single electron species.
- (ii) Principal quantum number of initial excited level & higher energy of He^+
- 13. The angular momentum of an electron in a Bohr's orbit of H-atom is $3.1652 \text{ U } 10^{-34} \text{ kg-m}^2/\text{sec.}$ Calculate the wave number in terms of Rydberg constant (R) of the spectral line emitted when an electron falls from this level to the ground state. (Use $h = 6.626 \text{ U } 10^{-34} \text{ Js}$).

BRAIN	STORMING SUBJECTIVE EXERCISE	ANSWE	R KEY	EXERCISE-4(B)
1.	$n_1^{}=4,n_2^{}=6,2.63~{}^{}^{}_{}^{}^{}^{}_{}^{}^{}_{}^{}^{}_{}^{}^{}_{}^{}^{}_{}^{}^{}_{}^{}^{}_{}^{}^{}_{}^{}^{}_{}^{}^{}_{}^{}^{}_{}^{}^{}_{}^{}^{}_{}^{}^{}_{}^{}^{}_{}^{}^{}_{}^{}^{}^{}_{}^{}^{}_{}^{}^{}_{}^{}^{}^{}_{}^{}^{}^{}_{}^{}^{}_{}^{}^{}_{}^{}^{}_{}^{}^{}_{}^{}^{}_{}^{}^{}^{}_{}^{}^{}_{}^{}^{}^{}_{}^{}^{}^{}_{}^{}^{}^{}_{}^{}^{}^{}_{}^{}^{}^{}_{}^{}^{}^{}_{}^{}^{}^{}_{}^{}^{}^{}_{}^{}^{}^{}_{}^{}^{}^{}_{}^{}^{}^{}^{}_{}^{}^{}^{}_{}^{}^{}^{}_{}^{}^{}^{}_{}^{}^{}^{}^{}_{}^{}^{}^{}^{}^{}_{}^{}^{}^{}_{}^{}^{}^{}^{}_{}^{}^{}^{}^{}^{}^{}^{}^{}^{}^{}^{}^{}^{$	2.	21.8 kJ	
3.	n = 5	4.	(a) n = 2,	(b) 14.4 eV, (c) 13.5eV, 0.7eV
5.	n = 6, Z = 3	6.	six, 1880	0 A°
7.	$6.4 \text{ H} 10^{-13} \text{ J}, 2.1 \text{ H} 10^{-13} \text{ J}, 3.4 \text{ H} 10^{-14} \text{ J}$	m 8.	$E = \frac{r}{384m}$	$h^{6}h^{6}$ $h^{3}K^{2}e^{4}\pi^{6}$
9.	6 ; 489.6 eV, 25.28 A°	10.	300.89 A	°, 2.645 Ч 10 ⁻⁹ cm
11.	(a) 75 eV ; (b) 1.414 A° ; (c) 2 H 10^{-1}	¹⁴ m		
12.	(i) $Z = 1$ (ii) For He^+ ion this energy co	orresponds to	o excitation	n from 2 to 6.
13.	$R\left(\frac{8}{9}\right)$			

EXERCISE - 05 [A]

JEE-[MAIN] : PREVIOUS YEAR QUESTIONS

			ILAN QUESTIONS
An atom has a mass of 0. is (h = $6.626 \text{ H} 10^{-34} \text{ Js}$)	02 kg and uncertainty in its	velocity is 9.218 $ m H~10^{-6}~n$	n/s then uncertainty in positior [AIEEE 2002]
(1) 2.864 10 ⁻²⁸ m	(2) 2.86 Y 10 ⁻³² cm	(3) 1.5 Y 10 ⁻²⁷ m	(4) 3.9 Y 10 ⁻¹⁰ m
Energy of H- atom in the	ground state is $-13.6 \text{ eV},$	Hence energy in the second	nd excited state is- [AIEEE 2002
(1) –6.8 eV	(2) –3.4 eV	(3) –1.51 eV	(4) –4.3 eV
(ms ⁻¹) is (Planck's constant	t h = 6.6 Y 10 ⁻³⁴ Js)		[AIEEE-2002
$(1) 2.1 \text{ H} 10^{-28}$	(2) 2.1 Y 10 ⁻³⁴	(3) 0.5 Y 10 ⁻³⁴	(4) 5.0 Y 20 ⁻²⁴
The orbital angular mome	ntum for an electron revolu	ing in an orbit is given by	$\int \frac{h}{h}$ This momentum
			$\frac{2\pi}{2\pi}$ [AIEEE-2003]
-			
$(1)\sqrt{2}.\frac{h}{2}$	$(2) + \frac{1}{2} \cdot \frac{h}{2}$	(3) zero	(4) $\frac{h}{2\pi}$
2/1	2 28		2.2
The number of d-electron	is retained in Fe ²⁺ (At. no.	of $Fe = 26$) ion is :	[AIEEE-2003
(1) 6	(2) 3	(3) 4	(4) 5
The de Broglie waveleng	th of a tennis ball of mass	60 g moving with a veloc	ity of 10 metres per second i
approximately :			[AIEEE 2003
	(2) 10^{-33} metres	(3) 10^{-31} metres	(4) 10 ⁻¹⁶ metres
	()	. ,	
following inter-orbit jump	s of the electron for Bohr o	orbits in an atom of hydrog	gen ? [AIEEE-2003
(1) $2 \rightarrow 5$	$(2) \ 3 \to 2$	$(3) 5 \rightarrow 2$	$(4) \ 4 \to 1$
Which of the following se	ets of quantum number is c	orrect for an electron in 4	f orbital ? [AIEEE-2004]
(1) $n = 3, l = 2, m = -2,$	$s = + \frac{1}{2}$	(2) n = 4, <i>l</i> = 4, m = -	4, s = $-\frac{1}{2}$
(3) n = 4, l = 3, m = + 1	$s = + \frac{1}{2}$	(4) n = 4, <i>l</i> = 3, m = +	4, s = + $\frac{1}{2}$
		numbers of electrons with th	ne azimuthal quantum numbers [AIEEE-2004]
· -	-	(2) 16 and 4	
. ,			(4) 12 and 4
The wavelength of the rastate 1, would be	idiation emitted, when in a	a hydrogen atom electron	talls from infinity to stationary [AIEEE-2004]
(Rydberg constant = 1.09	7Ч 10 ⁷ m ⁻¹) :		
(1) 9.1 Ч 10 ^{−8} nm	(2) 192 nm	(3) 406 nm	(4) 91 nm
Which one of the followi	ng sets of ions represents t	he collection of isoelectronic	species? [AIEEE-2004]
, , , , , , , , , , , , , , , , , ,	, , , ,		
	-	•	uantum members will have th AIEEE-2005]
(A) $n = 1, l = 0, m = 0$		(B) $n = 2, l = 0, m = 0$	
		(_, 0,, , = 1	
(1) (D) and (E)	(2) (C) and (D)	(3) (B) and (C)	(4) (A) and (B)
	An atom has a mass of 0. is (h = 6.626 \lor 10 ⁻³⁴ Js) (1) 2.86 \lor 10 ⁻²⁸ m Energy of H- atom in the (1) -6.8 eV Uncertainty in position (ms ⁻¹) is (Planck's constant (1) 2.1 \lor 10 ⁻²⁸ The orbital angular mome for an s-electron will be g (1) $\sqrt{2} \cdot \frac{h}{2\pi}$ The number of d-electron (1) 6 The de Broglie wavelengt approximately : (1) 10 ⁻²⁵ metres In Balmer series of lines o following inter-orbit jump (1) 2 \rightarrow 5 Which of the following set (1) n = 3, $l = 2, m = -2,$ (3) n = 4, $l = 3, m = +1,$ Consider the ground state l = 1 and 2 are, respectivel (1) 16 and 5 The wavelength of the ra- state 1, would be (Rydberg constant = 1.09 (1) 9.1 \lor 10 ⁻⁸ nm Which one of the following (1) Na ⁺ , Mg ²⁺ , Al ³⁺ , Cl ⁻ (3) K ⁺ , Cl ⁻ , Mg ²⁺ , Sc ³⁺ In a multi-electron atom, w	An atom has a mass of 0.02 kg and uncertainty in its is (h = 6.626 \pm 10 ⁻³⁴ Js) (1) 2.86 \pm 10 ⁻²⁸ m (2) 2.86 \pm 10 ⁻³² cm Energy of H- atom in the ground state is -13.6 eV, (1) -6.8 eV (2) -3.4 eV Uncertainty in position of a particle of 25 g (ms ⁻¹) is (Planck's constant h = 6.6 \pm 10 ⁻³⁴ Js) (1) 2.1 \pm 10 ⁻²⁸ (2) 2.1 \pm 10 ⁻³⁴ The orbital angular momentum for an electron revolution of a selectron will be given by (1) $\sqrt{2}$. $\frac{h}{2\pi}$ (2) \pm $\frac{1}{2}$. $\frac{h}{2\pi}$ The number of d-electrons retained in Fe ²⁺ (At. no. 4) (1) 6 (2) 3 The de Broglie wavelength of a tennis ball of mass approximately : (1) 10 ⁻²⁵ metres (2) 10 ⁻³³ metres In Balmer series of lines of hydrogen spectrum, the the following inter-orbit jumps of the electron for Bohr of (1) 2 \rightarrow 5 (2) 3 \rightarrow 2 Which of the following sets of quantum number is c (1) n = 3, l = 2, m = -2, s = $\pm \frac{1}{2}$ (3) n = 4, l = 3, m = ± 1 , s = $\pm \frac{1}{2}$ Consider the ground state of Cr atom (Z = 24). The m l = 1 and 2 are, respectively (1) 16 and 5 (2) 12 and 5 The wavelength of the radiation emitted, when in a state 1, would be (Rydberg constant = 1.097 \pm 10 ⁷ m ⁻¹) : (1) 9.1 \pm 10 ⁻⁸ nm (2) 192 nm Which one of the following sets of ions represents the (1) Na ⁺ , Mg ²⁺ , Al ³⁺ , Cl ⁻ (2) Na ⁺ , Ca ²⁺ , Sc ³⁺ , F ⁻ (3) K ⁺ , Cl ⁻ , Mg ²⁺ , Sc ³⁺ (4) K ⁺ , Ca ²⁺ , Sc ³⁺ , F ⁻ (3) K ⁺ , Cl ⁻ , Mg ²⁺ , Sc ³⁺ (4) K ⁺ , Ca ²⁺ , Sc ³⁺ , C ⁻ In a multi-electron atom, which of the following orbits same energy in the absence of magnetic and electric (A) n = 1, l = 0, m = 0 (C) n = 2, l = 1, m = 1 (E) n = 3, l = 2, m = 0	An atom has a mass of 0.02 kg and uncertainty in its velocity is 9.218 Y 10 ⁻⁴ m is (h = 6.626 Y 10 ⁻³⁴ Js) (2) 2.86 Y 10 ⁻³² cm (3) 1.5 Y 10 ⁻²⁷ m Energy of H- atom in the ground state is -13.6 eV, Hence energy in the second (1) -6.8 eV (2) -3.4 eV (3) -1.51 eV Uncertainty in position of a particle of 25 g in space is 10 ⁻⁵ m. He (ms ⁻¹) is (Planck's constant h = 6.6 Y 10 ⁻³⁴ Js) (1) 2.1 Y 10 ⁻²⁸ (2) 2.1 Y 10 ⁻³⁴ (3) 0.5 Y 10 ⁻³⁴ The orbital angular momentum for an electron revolving in an orbit is given by for an s-electron will be given by (1) $\sqrt{2} \cdot \frac{h}{2\pi}$ (2) $+ \frac{1}{2} \cdot \frac{h}{2\pi}$ (3) zero The number of d-electrons retained in Fe ²⁺ (At. no. of Fe = 26) ion is : (1) 6 (2) 3 (3) 4 The de Broglie wavelength of a tennis ball of mass 60 g moving with a veloc approximately : (1) 10 ⁻²⁵ metres (2) 10 ⁻³³ metres (3) 10 ⁻³¹ metres In Balmer series of lines of hydrogen spectrum, the third line from the red end c following inter-orbit jumps of the electron for Bohr orbits in an atom of hydrog(1) $2 \rightarrow 5$ (2) $3 \rightarrow 2$ (3) $5 \rightarrow 2$ Which of the following sets of quantum number is correct for an electron with the following sets of quantum number is correct for an electron with the following sets of Cr atom (Z = 24). The numbers of electrons with the following sets (2) 10 ⁻³⁰ m (3) 406 nm Which one of the radiation emitted, when in a hydrogen atom electron is tate 1, would be (Rydberg constant = 1.097Y 10 ⁷ m ⁻¹): (1) 9.1 Y 10 ⁻⁴ nm (2) 192 nm (3) 406 nm Which one of the following sets of ions represents the collection of isoelectronic (1) Na ⁺ , Mg ²⁺ , Cl ⁻ (2) Na ⁺ , Ca ²⁺ , Sc ³⁺ , Cl ⁻ (3) 406 nm (2) Ni ² , Sc ³⁺ (4) K ⁺ , Ca ²⁺ , Sc ³⁺ , Cl ⁻ (5) N ⁺ , Cl ⁻ (2) Na ⁺ , Ca ²⁺ , Sc ³⁺ , Cl ⁻ (7) In a multi-electron atom, which of the following orbitals described by the there of same energy in the absence of magnetic and electric fields ? (A) n = 1, <i>l</i> = 0, m = 0 (C) n = 2, <i>l</i> = 1, m = 1 (D) n = 3, <i>l</i> = 2, m = 1 (E) n = 3, <i>l</i> = 2, m = 0

13.	Of the following sets whic	h one does not contain isoe	electronic species ?	[AIEEE-2005]
	(1) BO_3^{3-} , CO_3^{2-} , NO_3^{-}	(2) SO ₃ ²⁻ , CO ₃ ²⁻ , NO ₃ ⁻	(3) CN^{-} , N_{2}^{-} , C_{2}^{2-}	(4) PO_4^{3-} , SO_4^{2-} , ClO_4^{-}
14.	Which of the following sta	tements in relation to the h	ydrogen atom is correct ?	[AIEEE-2005]
	(1) 3s, 3p and 3d orbitals	all have the same energy		
	(2) 3s and 3p orbitals are	of lower energy than 3d ort	pitals	
	(3) 3p orbital is lower in e	nergy than 3d orbital		
	(4) 3s orbitals is lower in e	energy than 3p orbital		
15.	According to Bohr's theo	ry angular momentum of e	electron in 5^{th} shell is :-	[AIEEE-2006]
	(1) 1.0 h/π	(2) 10 h/π	(3) 2.5 h/π	(4) 25 h/π
16.		sition of an electron (m 001% , will be :- (h = 6.63 V		moving with a velocity [AIEEE-2006]
	(1) 5.76 Y 10 ⁻² m	(2) 1.92 Y 10 ⁻² m	(3) 3.84 Y 10 ⁻² m	(4) 19.2 Y 10 ⁻² m
17.	Which of the following set	ts of quantum numbers repr	esents the highest energy o	f an atom ? [AIEEE-2007]
	(1) $n = 3, l = 1, m = 1, s =$	+□	(2) $n = 3, l = 2, m = 1, s =$	+□
	(3) $n = 4, l = 0, m = 0, s =$	+□	(4) $n = 3, l = 0, m = 0, s =$	+□
18.	Which one of the followin	g constitutes a group of the	isoelectronic species?	[AIEEE-2008]
	(1) C_2^{2-}, O_2^-, CO, NO	(2) $NO^+, C_2^{2-}, CN^-, N_2$	(3) CN ⁻ , N ₂ , O ₂ ²⁻ , C ₂ ²⁻	$(4) N_2, O_2^-, NO^+, CO$
19.	The ionziation enthalpy of in the atom from $n = 1$ to		10 ⁶ J mol ⁻¹ . The energy re	quired to excite the electron [AIEEE-2008]
	(1) 8.51 x 10 ⁵ J mol ⁻¹	(2) 6.56 x 10 ⁵ J mol ⁻¹	(3) 7.56 x 10 ⁵ J mol ⁻¹	(4) 9.84 x 10 ⁵ J mol ⁻¹
20.			-	005%. Certainity with which 1 ² s ⁻¹ , mass of electron, [AIEEE-2009]
	(1) 1.92 Ч 10 ^{−3} m	(2) 3.84 Y 10 ⁻³ m	(3) 1.52 Y 10 ⁻⁴ m	(4) 5.10 Y 10 ⁻³ m
21.	Calculate the wavelength = $1.67 \text{ H} 10^{-27} \text{ kg}$ and h		with a proton moving at 1.0	4 10 ³ ms ⁻¹ (Mass of proton [AIEEE-2009]
	(1) 2.5 nm	(2) 14.0 nm	(3) 0.032 nm	(4) 0.40 nm
22.				The longest wavelength of $2 \ \mathrm{H} \ 10^{23} \ \mathrm{mol}^{-1}$) [AIEEE-2010]
	(1) 494 nm	(2) 594 nm	(3) 640 nm	(4) 700 nm
23.				ary state (n = 1) of Li^{2+} is:-
	(1) 8.82 Y 10 ⁻¹⁷ J atom ⁻¹⁷		(2) 4.41 Y 10 ⁻¹⁶ J atom ⁻	
	(3) –4.41 Ч 10 ⁻¹⁷ J atom		(4) $-2.2 \text{ H } 10^{-15} \text{ J atom}^{-15}$	
24.	other is at :-			emissions is at 680 nm, the [AIEEE-2011]
05	(1) 743 nm	(2) 518 nm	(3) 1035 nm	(4) 325 nm
25.	corresponding to which a	of the following :-		to the transition in H atom [AIEEE-2011]
26.	(1) $n = 3$ to $n = 1$ The increasing order of t		(3) $n = 3$ to $n = 2$	(4) $n = 4$ to $n = 3$
20.		he ionic radii of the given (2) Cl ⁻ , Ca ²⁺ , K ⁺ , S ²⁻	(3) S^{2-} , Cl^- , Ca^{2+} , K^+	[AIEEE-2012] (4) Ca ²⁺ , K ⁺ , Cl ⁻ , S ²⁻
	- · · ·			

27.	The electrons identified l	oy quantum numbers n ar	nd ℓ :-	[AIEEE-2012]
	(a) $n=4$, $\ell=1$	(b) $n = 4, \ \ell = 0$	(c) $n = 3, \ell = 2$	(d) $n = 3, \ell = 1$
	Can be placed in order of	of increasing energy as		
	(1) (a) < (c) < (b) < (d)		(2) (c) < (d) < (b) < (a)	
	(3) (d) < (b) < (c) < (a)		(4) (b) < (d) < (a) < (c)	

PREVIOUS YEARS QUESTIONS ANSWER							/ER ł	KEY				EXI	ERCISE-	·5 [A]	
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	1	3	1	3	1	2	3	3	2	4	4	1	2	1	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27			
Ans	2	2	2	4	1	4	1	3	1	2	4	3			

EXERCISE - 05 [B] JEE-[ADVANCED] : PREVIOUS YEAR QUESTIONS

- 1. Rutherfords experiment , which established the nuclear model of atom, used a beam of :-
 - (A) β particles, which impinged on a metal foil and get absorbed. [JEE 2002]
 - (B) γ rays, which impinged on a metal foil and ejected electron.
 - (C) Helium atoms, which impinged on a metal foil and got scattered.
 - (D) Helium nuclie, which impinged on a metal foil and got scattered.
- 2. The magnetic moment of cobalt of the compute Hg[Co(SCN)₄] is [Given : Co⁺²] [JEE 2004] (A) $\sqrt{3}$ (B) $\sqrt{8}$ (C) $\sqrt{15}$ (D) $\sqrt{24}$
- **3**. The radius of which of the following orbit is same as that of the first Bohr's orbit of hydrogen atom?

[JEE 2004]

[IIT-2004]

(A)
$$He^+ (n = 2)$$
 (B) $Li^{2+} (n = 2)$ (C) $Li^{2+} (n = 3)$ (D) $Be^{3+} (n = 2)$

4. (a) The Schrodinger wave equation for hydrogen atom is

$$\psi_{2s} = \frac{1}{4(2\pi)^{1/2}} \left(\frac{1}{a_0}\right)^{3/2} \left(2 - \frac{r_0}{a_0}\right) e^{-r/a}$$

Where a_0 is Bohr's radius. Let the rdial node in 2s be at r_0 . Then find r_0 in terms of a_0 . (b) A base ball having mass 100 g moves with velocity 100 m/s. Find out the value of wavelength of base ball.

- 5.(a) Calculate velocity of electron in first Bohr orbit of hydrogen atom (Given $r = a_0$)[IIT-2005](b) Find de-Broglie wavelength of the electron in first Bohr orbit.
 - (c) Find the orbital angular momentum of 2p-orbital in terms of $h/2\pi$ units.

(A)
$$U = \frac{V_n}{K_n}$$
 (P) 1
(B) $\frac{1}{r_n} \propto E^x$ (Q) -2

- (C) $r_n \propto Z^y$ (R) -1 (Z = Atomic number)
- (D) v = (Orbital angular momentum of electron (S) 0in its lowest energy)

7. Match the entries in **Column I** with the correctly related quantum number(s) in **Column II**. Indicate your answer by darkening the appropriate bubbles of the 4 4 4 matrix given in the ORS.

	answei	by darkening the appropriate buobles of th		[JEE 2008]
		Column I		Column II
	(A)	Orbital angular momentum of the	(P)	Principal quantum number
		electron in a hydrogen-like atomic orbital		
	(B)	A hydrogen-like one-electron wave	(Q)	Azimuthal quantum number
		function obeying Pauli principle		
	(C)	Shape, size and orientation of hydrogen like atomic orbitals	(R)	Magnetic quantum number
	(D)	Probability density of electron at the nucle in hydrogen-like atom	eus (S)	Electron spin quantum number
	(A)			
Paragr	aph for	questions 8 to 10		[JEE 2010]
	The hy	drogen-like species Li ²⁺ is in a spherically s	symmetric state	S_1 with one radial node. Upon absorbing
		ie ion undergoes transition to a state S_2 . T		-
		ground state energy of the hydrogen atom	2	
8.		ate S_1 is :-		
•••	(A) 1s	*	(C) 2p	(D) 3s
9.	Energy	, of the state S_1 in units of the hydrogen	atom ground	state energy is :-
	(A) 0.7	75 (B) 1.50	(C) 2.25	(D) 4.50
10.	The or	bital angular momentum quantum numbe	r of the state	S ₂ is :-
	(A) 0		(C) 2	(D) 3
11.	The m	aximum number of electrons that can ha	ve principal q	uantum number, $n=3$, and spin quantum
		r, $m_s = -1/2$, is		[JEE 2011]

12. The work function (ϕ) of some metals is listed below. The number of metals which will show photoelectric effect when light of 300 nm wavelength falls on the metal is :- [JEE 2011]

Metal						U			
$\phi(eV)$	2.4	2.3	2.2	3.7	4.8	4.3	4.7	6.3	4.75

13. The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is [a₀ is Bohr radius]
[JEE 2012]

h^2	h^2	h^2	h^2
(A) $\overline{4\pi^2 m a_0^2}$	(B) $\overline{16\pi^2 m a_0^2}$	(C) $\overline{32\pi^2 m a_0^2}$	(D) $\overline{32\pi^2 m a_0^2}$

PRE	VIOUS YEAF	RS QUE	STIONS		ANSV	VER F	KEY			EXERCISE-5 [B]
1.	(D)	2.	(C)	3.	(D)	4.	(a) r	$_0 = 2a_0$	(b) 6.6 2	$26 \times 10^{-25} \text{ \AA}$
5.	(a) 2.197	× 10 ⁶	m/s	(b) 3.31 Å	(c) $\sqrt{2}$.	$\frac{h}{2\pi}$		6.	(A) Q, (B	B) P, (C) R, (D) S
7.	(A) Q,R	(B) P,	Q, R,S	(C) P, Q, R	R (D) P, Q		8.	(B)	9.	(C)
10.	(B)	11.	9	12.	4	13.	(C)			