CBSE Test Paper 01

CH-04 Principle of Mathematical Induction

- 1. $\frac{3}{4} + \frac{15}{16} + \frac{63}{64} + \dots$ to n terms is equal to
 - a. $n + \frac{4^n}{3} \frac{1}{3}$
 - b. $n + \frac{4^{-n}}{3} \frac{1}{3}$
 - c. $n \frac{4^n}{3} \frac{1}{3}$
 - d. $n + \frac{4^{-n}}{3} + \frac{1}{3}$
- 2. The greatest positive integer , which divides n (n + 1) (n + 2) (n + 3) for all $n \in N$, is
 - a. 120
 - b. 6
 - c. 24
 - d. 2
- 3. For all positive integers n, the number $4^n+15n-1$ is divisible by :
 - a. 16
 - b. 24
 - c. 9
 - d. 36
- 4. If $49^n+16n+\lambda$ is divisible by 64 for all ${\sf n}\in{\sf N}$, then the least negative integral value of λ is
 - a. -1
 - b. -3

- c. -4
- d. -2
- 5. For $n \in N, x^{n+1} + (x+1)^{2n-1}$ is divisible by :

a.
$$x^2 + x + 1$$

b.
$$x^2 + x - 1$$

c.
$$x + 1$$

- d. x
- 6. Fill in the blanks:

If $a_1 = 2$ and $a_n = 5$ a_{n-1} , then the value of a_3 in the sequence is _____.

7. Fill in the blanks:

If x^n -1 is divisible by x - k, then the least positive integral value of k is _____.

- 8. Prove by the principle of mathematical induction that for all $n\in N$, 3^{2n} when divided by 8, the remainder is always 1.
- 9. Prove by Mathematical Induction that the sum of first n odd natural numbers is n^2 .
- 10. Let U_1 = 1, U_2 = 1 and U_{n+2} = U_{n+1} + U_n for $n \ge 1$. Use mathematical induction to show that:

$$\mathrm{U_n}$$
 = $rac{1}{\sqrt{5}}\left\{\left(rac{1+\sqrt{5}}{2}
ight)^n-\left(rac{1-\sqrt{5}}{2}
ight)^n
ight\}$ for all $\mathrm{n}\geq 1$.

CBSE Test Paper 01

CH-04 Principle of Mathematical Induction

Solution

1. (b)
$$n + \frac{4^{-n}}{3} - \frac{1}{3}$$

Explanation: When n = 1 we get 3/4, and the subsequent terms when n is replaced by 2,3,4...

2. (c) 24

Explanation: If n = 1 then the statement becomes 1x2x3x4 = 24: the consecutive natural numbers when substituted will be multiples of 24.

3. (c) 9

Explanation: Replace n = 1 we get 18 n = 2 we get 45... By the principle of mathematical induction it is divisible by 9.

4. (a) -1

Explanation: When n = 1 we have the value of the expression as 65. Given that the expression is divisible be 64. Hence the value is -1.

5. (a) $x^2 + x + 1$

Explanation: When n = 1 we get $x^2 + x + 1$

- 6. 50
- 7. 1
- 8. Let P(n) be the statement given by

 $P(n): 3^{2n}$ when divided by 8, the remainder is 1

or, P(n) :
$$3^2$$
 = 8λ + 1 for some $\lambda \in N$

P(1):
$$3^2 = 8\lambda + 1$$
 for some $\lambda \in \mathbb{N}$.

:.
$$3^2 = 8 \times 1 + 1 = 8\lambda + 1$$
, where $\lambda = 1$

P(1) is true

Let P(m) be true. Then, 3 2m = 8 λ + 1 for some λ \in N ...(i)

We shall now show that P(m + 1) is true for which we have to show that $3^{2(m + 1)}$ when

divided by 8, the remainder is 1 i.e. $3^{2(m+1)} = 8\mu + 1$ for some $\mu \in \mathbb{N}$.

Now,
$$3^{2(m+1)} = 3^{2m} \times 3^2 = (8\lambda + 1) \times 9$$
 [Using (i)]

=
$$72\lambda$$
 + 9 = 72λ + 8 + 1 = 8 (9 λ + 1) + 1 = 8 μ +1, where μ = 9 λ +1 \in N

 \Rightarrow P(m + 1) is true

Thus, P (m) is true \Rightarrow P (m + 1) is true.

Hence, by the principle of mathematical induction P(n) is true for all $n \in N$ i.e.

3²ⁿ when divided by 8 the remainder is always 1.

9. **Step I** Let P(n) denotes the given statement, i.e.,

$$P(n): 1+3+5+...n(terms) = n^2$$

i.e.,
$$P(n): 1+3+5+\ldots+(2n-1)=n^2$$

Since,

First term =
$$2 \times 1 - 1 = 1$$

Second term =
$$2 \times 2 - 1 = 3$$

Third term =
$$2 \times 3 - 1 = 5 \dots$$

$$\therefore$$
 nth term= $2n-1$

Step II For n = 1, we have

LHS=
$$2.1 - 1 = 1$$

$$RHS = 1^2 = 1 = LHS$$

Thus, P(1) is true.

Step III For n = k, let us assume that P(k) is true,

i.e.,
$$P(k): 1+3+5+\ldots +(2k-1)=k^2$$
 ...(i)

Step IV For n = k + 1, we have to show that P(k + 1) is true, whenever P(k) is true i.e.,

$$P(k+1):1+3+5+...+(2k-1)+[2(k+1)-1]=(k+1)^2$$

LHS =
$$1 + 3 + 5 + ... + (2k - 1) + [2(k + 1) - 1]$$

$$=k^2+2(k+1)-1$$
 [from Eq. (i)]

$$=k^2+2k+1=(k+1)^2={
m RHS}$$

So, P(k + 1) is true, whenever, P(k) is true.

Hence, by Principle of Mathematical Induction, P(n) is true for all $n \in N$.

10. Let P(n) be the statement given by

$$P(n): U_n = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right\}$$

We have,

$$U_1 = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1 + \sqrt{5}}{2} \right)^1 - \left(\frac{1 - \sqrt{5}}{2} \right)^1 \right\} = 1$$

and,

$$U_2 = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^2 - \left(\frac{1-\sqrt{5}}{2} \right)^2 \right\} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+5+2\sqrt{5}}{4} \right) - \left(\frac{1+5-2\sqrt{5}}{4} \right) \right\} = 1$$

 \therefore P(1) and P(2) are true.

Let P(n) be true for all $n \le m$

i.e.
$$U_n = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right\}$$
 for all $n \leq m$...(i)

We shall now show that P(n) is true for n = m + 1.

i.e.
$$\mathbf{U_{m+1}} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{m+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{m+1} \right\}$$

We have,

$$U_{n+2} = U_{n+1} + U_n \text{ for } n \ge 1$$

$$\Rightarrow$$
 U_{m+1} = U_m + U_{m-1} for m \geq 2 [On replacing n by (m-1)]

$$\begin{split} &\Rightarrow \mathbf{U_{m+1}} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^m - \left(\frac{1-\sqrt{5}}{2} \right)^m \right\} + \\ &\frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{m-1} - \left(\frac{1-\sqrt{5}}{2} \right)^{m-1} \right\} [\mathbf{U} \mathbf{sing} \ (\mathbf{i})] \\ &\Rightarrow \mathbf{U_{m+1}} = \frac{1}{\sqrt{5}} \left[\left\{ \left(\frac{1+\sqrt{5}}{2} \right)^m + \left(\frac{1+\sqrt{5}}{2} \right)^{m-1} \right\} - \left\{ \left(\frac{1-\sqrt{5}}{2} \right)^m + \left(\frac{1-\sqrt{5}}{2} \right)^{m-1} \right\} \right] \\ &\Rightarrow \mathbf{U_{m+1}} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{m-1} \left(\frac{1+\sqrt{5}}{2} + 1 \right) - \left(\frac{1-\sqrt{5}}{2} \right)^{m-1} \left(\frac{1-\sqrt{5}}{2} + 1 \right) \right\} \\ &\Rightarrow \mathbf{U_{m+1}} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{m-1} \left(\frac{3+\sqrt{5}}{2} \right) - \left(\frac{1-\sqrt{5}}{2} \right)^{m-1} \left(\frac{3-\sqrt{5}}{2} \right) \right\} \\ &\Rightarrow \mathbf{U_{m+1}} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{m-1} \left(\frac{6+2\sqrt{5}}{2} \right) - \left(\frac{1-\sqrt{5}}{2} \right)^{m-1} \left(\frac{6-2\sqrt{5}}{4} \right) \right\} \\ &\Rightarrow \mathbf{U_{m+1}} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{m-1} \left(\frac{1+\sqrt{5}}{2} \right)^2 - \left(\frac{1-\sqrt{5}}{2} \right)^{m-1} \left(\frac{1-\sqrt{5}}{2} \right)^2 \right\} \\ &\Rightarrow \mathbf{U_{m+1}} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{m-1} \left(\frac{1+\sqrt{5}}{2} \right)^2 - \left(\frac{1-\sqrt{5}}{2} \right)^{m-1} \left(\frac{1-\sqrt{5}}{2} \right)^2 \right\} \end{split}$$

 \therefore P(m + 1) is true.

Thus, P(n) is true for all $n \le m \Rightarrow$ P(n) is true for all $n \le m + 1$.

Hence, P(n) is true for all $n \in N$.