CBSE Test Paper 02

CH-05 Complex & Quadratic

Section A

- a. Re(z) > 4
- b. Re(z) < 2
- c. none of these
- d. Re(z) > 2
- 2. Find Argument of the complex number (0 + 0i)
 - a. $-\pi$
 - b. π
 - c. none of these
 - d. 0
- 3. The least value of n for which $\left(\frac{1+i}{1-i}\right)^n$ is a positive integer is
 - a. 8
 - b. 1
 - c. 2
 - d. 4
- 4. If z is any complex number, then $\frac{z-\bar{z}}{2i}$ is
 - a. either 0 or purely imaginary
 - b. purely imaginary

- c. purely real
- d. none of these
- 5. The points z = x + iy which satisfy the equation |z| = 1 lie on
 - a. the line x = 1
 - b. the line y = 1
 - c. the line x + y = 1
 - d. the circle whose centre is origin and radius = 1
- 6. Fill in the blanks:

The roots of the equation $x^2 + 4 = 0$ are _____.

7. Fill in the blanks:

 $5(\cos 270^{\circ} + i \sin 270^{\circ})$ is written in cartesian form as _____.

- 8. Evaluate $\frac{1}{i^7}$.
- 9. Express (5 + 4 i) + (5 4 i) in the form of a + ib.
- 10. Solve the inequalities: $2\leqslant 3x-4\leqslant 5$
- 11. If z_1 , z_2 and z_3 , z_4 are two pairs of conjugate complex numbers, then find arg $\left(\frac{z_1}{z_4}\right)$ + arg $\left(\frac{z_2}{z_3}\right)$.
- 12. If arg(z-1) = arg(z+3i), then find x-1:y.
- 13. Find the square root of $3-4\sqrt{7}i$
- 14. Find the real numbers x and y if (x iy) (3 + 5i) is the conjugate of -6 24i.
- 15. Express the complex number 3 ($\cos 300^{\circ}$ i $\sin 30^{\circ}$) in polar form.

CBSE Test Paper 02

CH-05 Complex & Quadratic

Solution

1. (a) Re(z) > 4

Explanation: Given

Putting z=x+iy, we get

$$egin{array}{lll} | & \mathrm{x+iy} - 6 & | < | \mathrm{x+iy} - 2 & | \\ & \Rightarrow |(\mathrm{x} - 6) + \mathrm{iy}| < | (\mathrm{x} - 2) + \mathrm{iy} & | \\ & \Rightarrow \sqrt{(x - 6)^2 + y^2} < \sqrt{(x - 2)^2 + y^2} & & [\because |x + iy| = \sqrt{x^2 + y^2}] \end{array}$$

Squaring on both sides we get

$$(x-6)^2 + y^2 < (x-2)^2 + y^2$$

 $\Rightarrow x^2 + 36 - 12x + y^2 < x^2 + 4 - 4x + y^2$
 $\Rightarrow 36 - 4 < 12x - 4x$
 $\Rightarrow 32 < 8x$
 $\Rightarrow x > 4$

2. (c) none of these

Explanation:

Let
$$Z=0+0i\!=r\left(cos\theta+isin\theta
ight)$$

Then comparing the real and imaginary parts ,we get

$$egin{aligned} r\cos heta &= 0 \quad ext{and} \quad r\sin heta &= 0 \ dots &: r^2\left(\cos^2 heta + \sin^2 heta
ight) &= 0 \ \Rightarrow r^2 &= 0 \Rightarrow r &= 0 \end{aligned}$$

$$\Rightarrow cos\theta = 0$$
 and $sin\theta = 0$

Which is not possible for any value of θ .

3. (d) 4

Explanation:

$$rac{1+i}{1-i} = rac{1+i}{1-i} \cdot rac{1+i}{1+i} = rac{(1+i)^2}{1+1} = rac{1-1+2i}{1+1} = rac{2i}{2} = \ dots \cdot \left(rac{1+i}{1-i}
ight)^n = i^n$$

We have $i^4=1$ which is positive Hence the least of is 4

4. (c) purely real

Explanation:

Let
$$Z = x + iy$$

Then
$$ar{Z}=x-iy$$

$$\therefore Z - ar{Z} = (x + iy) - (x - iy) = 2iy$$

$$Now \qquad rac{Z-ar{Z}}{2i}=y$$

Hence $\frac{z-\bar{z}}{2i}$ is purely real

5. (d) the circle whose centre is origin and radius = 1

Explanation:

$$z = x + iy$$

$$Now$$
 $|z|=1 \Rightarrow |x+iy|=1$

$$\Rightarrow \sqrt{x^2+y^2}=1 \Rightarrow x^2+y^2=1$$

which is the equation of a circle whose centre is origin and radius = 1

- 6. 2i and -2i
- 7. 0 i5

8. Given,
$$\frac{1}{i^7}=\frac{1}{{(i)}^{4+3}}=\frac{1}{i^4\cdot i^3}=\frac{1}{(1)i^2\cdot i}$$
 [': $i^4=1$, i^2 =-1]

$$= \frac{1}{(-1)i}$$

multiplying numerator and denominator by i

$$rac{1}{i} imes rac{i}{i} = rac{i}{-i^2} \ = rac{i}{-(-1)} = i$$

- 9. Given, (5+4i)+(5-4i)= (5+5)+i(4-4)=10+0i
- 10. We have $2\leqslant 3x-4\leqslant 5$ $\Rightarrow 2+4\leqslant 3x\leqslant 5+4\Rightarrow 6\leqslant 3x\leqslant 9$ $\Rightarrow 2\leqslant x\leqslant 3$
- 11. We have, $z_2 = \overline{z}_1$ and $z_4 = \overline{z}_3$

Therefore, $z_1 z_2 = |z_1|^2$ and $z_3 z_4 = |z_3|^2$

Now, $\arg\left(\frac{z_1}{z_4}\right) + \arg\left(\frac{z_2}{z_3}\right) = \arg\left(\frac{z_1z_2}{z_4z_3}\right)$ [: Using formula, $\arg(z_1) + \arg(z_2) = \arg(z_1, z_2)$]

= arg
$$\left(\frac{z_1\overline{z}_1}{z_3\overline{z}_3}\right)$$
 = arg $\left(\left|\frac{z_1}{|z_3|^2}\right|\right)$ = arg $\left(\left|\frac{z_1}{z_3}\right|^2\right)$ = 0 [: argument of positive real number is zero]

12. We have, arg(z-1) = arg(z+3i)

On putting z = x + iy, we get

$$arg(x + iy - 1) = arg(x + iy + 3i)$$

$$\Rightarrow$$
 arg [(x - 1) + iy] = arg [x + i (y + 3)]

$$\Rightarrow \tan^{-1}\left(\frac{y}{x-1}\right) = \tan^{-1}\left(\frac{y+3}{x}\right)$$

$$\Rightarrow \frac{y}{x-1} = \frac{y+3}{x} \Rightarrow xy = (x-1)(y+3)$$

$$\Rightarrow$$
 xy = xy + 3x - y - 3

$$\Rightarrow$$
 0 = 3 (x - 1) - y

$$\Rightarrow$$
 y = 3 (x - 1) $\Rightarrow \frac{x-1}{y} = \frac{1}{3}$

$$\Rightarrow$$
 (x - 1): y = 1:3

13. Let
$$x + yi = \sqrt{3 - 4\sqrt{7}i}$$

Squaring both sides, we get

$$x^2 - y^2 + 2xyi = 3 - 4\sqrt{7}i$$

Equating the real and imaginary parts

$$x^2 - y^2 = 3 \dots (i)$$

$$2xy = -4\sqrt{7} \Rightarrow xy = -2\sqrt{7}$$

Now from the identity, we know

$$(x^2 + y^2)^2 = (x^2 - y^2)^2 + 4x^2y^2$$

$$=(3)^2+4(-2\sqrt{7})^2$$

$$= 9 + 112$$

:
$$x^2 + y^2 = 11$$
 . . . (ii) [Neglecting (-) sign as $x^2 + y^2 > 0$]

Solving (i) and (ii) we get

$$x^2 = 7$$
 and $y^2 = 4$

$$\therefore x = \pm \sqrt{7}, y = \pm 2$$

Since the sign of xy is (-)

$$\therefore$$
 if $x=\sqrt{7}$ y = -2

and if
$$x=\sqrt{7}$$
 y = 2

$$\therefore \sqrt{3-4\sqrt{7}i} = \pm(\sqrt{7}-2i)$$

14. Here
$$\overline{-6 - 24i} = -6 + 24i$$

Now
$$(x - iy) (3 + 5i) = -6 + 24i$$

$$\Rightarrow 3x + 5xi - 3yi - 5yi^2 = 6 + 24i$$

$$\Rightarrow (3x + 5y) + (5x - 3y)i = -6 + 24i$$

Comparing both sides, we have

$$3x + 5y = -6...(i)$$

and
$$5x - 3y = 24 \dots$$
 (ii)

Multiplying (i) by 3 and (ii) by 5 and then adding

$$9x + 15y = -18$$

$$25x - 15y = 120 \Rightarrow x = 3$$

$$34x = 102$$

Putting x = 3 in (i)

Thus
$$y=-3$$

15. Let
$$z = 3 (\cos 300^{\circ} - i \sin 30^{\circ})$$

$$= 3 [\cos (360^{\circ} - 60^{\circ}) - i \sin 30^{\circ}]$$

$$= 3 [\cos 60^{\circ} - i \sin 30^{\circ}]$$

=
$$3\left[\frac{1}{2} - \frac{i}{2}\right]$$

= $\frac{3}{2}$ (1 - i)

$$=\frac{3}{2}(1-i)$$

Let
$$z = \frac{3}{2}(1 - i) = r(\cos\theta + i\sin\theta)$$

On equating real and imaginary parts, we get

$$r\cos\theta = \frac{3}{2} ...(i)$$

and
$$r \sin \theta = -\frac{3}{2}$$
 ...(ii)

On squaring and addng Eqs. (i) and (ii), we get

$$r^2 (\cos^2 \theta + \sin^2 \theta) = (\frac{3}{2})^2 + (-\frac{3}{2})^2$$

$$\Rightarrow$$
 r² = $\frac{9}{4}$

$$\Rightarrow r^2 = \frac{9}{4}$$

$$\therefore r = \frac{3}{\sqrt{2}}$$

On putting the value of r in Eqs. (i) and (ii), we get

$$\cos\theta = \frac{1}{\sqrt{2}}$$
 and $\sin\theta = -\frac{1}{\sqrt{2}}$

Since, $\cos\theta$ is positive and $\sin\theta$ is negative.

So, θ lies in IV quadrant.

$$\therefore \theta = \frac{-\pi}{4}$$

Polar form of z =
$$\frac{3}{\sqrt{2}}$$
 [cos $\left(-\frac{\pi}{4}\right)$ + i sin $\left(-\frac{\pi}{4}\right)$]

$$= \frac{3}{\sqrt{2}} \left[\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right]$$

:. 3 (cos 300° - i sin 30°) =
$$\frac{3}{\sqrt{2}}$$
 (cos $\frac{\pi}{4}$ - i sin $\frac{\pi}{4}$)