ASSIGNMENT

ORIGIN OF LIFE

Basic Level

1.	The first organisms to appear on earth were more like plants because					
	(a) Plants are simpler		(b) Plants are more	(b) Plants are more		
	(c) Plants do photosynthesis		(d) None of these			
2.		Formation of which complex molecules was noticed by Urey and Miller when they subjected substances like NH_3 , CH_4 , H_2O etc. to electric discharge				
	(a) Aquaregia	(b) H_2SO_4	(c) HCN	(d) Amino acids		
3.		e earth was observed in	(4) 11011	(4) 1 11111110 401415		
3.	(a) Air	(b) Water	(c) Soil	(d) Mountain		
4.	` '	rin, life originated as	(6) 5011	(a) Mountain		
4.	(a) Self reproducti	_	(b) God's desire			
	(c) Effect of sunlig		(d) None of these			
5.	•	cess for the existence of li	, ,			
J .	(a) Communicatio			(b) Photosynthesis by plants		
	(c) Reproduction in plants and animals (d) Respiration in animals					
6.	The organisms of earth are well protected from the layer of a gas which covers the earth. It is					
	known as	process	irom une imper or a gus			
	(a) Nitrogen	(b) Ozone	(c) <i>CO</i> ₂	(d) Dust		
7.	'Origin of life' as	a result of chemical evolut	tion has been properly exp	plained by		
	(a) Miller	(b) Oparin	(c) Haldane	(d) Fox		
8.	Louis Pasteur's vi	ew on the origin of life is t	that			
	(a) Life originated	-				
	(b) Life originated spontaneously from the living organisms only					
	(c) Life originated spontaneously from the non living substances					
	(d) Life came fron	n other planet	· ·			
9.	The viruses contai	n				
	(a) Proteins only		(b) DNA only	(b) DNA only		
	(c) Nucleic acids of	only	(d) Proteins, DNA o	or RNA (nucleic acids)		
10.	How has the free	How has the free O_2 been released into the earth's atmosphere whereas there was no free O_2 at the				
	time of origin of li	fe				
	(a) By catabolic ac	ctivity of animals	(b) By photosynthet	(b) By photosynthetic activity		
	(c) By heating of t	he earth	(d) None of the above	ve		
11.	The viruses are kn	own as				
	(a) Unicellular	(b) Acellular	(c) Multicellular	(d) Free genes		

12.	The best supporting fact th	nat "Viruses are living"	is that viruses	
	(a) Are made of chemicals	(b)Cause diseases		
	(c) Duplicate themselves	(d)Penetrate cell mem	nbrane	
13.	Which of the following is	not concerned with viru	uses	
	(a) Viruses are made up of	nucleic acid and prote	ins (b)Viruses multip	ly only in living host cell
	(c) Viruses can not use oxy	ygen for respiration	(d)Viruses can be	grown in sugary liquid
14.	Abiogenesis means		. ,	
-	(a) Origin of life from non	-living organisms	(b) Origin of life from	n living organisms
	(c) Origin of viruses and m		(d) Spontaneous gene	
15.	First respiration arose on e			
	(a) Anaerobic	(b)Aerobic		
	(c) (a) and (b) both	(d) Cellular respiratio	on and N_2 as a respirator	ory gas
16.	About how long ago was the		_	
	(a) 4.6 billion years ago	(b)10 billion years ag	0	
	(c)3.0 billion years ago	(d)20 billion years ag	0	
17.	Inorganic evolution means	S		
	(a) Formation of molecules	S	(b)Formation of cell	
	(c) Evolution of new speci	es	(d) Same as organic e	evolution
18.	Which one of the following	g is the "Secret of life"	,	
	(a) Fatty acids (b)) Amino acids	(c) Proteins	(d) Nucleic acid
19.	The primitive environment	t was reducing because	in it	
	(a) co_2 was more (b)) H_2 was more	(c) o_2 was more	(d) NH_3 was more
20.	In his experiments for orig	gin of life, Miller obtain	ned	
	(a) Proteins (b)) Ammonia	(c) Amino acids	(d) Hydrogen
21.	Who did an experiment to	prove that "The organi	c compounds were the	e basis of life"
	(a) Darwin		(b) Stanley Miller and	d Harold C. Urey
	(c) Melvin		(d) Fox	
22.	Under certain conditions so	cientists have obtained	cell-like structures. Tl	nese are known as
) Protists	(c) Coacervates	(d) Prebiotic soup
23.	Which is responsible for or	•		
	(a) Spontaneous generation	_	(c) Catastrophy	(d) Chemosynthesis
24.	Origin of life took place in			
) Air	(c) Mountains	(d) Land
25.	The four elements that mal	_		ystem are
) C,H,O,S	(c) C,H,O,P	(d) C, N, O, P
26.	Chemical theory of origin	•		
	(a) Stanley Miller (b)) Oparin and Haldane	(c) Louis Pasteur	(d) Spallanzani

27.	The spark-discharge	apparatus to test chemical	evolution of life was desi	gned by
	-	ane (b) Miller and Urey		•
28.	'Origin of life' was v	vritten by		
	(a) Darwin	(b) Oparin	(c) Gray	(d) Smith
29.	"Eternity of life" mea	ans		
	(a) Infinite life	(b) Mortal life	(c) Immortal life	(d) None of the above
30.	The structure present	in nature which is living a	and non-living both is	
	(a) Protista	(b) Monera	(c) Virus	(d) Bacteria
31.	-	ous generation was first re	•	
	(a) Pasteur	(b) L. Spallanzani	(c) F. Redi	(d) S.L. Miller
32.	•	most probably the first sign		(1) 6
	(a) Life	(b) Amino acids	(c) Soil	(d) Sugar
33.		not contain nucleus and n		
	_	ns (b) Primitive algae	(c) Eubiont	(d) Bacteria
34.		oon because there is no		
	(a) Carbon	(1)	(c) Water	(d) Silicates
35∙	•) was successful in synthes		
	(a) Nucleic acid from		(b)Gene in laborate	•
	(c) Simple amino aci	ds from ammonia and CH ₄	etc. (d)Insulin from pro	otein and carbohydrates
36.	An experiment to pro	ove that organic compound	ls were the basis of life, w	as performed by
	(a) Oparin	(b) Miller	(c) Melvin	(d) Fox
37•	The scientist related experiments with swith swi	d with the over throw on an-necked flasks is	or the "Theory of spor	ntaneous generation" and
	(a) Von Helmont	(b) Louis pasteur	(c) Miller	(d) Haeckel
38.	The concept of spont	aneous generation of life a	as not accepted by	
	(a) F. Redi	(b) Louis Pasteur	(c) Spallanzani	(d) All of these
39.	Who stated "Life original orig	ginated from simple amino	-	
	(a) Oparin	(b) Muller	(c) Urey and Miller	(d) De Vires
40.	All life starts with		, , , , , , , , , , , , , , , , , , ,	
•	(a) Four cells	(b) Many cells	(c) One cell	(d) None of these
41.		we ocean during the time o	• •	` '
7	organic substances' b	•	i origin or mo , mas over	realist fier allast soup of
	(a) Haldane	(b) Miller	(c) Oparin	(d) Lamarck
42.	•	disproving the spontaneou	_	` '
- - -	(a) He was lucky	onsproving and spontaneous	ms gomerumen meerj eeeu.	
	•	s in drawing out the neck of	of the olass flasks so as to	provide access to air but
	not to the micro-orga	•	T the glass masks so as to	provide decess to an out
	_	e sample of yeast taken by	him was dead	
		oundings of his laboratory		
	(a) Of the clean suff	on mis raporatory		

43.	The presence of salts in the	(NaCl and others) in anim	al body fluid gives an in	ference that life originated
	(a) Salt solutions	(b) Rain water	(c) Primitive ocean	(d) None of these
44.	Contribution in chem	ical evolution in origin of 1	life	
	(a) Miller	(b) Darwin	(c) Lamarck	(d) Wallace
45.	Coacervates are			
	(a) Colloid droplets	(b) Contain nucleoprote	in(c) Both (a) and (b)	(d) Protobiont
46.	Theory of special cre	ation was given by		
	(a) Weismann	(b) Helmont	(c) Manpertuis	(d) Father Saurezi
47.	The life begins above	which level		
	(a) Molecule	(b) Amino acid	(c) Mixture	(d) Compound
48.	-	he history approx. 4500 i	million years back atm	osphere was reducing the
	organism were		(1.) (1.)	1 .
	(a) Autotroph, aerobi		(b) Chemo-autotroph,	
	(c) Chemo-heterotrop		(d) Heterotroph, anae	rodic
49.	Type of nutrition in the primitive cells		(h) Hataranhytia ar halanhytia	
	(a) Heterotrophic or h	1010Z01C	(b) Heterophytic or ho	olopnytic
	(c) Saprophytic		(d) Saprozoic	
50.	•	otion of molecules from the		(4) D
	(a) Macromolecules	(b) Coacervates	(c) Primitive molecul	
51.	earth, may have been	-	e first evolved in the di	rection of origin of life on
	(a) Proteins and amin	o acids	(b) Proteins and nucle	eic acids
	(c) Urea and nucleic	acids	(d) Urea and amino ac	eids
52.	In his classic experi discharge in a mixtur		f amino acids, Stanley	Miller passed an electric
	(a) Steam, CH_4 , H_2 and	NH_3 (b) CH_4 , CO_2 , O_2 and H_2	(c) NH_3, O_2, H_2 and stea	am(d) CH_4, H_2, N_2 and steam
53.	According to spontan	eous generation theory, the	e sequence of origin of l	ife may be considered as
	(a) Amino acid – pro	tein - chlorophyll	(b) Chlorophyll – starch - glycogen	
	(c) Nucleic acid – am	ino acid - chlorophyll	(d) Chlorophyll – nuc	leic acid –amino acid
54.	Which one of the following is the correct sequence of chemical substances produced during the origin of life on the earth			
	(a)Water, amino acid	l, nucleic acid and enzyme		
	(b) Glucose, amino ad	cid, nucleic acid and protei	n	
		onium phosphate and nucl		
		acid, protein and nucleic a		

55.	_	ne most widely accepted the et, consisted of a mixture of		phere, before any life had
	(a) Water vapours, H_2 ,	NH_3 and CH_4	(b) H_2 , CO_2 , NH_3 and CH_4	
	(c) O_2 , NH_3 , CH_4 and W_4	ater vapours	(d) Ozone, CH_4 , O_2 and w	ater vapours
56.	Finding of miller's exp	eriment on origin of life h	as provided evidence for	: the
	(a) Theory of special c	_	(b) Theory of organic e	
	(c) Theory of biogenes		(d) theory of abiogenes	
57.	•	red about how many billio		
	(a) 1.2 billion	(b) 1.5 billion	(c) 2.5 billion	(d) 3.5 billion
58.	Which of the followi atmosphere at the time	ng was most likely to he of origin of life	ave been absent in free	e form in the primordial
	(a) o_2	(b) <i>CH</i> ₄	(c) H ₂	(d) NH_3
59.	The organism which a	ppeared first on earth is kn	own as	
	(a) Eubiont	(b) Probiont	(c) Eobiont	(d) True biont
60.	Photosynthetic bacteria	a evolved on the earth abo	ut million years a	ago
	(a) 3300 to 3500	(b) 3000 to 3300	(c) 3500 to 3800	(d) 3800 to 4000
61.	An evolutionary explan	nation of the origin of plan	nts and animals was give	n by
	(a) Lucretius	(b) John Ray	(c) Erasmus Darwin	(d) Cari Linnaeus
62.	Source of energy at the	e time of origin of life		
	(a) Heat, cosmic rays and lightning		(b) Heat only	
	(c) Cosmic rays only		(d) Lightning only	
63.	Group of earliest photo	osynthetic organisms appea	ared during origin of life)
	(a) Probacteria	(b) Protobacteria	(c) Cyanobacteria	(d) Primitive bacteria
64.	The first evolved organ	nisms were		
	(a) Chemoautotrophs	(b) Chemoheterotrophs	(c) Cyanobacteria	(d) Bacteria
65.	Theory of spontaneous	generation was given by		
	(a) Louis Pasteur	(b) Spallanzani	(c) F. Redi	(d) Van Helmont
66.	If there was no co_2 in t	the earth's atmosphere, the	temperature of earth's s	urface would be
	(a) Same as present	(b)Less than the present	ent	
	(c) Higher than the pre	esent (d)Dependent on the	amount of oxygen in the	e atmosphere
67.	Oparin and Haidane go	ot the ideas from the new b	piochemistry founded by	
	(a) T.H. Huxley	(b) F.G. Hopkins	(c) J. Tyndall	(d) Their own ideas
68.	Which of the following during their evolution	ng rules state that organism	ms have a tendency tov	vards increase in the size
	(a) Williston's rule	(b) Cope's rule		
	(c) Dollo's rule	(d) Hardy-Weinberg's r	ule	

69.	The correct match is:				
	I. Lamarck	A. Russian			
	II. Oparin	B. Austrian			
	III. Mendel	C. Spanish			
	IV.Suarez	D. Frnech			
	(a) I-D, II-A, III-B, IV	V-C (b)I-A, II-B, III-C	C, IV-D		
	(c)I-D, III-C, III-B, IV	V-A (d)I-A, II-D, III-C	C, IV-B		
70.	The correct match is				
	I. Origin of life	A. Cuvier			
	II. Origin of species	B. Suarez			
	III. Special creation	C. Charles Darwin			
	IV. Catastrophe	D. A.I. Oparin theory	,		
	(a) I-A, II-B, III-C, IV	V-D (b)I-B, II-C, III-D	O, IV-A		
	(c)I-C, II-D, III-A, IV	-D (d)I-D, II-C, III-B	B, IV-A		
71.		-	swer accordingly. Asset the example of fossil A	ertion (A). Amphibians have Archeopteryx	
	(a) A and R are true a	nd R is correct explanat	tion to A		
	(b) A and R both are t	rue but R is not an expl	anation to A		
	(c) A is true but R is f	_		but R is correct	
72.	The concept of evolut	ion was given by			
	(a) Aristotle	(b) Empedocles	(c) Lamarck	(d) Darwin	
		EVIDENCES OF	ORGANIC EVOLU	TION	
Basi	ic Level				
73.	Which of the following	g are homologous			
	(a) Wings of butterfly	, wings of flying fish ar	nd wings of bird		
	(b) Tail of scorpion, tail of bird and tail of monkey				
	(c) Sting of honey bee, sting of scorpion and poison fangs of snakes				
	(d) Paddles of whale, front legs of horse and arms of man				
74.	Which one of the following sets of structure includes only analogous organs				
	(a) Wings of butterfly, housefly and bat (b)Hind legs of horse, grasshopper and bat				
	(c) Hands of man, monkey and kangaroo (d)Mandibles of cockroach, mosquito and honey bee				
75.			w borns, such as tail, mo	onstral face, gill slits, multiple	
	mammae etc. are know				
	(a) Homologous	(b) Analogous	(c) Atavistic	(d) Vestigial	
76.	Homologous organs a	re			
	(a) Similar in origin		(b) Similar in func		
	(c) Similar in develop	ment	(d) Similar in beha	viour	

77•		and bones of hind limbs at			
	(a) Whales	(b) Dolphins	(c) Sharks	(d) Seal	
78.	Vestigial organs occur		4 > T = 001 +		
		incomplete development	_	arts	
	(c) Fully developed bu		(d) Analogous		
79•	Vestigial organ in man				
	(a) Extra-abdominal m	uscles	(b) Thumb		
	(c) Conjunctiva		(d) Body hairs		
80.	Recapitulation theory i				
		ce (b)Taxonomical evid			
	(c)Physiological eviden	nce (d)Embryological evi	idence		
81.	Evolution means				
	(a) History of race		(b)developm	ent of race	
	(c) History and develop	(c) History and development of race with variations (d)Progressive development of the race			
82.	Which is the vestigial	organ in man			
	(a) Vermiform append	ix (b)Cervical vertebra	(c) Atlas	(d) None of the above	
83.	The evolution of groups of organisms is called				
	(a) Phylogeny	(b) Ontogeny			
	(c) Atavism	(d) Progressive evolution	ı		
84.	Evolution is regarded a	as			
	(a) Theory	(b) Established fact	(c) Principle	(d) Hypothesis	
85.	Homologous organs ar	re			
	(a) Leg of man, leg of	horse, wing of bat	(b) Hand of man	n, tail of horse, wing of bat	
	(c) Hand of man, forel	imb of horse, wing of bat	(d) Head of man	, leg of horse, wing of bat	
86.	Brow spot in frog is				
	(a) Vestige of nose	(b) Vestige of median ey	re		
	(c) Light sensitive spot	t (d) Swimming sensitive	spot		
87.	Which of the following	ng resembles the ancestra	l form from which	ch the animals and plants have	
	evolved			-	
	(a) Amoeba	(b) Paramaecium	(c) Plasmodium	(d) Euglena	
88.	Birds are evolved from	1			
	(a) Non-chordates	(b) Reptiles	(c) Amphibians	(d) Fishes	
89.	Which one is not a ves	tigial organ in man			
	(a) Vermiform append	ix (b)Plica semilunaris	(c) Ear muscles	(d) Malleus	
90.	The early stage human	embryo distinctly possess	ses		
	(a) Gills	(b) Gill slits	(c) External ear	(Pinna) (d) Eye brows	
91.	The humming bird, have	wk and the humming moth	n illustrate		
	(a) Adaptive radiation	-	(b) Homology		
	(c) Convergent evoluti	on	(d) Divergent ev	olution	

92.	Which of the sets represents vestigial structures	in man			
	(a) Hair, olecranon process, coccyx and vermifor	orm appendix			
	(b) Wisdom teeth, mammary glands, coccyx and	d patella			
	(c) Coccyx, nictitating membrane, appendix and	d ear muscles			
	(d) Hair, ear muscles, patella and atlas				
93.	The greatest evolutionary change enabling the	land vertebrates to be	completely free from water		
	was the development of				
	(a) Four legs	(b) Lungs			
	(c) Shelled eggs and internal fertilization	(d) Four chambered	heart		
94.	Haeckal's theory of recapitulation (Biogenetic l	aw) means that			
	(a) All organisms start as an egg				
	(b) Life history of an animal reflects its evolution	onary history			
	(c) Progeny of an organism resembles its parent	ts (d) Body parts once	lost are regenerated		
95.	Which one illustrates palaeontological evidence in favour of organic evolution				
	(a) Duck bill platypus (b) Pappered moth	(c) Archaeopteryx	(d) Darwin's finches		
96.	In which case Darwin theory is wrong				
	(a) Arrival of the fittest	(b) Survival of the fi	ittest		
	(c) Origin of species	(d) High efficiency of	of reproduction		
97.	De Vries discarded the principle of				
	(a) Darwin (b) Lamarck	(c) Haeckel	(d) Mendel		
98.	It is found at some stage of life				
	(a) Vertebral column (b) Pharyngeal gill clefts	(c) Ventral heart	(d) Red blood corpuscles		
99.	What is evolution				
	(a) Development of DNA from nucleotides	(b) Development of or	rganism through time		
	(c) Development of a cell from chemicals	(d) None of these			
100.	Which of the following is connecting link show	ring organic evolution			
	(a) Plumnaeus (b) Pontobdella	(c) Macropus	(d) Peripatus		
101.	Which on of the following is vestigial structure	in man			
	(a) Wisdom tooth (b) Ear	(c) Eye	(d) Tongue		
102.	Lamarck's theory on organic evolution is stated	as			
	(a) Inheritance of mutant characters	(b) Inheritance of vest	igeal characters		
	(c) Inheritance of ancestral characters	(d) Inheritance of acqu	d) Inheritance of acquired characters		
103.	Wings of bat, locust and pigeon are an example	of			
	(a) Vestigeal organs (b) Exo-skeleton structure	es (c)Homologous or	gans (d)Analogous orangs		
104.	Homologous organ have				
	(a) Same morphology and different function				
	(b) No common ancestral origin				
	(c) Different morphology and function but com	mon ancestral origin			
	(d) Same morphology and function				

105.	The term for similari	ty in organ structure seen i	n great diversity is	
	(a) Homology	(b) Identical	(c) Analogy	(d) Symmetrical
106.	Homologous structur	res have		
	(a) Similar origin bu	t similar or dissimilar funct	tions	
	(b) Dissimilar origin	but similar functions		
	(c) Dissimilar origin	but dissimilar functions	(d) Dissimilar origin ar	nd dissimilar structures
107.	Which of the following	ng are homologous organs		
	(a) Wings of bird and	d wings of insect	(b) Wings of bat and w	rings of cockroch
	(c) Wings of bird and	d hands of human	(d) Nails of human being	ng and claws in animals
108.	'Vestigial organs' ar	e those organs which are		
	(a) Characteristics of	f birds	(b) Not of much use today	
	(c) Helpful in locom	otion	(d) Common	
109.	The wings of an inse	ct and a bat exhibit		
	(a) Homology	(b) Analogy	(c) Atavism	(d) Connecting link
110.	Wesimann's experim	ent discarded the views of		
	(a) Lamarck	(b) Darwin	(c) Khurana	(d) Haeckel
111.	Which one is vestigis	al organ of man		
	(a) Epiglottis	(b) Muscles of ear pinna	(c) Fossa ovalis	(d) Ileum
112.	Analogous organs ar	e those which are		
	(a) Structurally simil	ar	(b) Structurally and fur	nctionally similar
	(c) Functionally simi	ilar	(d) Normally non-func	tionable
113.	Which one is not a v	estigial organ		
	(a) Wings of Kiwi	(b) Coccyx in man	(c) Pelvic girdle of Pyt	thon (d)Flipper of seal
114.	Which is a vestigial	organ of python		
	(a) Nose	(b) Hind limbs	(c) Scales	(d) Teeth
115.	Which of the following	ng is not vestigial in huma		
	(a) Coccyx	(b) Nail	(c) Third molar	(d) Abdomen
116.	•	lopment of an animal from		-
	(a) Phylogeny	(b) Biogeny	(c) Ontogeny	(d) Embryogeny
117.		origin of birds from reptile	•	
	(a) Feathers	(b) Scales	(c) Claws	(d) Haris
118.	•	o disappear in future genera		
	(a) Body hair	(b) Wisdom teeth	(c) Ear ossicles	(d) Ear muscles
119.	Archaeopteryx is kn between	nown as missing /connecti	ing link because it is a	a fossil and has characters
	(a) Fishes and amphi	bians	(b) Birds and reptiles	
	(c) Reptiles and man	nmals	(d) Chordates and none	chordates

120.	Which is a set of evic	dences of evolution		
	(a) Homologous and	analogous	(b) Homologous and vestigial organs	
	(c) Analogous and ve	estigial organs	(d) All the above	
121.	Organic evolution is	change in		
	(a) Single individual	-	(b) A few members of	population
	(c) Major portion of	population	(d) Entire population	
122.	A bird with teeth is	•		
	(a) Kiwi	(b) Ostrich/King Vulture	(c) Dodo	(d) Archaeopteryx
123.	Concept of Evolution	is an excellent working h		e problem of
	(a) Matter, energy an	_		•
	(b) Development of o	livers organisms on earth t	hrough time	
	(c) Prodigality in reporduction (d) Environmental conditions			
124.	Most primitive mami	mals include		
	(a) Armadillo	(b) Spiny anteater	(c) Scaly anteater	(d) All anteater
125.	Peripatus is a connec	eting link between		
	(a) Reptiles and man	nmals	(b) Molluscs and arthro	ppods
	(c) Annelids and arthropods		(d) Annelids and molluscs	
126.	Prototheria have evol	ved from		
	(a) Snakes	(b) Birds	(c) Amphibians	(d) Reptiles
127.	The flightless bird, C	assowary is found in		
	(a) Mauritius	(b) Indonesia	(c) New Zealand	(d) Australia
128.	The preserved fossil	remains of Archaeopteryx	shows that	
	(a) It was a flying rep	otile in the triassic period		
	(b) Reptiles gave rise	to birds during jurassic pe	eriod	
		le from the permian period		
		to birds during permian pe		
129.	_	between annelida and moll		
	(a) Neopilina	(b) Glochidium larva	(c) Nautilus	(d) Veliger larva
130.		to six biogeographic areas		(1) 7 111
	(a) Wallace	(b) Malthus	(c) Darwin	(d) Stebbins
131.	Fossils are dated now	•		
	(a) Stratigraphic posi		(b) Amount of calcium	
	(c) Association with		(d) Radioactive carbon	(C^{14}) contents
132.				
		oyed by environment	(b) Animals are destroy	yed by scavengers
		ed by natural processes	1	
	(a) Animals are burri	ed and preserved by natura	ai processes	

133.	Fossils are			
	(a) Fovea in the retination	a of vertebrate eye	(b) Remains of organis	ms present in the rocks
	(c) The fossa present	in the bones	(d) Foramen through w	hich nerves pass
134.	Which of the following	ng would be easily fossiliz	ed	
	(a) Heart	(b) Tooth	(c) External ear	(d) Skin
135.	Which of the following	ng is the most evident sour	rce of evolution	
	(a) Fossils	(b) Embryos	(c) Morphology	(d) Vestigial organs
136.	Which one of the foll	lowing is living fossil		
	(a) Sphenodon	(b) Peripatus	(c) Archaeopteryx	(d) Duck-billed platypus
137.	Founder of 'palaeonte	ology 'is		
	(a) Birbal Sahni	(b) Cuvier	(c) Dickersom	(d) Darwin
138.	The study of fossils is	s called		
	(a) Herpatology	(b) Cytology	(c) Palaeontology	(d) Organic evolution
139.	Fossil contents of the	alimentary canal are term	ed as	
	(a) Casts	(b) Coprolites	(c) Impressions	(d) Trails
140.	The field in which zo	ology and geology are ver	y intimately connected,	is
	(a) Zoogeology	(b) Zoogeography	(c) Palaeontology	(d) Archaeology
141.	The fake fossils whic	h resemble to the remains	of plants are known as	
	(a) Pseudo fossils	(b) True fossils	(c) Complete fossils	(d) Incomplete fossils
142.	The earliest fossil for	m in the phylogeny of hor	se is	
	(a) Merychippus	(b) Eohippus	(c) Equus	(d) Mesohippus
143.	Living fossil is			
	(a) Latimeria	(b) Uromastix	(c) Archaeopteryx	(d) All the above
144.	Which one provides of	direct and solid evidence in	n favour of organic evolu	ution through ages
	(a) Atavism	(b) Palaenontology	C	
	(c) Vestigial organs	(d) Galapagos island faur	na	
145.	Fossil remains of Arc	chaeopteryx indicates that		
	(a) It was a flying rep	otile from Triassic	(b) It was flying reptile	from Permian
	(c) Reptiles gave rise	to birds during Permian	(d) Reptiles gave rise to	birds during Jurassic
146.	Living organism with	oldest fossil history is		
	(a) Dinosaur	(b) Archaeopteryx	(c) Horse	(d) Man
147.	Which one is used for	r dating archaeological spe	ecimens like bones, shell	s and wood
	(a) 3H	(b) ^{14}C	(c) ^{121}I	(d) ^{32}P
148.	Fossils indicate the ev	volution of		
	(a) Monkey	(b) Dinosaur	(c) Horse	(d) Man
149.	Which animal has bee	•		
	(a) Draco	(b) Dinosaur	(c) Mammoth	(d) Pteridosperms

	*****		0 11		
150.	Which statement is correct for stratification of fossils (a) Fossils of upper stratum are more recent than those of lower strata				
		tratum are more recent tha	an those of upper strata		
	(c) There is no stratif	ication of fossils			
	(d) None of these	1.19 .9 1 . 1	1 ,		
151.		nammal-like reptiles data b		(1) C 1 'C	
	(a) Triassic	(b) Cretaceous	(c) Permian	(d) Carboniferous	
152.	_	n be estimated now by		1 2 1	
	(a) Earth's crust		(b) Amount of calcium	•	
	-	ty of radioactive carbon in		(d) All of these	
153.		cal history is older than th		(1) 77	
	(a) Dinosaurs	(b) Frog	(c) Man	(d) Horse	
154.		iated with evolution in fie			
	_	(b) Special creation	_	(d) None above	
155.	Geologically one of <i>Dinosaurs</i> "	the following eras is kno	wn as "Golden age of R	Reptiles" or "Golden age of	
	(a) Mesozoic	(b) Cenozoic	(c) Palaeozoic	(d) None of the above	
156.	The cenozoic era is k	nown as	•	. ,	
	(a) Age of mammals and modern flora		(b) Age of reptiles and	gymnosperms	
	(c) Age of amphibia and lycopods		(d) Age of marine invertebrates		
157.	_	abled reptiles to dominate	_		
	(a) Large size	(b) Heavy armour	(c) Large teeth	(d) Large eggs	
158.	Correct sequence is	•			
	(a) Palaeozoic → Me	sozoic → Coenozoic	(b) Mesozoic → Archa	eozoic → Proterozoic	
		chaeozoic → Coenozoic	. ,		
159.					
55	The first life on earth came in water and evidences indicate that life originated in one of the following eras				
	(a) Palaeozoic	(b) Mesozoic	(c) Cenozoic	(d) Proterozoic	
160.	Which era is dubbed	as the age of prokaryotic	microbes	. ,	
	(a) Phanerozoic	(b) Proterozoic	(c) Precambrian	(d) Archean	
161.	Archeopteryx, a tran following period	sitional fossil between bi	irds and reptiles was dis	scovered from the rocks of	
	(a) Jurassic	(b) Archeozoic era	(c) Cretaceous	(d) Triassic	
162.	In which era mamma	` '	(*)		
	(a) Mesozoic	(b) Cenozoic	(c) Palaeozoic	(d) Procambrian	
163.	` '	naximum during the perio	• •		
5.	(a) Jurassic	(b) Triassic	(c) Cretaceous	(d) Palaeocene	
164.	Dinnosaurs originated	` '	()	· / · · · · · · · · · · · · · · · · · ·	
~ I*	(a) Paleozoic	(b) Archeozoic	(c) Cenozoic	(d) Mesozoic	

165.		lar organism was in the era		
	(a) Proterozoic	(b) Palaeozoic	(c) Archaeozoic	(d) Mesozoic
166.	Prototherians have ev			
	(a) Reptiles	(b) Birds	(c) Eutherians	(d) Amphibians
167.	There was no life in	(1) 3. f	() D 1	(1) G
	(a) Azoic era	(b) Mesozoic era	(c) Palaeozoic era	(d) Cenozoic era
168.		t during mesozoic era	() D' 1	(1) D 1' 1
_	(a) Pisces	(b) Ruling reptiles	(c) Birds	(d) Ruling mammals
169.	Reptiles were domina	•	(a) Olica cana maria d	(d) Combrian nariad
	-	(b) Cretaceous period	(c) Oligocene period	(d) Cambrian period
170.	Dinosaurs disappeare	_	() C ((1) D '
	(a) Jurassic	(b) Triassic	(c) Cretaceous	(d) Permian
171.	Coenozoic era does n		() D :	(1) D1 ' (
	(a) Pliocene	(b) Miocene	(c) Devonian	(d) Pleistocene
172.	Palaeozoic era was ag		-1(-)C:4:1	(4) A11 - £ 41
	(a) Reptiles	(b) Giant molluses and fi	snes (c)Giant reptiles	(d) All of these
173.	Dinosaurs were	(h) Finat amalailainna	(a) Extinct nextiles	(d) First manuals
		(b) First amphibians	(c) Extinct reptiles	(d) First mammals
174.		abled reptiles to dominate		•
	(a) Large lungs	(b) Heavy armour	(c) Big teeth	(d) Shelled eggs
175.	(a) Mesozoic	alled the "age of mammals (b) Coenozoic	•	(d) Cratagogue
1=6	` '		(c) Palaeozoic	(d) Cretaceous
176.	(a) Man	ed during Pliocene epoch (b) Birds	(c) Fishes	(d) Insects
100	"Age of fishes" was	(b) Dilus	(c) Pistics	(u) msects
177.	(a) Ordovician	(b) Devonian	(c) Crustaceous	(d) Silurian
172	Tyranosaurus was ab	` '	(c) Clustaccous	(d) Shurran
1/6.	(a) Archaeozoic	(b) Coenozoic	(c) Mesozoic	(d) Palaeozoic
		• •	. ,	
179.		can be used as an illustrati	ion to demonstrate proce	ess of evolution in animals
		e animals like cheetah	、	
		pole in the life history of f		
		nying mammals in Australi		
	(d) Increasing incider	nts of DDT resistance in m	osquitoes	
180.	Which one of the foll	owing sets includes all hor	mologous organs	
	(a) Hind legs of pig, of	duck and kangaroo	(b) Wings of bats, butte	erfly and bird
	(c) Sting of honey be	e, scorpion and snake	(d) Tail of rat, peacock	and cockroach
181.	Evolution is best defi	ned as		
	(a) Inheritance of acq	uired characters	(b) Descent by modific	ations
	(c) Spontaneous gene	eration	(d) Struggle for existan	ice
	_			

182.	The process of evolut	tion		
	(a) is a continuous pr	rocess		
	(b)is a discontinuous	process		
	(c) was continuous in	beginning but discontinu	ous now	
	(d)was discontinuous	in beginning but continuo	ous now	
183.	The presence of temp	orary gills in the embryos	of snakes, birds and ma	n indicates that
	(a) These embryos ne	eed gills for breathing		
	(b) Ancestors of these	e animals had gills at one	stage of evolution	
	(c) Lungs evolved from	om gills		
	(d) Medium in which	these embryos develop re	esembles O_2 rich water	
184.	Mule is a hybrid, whi	ich of the following staten	nent, is correct	
	(a) Mule is not a spec	cies	(b) Mule is a new spec	ies
	(c) Horse and ass are	two populations		
	(d) Mule represents a	common ancestor of hors	e and ass	
185.	Homologous organs of	explain		
	(a) Convergent evolu	tion (b)Divergent evolution	on (c)Pedogenesis	(d) Prodagility
186.	Connecting link betw	een man and ape was		
	(a) Java man	(b) Ape man	(c) Java ape man	(d) Ramapithacus
187.	Which represents a co	onnecting link as an evide	nce in favour of organic	evolution
	(a) Archaeopteryx between birds and mammals (b) Whale between fishes and mammals			
	(c) Duck bill platypus between reptiles and mammals			
	(d) Java ape man bety	ween modern man and Pea	aking man	
188.	A scientist who work	xed on rats cut their tails	upto 21 successive gene	rations but at last he found
	that tail remained nor	rmal. By this experiment the	heory of which scientist	is disapproved
	(a) Darwin	(b) Lamarck	(c) Hugo de Vries	(d) Mendal
189.	In a bush pattern of e	volution, the uppermost ti	ps of the branches repres	sent
	(a) Early prosimians	(b) Lower taxonomic ran	ık	
		(d) Currently living spec	ies	
190.	Derivation of homolo	ogues are caused by		
	(a) Time consequence	e along	(b) Gradual changes in	structure
	(c) Drastic changes in	n structure	(d) No changes in basic	e structure
191.	Which is basis of evo	olution		
	(a) Cell	(b) Individual	(c) Population	(d) Species
192.	Which one of the foll	lowing organs have no evo	olutionary significance	
	(a) Analogous organs	s (b) Atavistic organs	(c) Non-functional org	ans (d)Functional organ

193.	Which one of the foll	owing is a pair of homolog	gus organs	
	(a) Lungs of rabbit an	d gills of rohu	(b) Wing of bat and win	ng of butterfly
	(c) Pectoral fin of roh	u and the forelimb of hors	se	
	(d) Wings of grasshop	oper and wing of crow		
194.	Organisms are depend	dent on each other because		
	(a) They are forced to	lead such life		
	(b) During the course	of organic evolution the is	nterdepency was progres	ssively evolved
	(c) It is a compulsory	phenomnon		
	(d) It is a biological o	bligation		
195.	Which of the following	ng animals has been extinc	et rather recently	
	(a) Dinosaurs	(b) Sphenodon	(c) Mammoth	(d) Dodo
196.	The book "Descent of	f man" and "Selection in r	relation to sex" was writ	ten by
	(a) Lamarck	(b) Lamarck and Darwin	(c) Weismann	(d) C. Darwin
197.	Occurrence of vestigi	al organs is not explained	by	
	(a) Theory of organic	evolution	(b) Theory of special cr	reation
	(c) Scala naturae		(d) Natural classification	on system
198.	The splint bone of pre	esent day horse is a vestige	e of	
	(a) Fourth toe		(b) First toe	
	(c) Second toe		(d) Second and fourth t	
199.	The presence of gill s	lits in the embryos of all v	rertebrates supports the t	heory of
	(a) Recapitulation	(b) Organic evolution	(c) Metamorphosis	(d) Biogenesis
200.	Vestigial organs in hu	ıman are about		
	(a) 8	(b) 80	(c) 100	(d) 108

201.	Some of the important	t evidences of organic evo	olution are	
	(a) Occurrence of hon	nologous and vestigial org	gans	
	(b)Occurrence of anal	ogous and vestigial organ	S	
	(c) Occurrence of hon	nologous and analogous o	rgans	
	(d)Occurrence of anal	ogous and vestigial organ	S	
202.	Which one of the foll acquired characters	owing evidences does no	t favour the Lamarckian	n concept of inheritance of
	(a) Melanization in pe	ppered moth in industrial	areas	
	(b)Presence of webbee	d toes in aquatic birds		
	(c) Lack of pigment in	a cave-dwelling animals	(d) Absence of limbs in	n snakes
203.	Monkeys and some lo	wer groups have certain b	blood groups which are	
	(a) Identical to those of	of man	(b) Identical to those of	f anthropod apes
	(c) Somewhat similar	to white persons	(d) Not identical to tho	se of man
204.	Homologous organs in	ndicate		
	(a) Convergent evolut	ion (b)Parallel evolution	(c) Natural selection	(d) Common descent
205.	A connecting link bety	ween two phyla is		
	(a) Archaeopteryx-Av	es and Mammalia	(b) Amphioxus-Echinoc	dermata and Chordata
	(c) Peripatus-Annelid	a and Arthropoda	(d) Ornithorhyncus-Av	es and Reptilia
206.	Which of the followin	g is not atavistic in human	ns	
	(a) Tail in some babie	s (b)Enlarged canines	(c) Six fingers	(d) Dense body hair
207.	Similarities between o	organisms of different gen	otypes is due to	
	(a) Convergent evolut	ion (b)Divergent evolution	n (c)Microevolution	(d) Macroevolution
208.	A vestigial tooth is			
	(a) Incisor	(b) Molar	(c) Premolar	(d) Canine
209.	Tasmanian Wolf is a r	narsupial while Wolf is a	placental mammal. This	shows
	(a) Convergent evolut	ion	(b) Divergent evolution	1
	(c) Parallelism		(d) Inheritance of acqui	ired characters
210.	Presence of some vest	igial teeth in a species ex	emplifies	
	(a) Genic adaptation	(b) Unstable adaptation	(c) Seasonal adaptation	(d) Functional adaptation
211.	Which type of evolution	on is examplified by wing	gs of mosquito, bat and p	pigeon
	(a) Convergent	(b) Divergent	(c) Parallel	(d) None of these
212.	-	ide strong evidence of org		
	(a) Gill clefts in vertel	•	(b) Wings in insects, bi	
	(c) Jointed legs in arth	propods and mammals	(d) Excretory organs in	earthworms and frogs

213.	If the life-history of frog reflects and one aspect	t of evolution, it can be e	expressed by
	(a) "Ontogeny repeats Natural Selection"	(b) "Phylogeny repeats	Ontogeny"
	(c) "Ontogeny repeats Phylogeny"	(d) Larval forms represe	ent living fossils
214.	Most primitive living mammals which pro	ovide an evidence of	organic evolution from
	geographical distribution are found in		
	(a) China (b) India	(c) Australia	(d) Africa
215.	Evolutionary convergence is characterized by		
	(a) Development of dissimilar characteristics in	closely related groups	
	(b) Development of common set of characteristic	ics in groups of different	ancestory
	(c) Development of characteristics by random n	nating	•
	(d) Development of common characteristics in o	_	
216.	Existence of marsupials in Australia and New Z	• •	
	(a) Continental drift (b) Geological period	(c) Both	(d) None of these
217.	Precipitation test gives evidences from		
	(a) Comparative embryology	(b) Comparative anator	my
	(c) Comparative serology	(d) None of the above	
218.	Phylectic evolution is the		
	(a) Evolution in a line		
	(b) Evolution that involves the development of	reproductive isolation	
	(c) Evolution breaking into several pieces		
	(d) All above		
219.	Who discovered the fossil of archaeopteryx from	n bavaria (Germany)	
	(a) Thomas Huxley (b) Hermann von Meyer	(c) Colin Harrison	(d) Andreas Wagner
220.	The age of rock is calculated on the basis of	4	
	(a) Types of fossile present	(b) Number of strata pro	
	(c) Amount of uranium present	(d) Amount of lead pres	sent
221.	Fossil X is older than fossil Y. Most evident ans		· V
	(a) Fossil Y has got some of the vestigial organs(b) Fossil Y has got homologous and analogous		1 <i>A</i>
	(c) Fossil <i>X</i> is found in deeper sedimentation th		
	(d) Fossil Y was found in better state than that o		
222.	Which one is not a true fossil	1 71	
	(a) Placoderm (b) Limulus	(c) Archeopteryx	(d) Therapside
223.			
_	(a) Archaeopteryx (b) Birds	(c) Reptiles	(d) Horse
224.	Potassium-argon dating can determine the age of	•	
	(a) Of about 5,00,000 years old	(b) 2 billions years old	
	(c) Of all ages	(d) Of azoic era only	

225.	Which is the largest k	known fossil of reptile		
	(a) Dinosaurs	(b) Diplodocus	(c) Stegosaurs	(d) Igmanodon
226.	Which will be true in	sedimentary rocks		
	(a) Upper strata older	and lower younger	(b) Upper strata younge	er and lower older
	(c) There is no stratif	ication	(d) None of the above	
227.	Possibility of occurre	nce of coal in an area is de	etermined by study of	
	(a) Microfossils	(b) Ecology	(c) Economic Botany	(d) Mining contents
228.	Reptilian feature of A	archaeopteryx is		
	(a) U-shaped furcula	(b) Beak	(c) Abdominal ribs	(d) Feathers
229.	Half life of ${}^{14}C$ is			
	(a) 50 years	(b) 500 years	(c) 5000 years	(d) 5×10^4 years
230.	One of the following	is a fossil reptile with mar	nmalian traits	
	(a) Tyranosaurus	(b) Dodo	(c) Pelycosaurus	(d) Archeopteryx
231.	Half life of radioactiv	ve uranium isbillion ye	ars	
	(a) 4.5	(b) 1	(c) 10	(d) 1.2
232.	First vertebrates were	e appeared in a period of p	alaeozoic era, called	
	(a) Silurian	(b) Ordovician	(c) Devonian	(d) Mississipian
233.	The first mammals ar	rose		
	(a) After the extinction	on of dinosaurs	(b) Before the origin of	dinosaurs
	(c) Along with the di	nosaurs	(d) From the dinosaurs	
234.	Ancestral amphibians	s were tetrapods that evolv	ed during	
	(a) Jurassic period	(b) Cretaceous period	(c) Devonian period	(d) Carboniferous period
235.	The age of the fossil	of Dryopithecus on the geo	ological time scale is	
	(a) 75×10^6 years back	ck (b) 25×10^6 years bac	k (c) 2.5×10^6 years b	eack (d)50 \times 10 ⁶ years back
236.	Present day mammals	s have their predecessor in		
	(a) Therapsids	(b) Diapsids	(c) Synapsids	(d) Anapsids
237.	Trilobites were evolv	ed during which of the fol	lowing period	
	(a) Salvian	(b) Cambrain	(c) Ordovician	(d) Pre-cambrain
238.	Which epoch is of hu	man civilization		
	(a) Pliocene	(b) Holocene	(c) Palaeocene	(d) Pleistocene
239.		rigin of human is similar t		•
	(a) Wallace	(b) Lamarck	(c) Darwin	(d) Shapiro
240.	Rise of invertebrate v		() D 1	(1) 3.5
	(a) Proterozoic	(b) Archaeozoic	(c) Palaeozoic	(d) Mesozoic
241.		ng dominated in palaeozoi		(1) M 1
	(a) Reptiles	(b) Fishes	(c) Birds	(d) Mammals
242.		lowing is the age of amphi		
	(a) Archaeozoic era	(b) Proterozoic era	(c) Palaeozoic era	(d) Mesozoic era

243.	Earliest reptiles evolv	ved in the period		
	(a) Ordovician	(b) Silurian	(c) Devonian	(d) Carboniferous
244.	First mammals appea	red in the period		
	(a) Triassic	(b) Jurassic	(c) Cretaceous	(d) Tertiary
245.	Origin of first mamm	als occurred		
	(a) 500 million yrs	(b) 220 million yrs		
	(c) 1600 million yrs	(d) Over 1600 million y	rs ago	
246.	Carboniferous period	of coal deposition was		
	(a) 50 million years a	go (b)500 million years	s ago	
	(c)300 million years a	ago (d)2000 million year	rs ago	
247.	Origin of life occurred	d in		
	(a) Carboniferous	(b) Cambrian	(c) Pre-cambrian	(d) Ordovician
248.	Modern birds rose in			
	(a) Palaeozoic	(b) Coenzoic	(c) Mesozoic	(d) Archaeozoic
249.	Hoofed animals like h	norse originated in the ep	ooch	
	(a) Eocene	(b) Oligocene	(c) Miocene	(d) Pleistocene
250.	Fossils of Archaeopte	eryx reveal that		
	•	st evolved during triassic		
	(b) Toothed birds orig	ginated from flying reptil	es during triassic	
	(c) Toothed birds orig	ginated during jurassic		
	(d) Toothed birds gav	e rise to primitive mamn	nals	
251.	Mammlian characteri	stics appeared first in		
	(a) Peripatus	(b) Protista	(c) Pelicosaurus	(d) None of these
		THEORIES	OF EVOLUTION	
Basi	c Level			
252.	The material for orga	nic evolution is		
	(a) Effect of hormone	es (b)Nutritive value	(c) Mutation	(d) Asexual reproduction
253.	Goldschmidt has class following is referred		icro, macro and mega	evolution. Which one of the
	(a) Evolution at varie	ty level	(b) Evolution at sub	species level
	(c) Evolution at speci	es and genus level	d) Evolution at fami	ly level
254.	•	eory of organic evolution		
_51	(a) Natural selection		(b) Phase theory	
	(c) Synthetic theory	uncory	(d) Mutation theory	
	•	nas of mutations are	(d) Widtation theory	
255.	In nature, the occurre			
	(a) Mostly navtral	(b) Mostly useful	£1	
	(c) Mostly neutral	(d) Mostly neutral or ha	ITIIILUI	

256.	A species is produced by loss or disappe	earance of a few char	cacters found in	parents it is termed as	
	(a) Progressive species (b)Retrogress	ive species (c)Succe	essive species	(d) Digressive species	
257.	Which one of the following scientists is	not related with orga	anic evolution		
	(a) Erasmus Darwin (b) Charles Darw	in (c) Darlingt	on (d)	T.R. Malthus	
258.	Modern theory of organic evolution is b	pased on			
	(a) Population (b) Mutation	(c) Isolation	(d)	All of the above	
259.	To be evolution of successful, a mutation	on must occur in			
	(a) Germplasm DNA (b) Somatoplasm	DNA (c) RNA	(d)	Cytoplasm	
260.	The gene which increases the frequency	of mutation in other	genes is called	las	
	(a) Regulatory gene (b) Polygene	(c) Mutager	ne (d)	Hypostatic gene	
261.	Mutations are mainly responsible for co	ntrolling			
	(a) Increasing population rate	(b) Maintair	ning genetic con	ntinuity	
	(c) Variation in organisms	(d) Extinction	on of organisms	S	
262.	Birds are adapted to aerial life due to				
	(a) Presence of wings	(b) Light we	eight of their bo	ody	
	(c) Presence of air marrow	(d) All the a	bove		
263.	Persons who do hard manual work with	their hands, are likel	ly to develop		
	(a) Thick subcutaneous fat in their palms				
	(b) Thick epidermis on their palms				
	(c) Greater number of sweat pores in the	eir hands			
	(d)Greater quantity of melanin all over	the body			
264.	Haeckel's biogenetic law states that				
	(a) Course of evolution of race is repeat	ed in the life history	of an individua	1	
	(b) Life originates from pre-existing life				
	(c) Life originates from lifeless things				
	(d) None of these				
265.	Lamarck's acquired characters are not	inherited and have r	no evolutionary	value. This statement	
	was given by				
	(a) Hugo de Vries (b) Charles Darw	in (c) Weisman	nn (d)	T.H. Morgan	
266.	Darwin's theory of natural selection to e	explain organic evolu	tion was based	on	
	(a) Modifications in organs through use	and disuse			
	(b) Prodigality of reproduction, struggle of existence and survival of fittest				
	(c) Inheritance of acquired characters				
	(d) Appearance of sudden large variations	ons, their inheritance	e and survival	of those having these	
267.	Key point to Lamarck's view about orga	nic evolution is that	every offspring	5	
	(a) Is similar to its parents	(b)Inherits character	rs acquired by t	he parental generation	
	(c) Shows struggle for existence	(d)Repeats phylogen	ny in its ontoge	ny	

268.	The evolution of species is based upon sum tota (a) Man conservation (b) Speciation	al of the species adaptive changes (c) Natural selection (d) Isolat	•
269.	The evolution of higher taxonomic groups such		
-	(a) Micro evolution (b) Mega or macro evolu		
270.	Darwin gave the theory of evolution was based	· -	
_,	(a) Survival of the fittest (b) Natural selection	0.12	
	(c) Mutation (d)Descent with modi	fications	
271.	Which one of the following was the contribution		
-, -,	(a) Theory of natural selection	(b) Law of segregation	
	(c) Theory of mutation	(d) Law of dominance	
272	According to the Neo-Darwinian theory, whic	• /	for the origin of
272.	new species	if of the following is responsible	for the origin of
	(a) Mutations	(b) Useful variations	
	(c) Mutations together with natural selection	(d) Hybridization	
273.	Evolution in which the animals of two different another, is called	t gene ecology show too much si	milarity with one
	(a) Parallel evolution	(b) Retrogressive evolution	
	(c)Progressive evolution	(d) Convergent evolution	
274.	When an organ is used it will develop and if it	is not used, it weakens to become	ne vestigial. Who
	could have said their theory		
	(a) Darwin (b) de Vries	(c) Lamarck (d) Meno	del
275.	The principle of organic evolution envisages		
	(a) No change in complexity	(b) Decreasing complexity	
	(c) Increasing complexity	(d) Drastic changes	
276.	Lamarck's theory of evolution is also called		
	(a) Theory of special creation	(b) Inheritance of acquired chara	cters
	(c) Survival of the fittest	(d) None of these	
277.	Most popular example of Lamarck is		
	(a) African Giraffe (b) Snakes	(c) (a) and (b) both (d) Prime	
278.	One of the revolutionary concepts in Biology	was projected by Charles Darwin	in the 'Origin of
	Species' and has been discussed in	(h)Has and diamas a	f anama
	(a) Germplasm theory	(b)Use and disuse o	1 organs
	(c) Natural selection leading to the survival of t		
279.	Which one of the following pairs is correctly m		adantation
	(a) Streamlined body-Aquatic adaptation (a) Parasitism Intra specific relationship	(b) Excessive perspiration-Xeric	adaptation
50 c	(c) Parasitism-Intra specific relationship There is more competition for survival between	(d) Uricotelism-Aquatic habitat	
280.	There is more competition for survival between		ah a
	(a) Same animals of same niche	(b) Different animals of same nic	
	(c) Same animals of different niche	(d) Different animals of different	. mene

281.	Germplasm theory ag	gainst Lamarck's principle,	was given by	
	(a) Weismann	(b) Darwin	(c) Lamarck	(d) Hugo do Vries
282.	Doctrine of evolution	is concerned with		
	(a) Special creation the	heory	(b) Gradual changes	
	(c) Abiogenesis		(d) Biogenesis	
283.	Genetic flow between	n two species does not occ	ur. This is a	
	(a) Genetic barrier	(b) Special barrier	(c) Reproductive barrie	r (d) None of the above
284.	Recapitulation theory	(Biogenetic law) explains	s "Ontogeny repeats Phy	logeny". It was given by
	(a) Lamarck	(b) Haeckel	(c) Darwin	(d) Robert Hooke
285.	"Origin of Species" v	vas publised in		
	(a) 1809	(b) 1858	(c) 1956	(d) 1859
286.	Author of "Philosoph	nique Zoologique" is		
	(a) Mendel	(b) Darwin and Wallace	(c) Lamarck	(d) Darwin
287.	Most convincing in D	Darwin's theory is		
	(a) Malthus essay		(b) Population	
	(c) Survival of the fit	test	(d) Formation of specie	es
288.	Who gave the 'Theor	ry of pangenesis'		
	(a) Lamarck	(b) Wallace	(c) Haeckel	(d) Darwin
289.	Darwinism does not o	explain		
	(a) Progression	(b) Usefulness of all orga	nns	
	(c)Retrogression	(d) Presence of vestigial	organs	
290.	The ultimate source of	of organic evolution is		
	(a) Natural selection	(b) Sexual reproduction	(c) Hormonal action	(d) Mutations
291.	The pangenesis of an	animals are accumulated	in	
	(a) Zygote	(b) Gametes	(c) Blood	(d) Gene pool
292.	The concept of sudde	en genetic change which br	reeds true in a species is	represented as
	(a) Inheritance of acc	quired characters	(b) Natural selection	
	(c) Law of inheritance	e	(d) Mutation	
293.	Who wrote the "Orig	in of Species"		
	(a) G.J. Mendel	(b) Lamarck	(c) De Vries	(d) Charles Darwin
294.	Which of the following	ng concepts in attributed to	Charles Darwin	
	(a) Inheritance of acc	uired characters	(b) Use and disuse of o	rgans
	(c) Law of paired uni	-	(d) Struggle for existen	
205	Struggle for existence		(4) 2 - 10010 101 011101011	
<i>-</i> 33∙			(c) Environmental	(d) All of the above
	(a) Intraspecific	(b) Interspecific	(c) Environmental	(d) All of the above

296.	As per modern synthe	etic theory organic evoluti	on depends upon	
	(a) Mutation, reprodu	active isolation and natural	l selection	
	(b) Gene recombinati	on and natural selection		
	(c) Mutation and natu	aral selection	(d) All of these	
297.	Darwin proposed the	theory of origin of species	s through	
	(a) Natural selection	(b) Mutation	(c) Hybridization	(d) Acquired characters
298.	Basic principles of er	nbryonic development we	re stated by	
	(a) Von Baer	(b) Haeckel	(c) Darwin	(d) Weismann
299.	Mutation theory expl	aining organic evolution v	vas proposed by Hugo de	e Vries. He worked on
	(a) Pisum sativum		(b) Drosophila melano	gaster
	(c)Oenothera lamarch	kiana	(d) Althea rosea	
300.	Similarity developed	in distantly related groups	s as an adaptation to the	same function is called
	(a) Convergent evolu	tion (b)Connecting link	(c) Missing link	(d) Divergent evolution
301.	Which are immortal			
	(a) Germ cells	(b) Somatic cells	(c) Pituitary cells	(d) Glomerular cells
302.	Unit of natural select	ion or survival of the fittes	st is	
	(a) Species	(b) Population	(c) Family	(d) Individual
303.	Biogenetic law was p	propounded by		
	(a) Von Baer and Hae	eckel	(b) Von Baer and Arist	otle
	(c) Haeckel and Men	del	(d) Mendel and Griffith	n
304.	Interacting population	ns are		
	(a) Symbiotic	(b) Mutualistic	(c) Parasitic	(d) Coevolved
305.	Frequency of a gene i	in a population will increa	se if the gene is	
	(a) Lethal	(b) Dominant	(c) Recessive	(d) Favourably selected
306.	Darwin's theory of pa	angenesis proposes		
	(a) Some physical ba	sis of inheritance		
	(b) Development of u	seful organs and degenera	ation of useless organs	
	(c) Increase in organ	size with age		
	(d) Development of o	organs due to will power		
307.	What is true for Lama	arck		
	(a) American botanis	t who later became zoolog	gist	
	(b)English naturalist	who propounded theory of	f evoluation	
	(c) Polish scientist w	ho gave law of inheritance		
	(d) French scientist w	ho gave "Inheritance of a	equired characters"	

308. Natural selection means

- (a) Better adaptability (b) Elimination of less adapted
- (c) Better survival
- (d) All of the above

309. Improved race of Pigeon developed due to

(a) Environmental selection

(b) Natural selection

(c) Artificial selection

(d) Protective selection

310. Evolution will not occur if

- (a) There is no environmental influence
- (b) Genes are without effect
- (c) Somatic variations are not heritable
- (d) There is no genetic variations in individuals of a populations

311. Match the following columns and find correct combination

	Colum		Column II
	n I		
a	Darwin	p	Mutation Theory
b	De	q	Protobiosis
	Vries		
c	Pasteur	r	Origin of Species
d	Fox	S	Special Creation
		t	Swan-Necked Flask
			Experiment

(a)
$$a = r$$
, $b = p$, $c = t$, $d = q$

(b)
$$a = p$$
, $b = q$, $c = r$, $d = s$

(c)
$$a = t$$
, $b = r$, $c = q$, $d = p$

(d)
$$a = r$$
, $b = t$, $c = p$, $d = q$

312. Tigon is

- (a) Natural hybrid between Lion and tigress
- (b) Natural hybrid between Tiger and lioness
- (c) Fertile hybrid between captive tiger and lioness
- (d) Fertile hybrid between captive lion and tigress

313. Hinny is

- (a) Fertile hybrid between stallion and female donkey
- (b) Sterile hybrid between stallion and female donkey
- (c) Sterile hybrid between mare and male donkey
- (d)Fertile hybrid between mare and male donkey

314. T.R. Malthus is famous for his book on

- (a) Population
- (b) Mathematics
- (c) Geography
- (d) Genetics

315.	Weismann cut off tails shortened showing that	s of mice generation at	fter generation but tail	s neither disappeared nor			
	(a) Darwin was correct	(b)Tail is an esse	ential organ				
	(c) Mutation theory is w	vrong (d)Lamarckism v	vas wrong in inheritance	e of acquired character			
316.	Genetic drift is change of	of	-	-			
		ame generation	(b) Appearance of reces	ssive genes			
	(c) Gene frequency from	n one generation to next	(d) None of the above	-			
317.		_					
		_	(c) Genetic constitution	(d)Gene pool			
318.	Who gave the principle	that population tends to	multiply more rapidly th	nan food supply			
			(c) Lamarck	(d) Haldane			
319.	Major defect of Darwini	ism was					
	(a) Nondescription of su	rvival of fittest	(b)Nodescription of	f inheritance of fittest			
	_	erproduction of young or	_	of reason for variations			
320.	In our modern understan	nding of Natural selection	n, the fittest individuals	are those who			
	(a) Produce many offspr	rings, but a few survive u	ıpto sexual maturity				
	(b) Leave very many living descendents						
	(c) Are best adapted to t	the environment					
	(d) Are best equipped to	cope with the special er	nvironmental conditions				
321.	Theory of Mutations or I	Discontinuous Variation	s was first proposed by				
	(a) Correns (b	o) Tschermak	(c) Hugo de Vries	(d) Erasmus Darwin			
322.	The possibilities for here	editary and evolutionary	changes are greater in s	species that reproduce by			
	(a) Fission (b	o) Sexual means	(c) Budding	(d) Spore-formation			
323.	Mutations may be cause	ed by X-ray due to chang	es in				
	(a) Chromosomes (b	o) Genes	(c) DNA	(d) All of these			
324.	The concept of "organic	evolution" was hatched	by				
	(a) Darwin (b	o) Wallace	(c) None of these	(d) Both of these			
325.	Polyploidy leads to rapid	d formation of new speci	ies, because of				
	(a) Genetic recombination (b) Mutation therapy						
	(c) Isolation behaviour	(d)Development of m	nultiple sets of chromoso	omes			
326.	Birds and mammals evo	lved from reptiles in me	sozoic era this is				
	(a) Micro evolution (b	o) Mega evolution	(c) Divergent evolution	(d) Macro evolution			
327.	Adaptation of a species is	is its					
	(a) Metamorphosis (b	o) Ecdysis	(c) Acquired character	(d) Hereditary character			
328.	Whose theory of evolution	on believes that every or	rganism has an internal	vital force			
	(a) Drawinism (b	o) Lamarckism	(c) De Vries theory	(d) All above			
329.	The synthetic theory of e	evolution recognize the f	following process				
	(a) Natural Selection (b	o) Genetic recombination	(c)Gene mutation	(d) All above			

330.	Darwin's theory does	not include					
	(a) Natural selection		(b) Survival of the fittest				
	(c) Evolution through	n inheritance	(d) Struggle for existence				
331.	Who wrote the book	"Genetics and the Origin of	of Species				
	(a) Devis	(b) Dobzhansky	(c) Julian Huxley	(d) Fisher			
332.	By performing the re	plica plating experiment, I	Lederberg supported the				
	(a) Gene mutation th	eory	(b)Natural selection the	eory			
	(c) Lamarck theory		(d) Darwinian theory				
333.	In case of evolution v	which of the following stat	ement is not correct				
	(a) Fossilized animal	(a) Fossilized animals provides important information to trace evolution					
	(b) Wing of birds and forelimbs of cows are homologous						
	(c) In higher animals early development stages are similar						
	(d) Variation among	ation among individuals are not important in natural selection					
334.	The pioneers in the f	ield of 'organic evolution'	are				
	(a) Karl landsteiner.	Hugo de Vries, Malthus					
	(b) Darwin, Hugo de	Vries, Lamarck, Huxley					
	(c) Lamarck, Karl landsteiner, Malthus, DeVries						
	(d)Darwin, Lamarck,	Karl landsteiner, DeVries					
335.	The rate of evolution	is zero					
	(a) If gene frequency	changes	(b)If gene frequenc	y does not change			
	(c) If the population	is large	(d)If population rer	nains stationary			
336.	In forming the theory	of evolution by natural se	election. Darwin was gre	eatly influenced by			
	(a) Mutations of Hug	go de Vries	(b)Malthus idea of	population control			
	(c) Environmental fa	ctors	(d)Lamarck acquire	ed characters			
337•		eory of Darwin is objected	to, because it				
	•	w and small variations					
	-	erspecific competition					
	• •	iral calamities take a heavy					
0		ion of certain inherited cha					
338.		ould have not been taken p					
		population did not show g not inherit character acqui		hair offenrings			
	(c) If somatic variation	-	red during their fire to the	nen orrsprings			
	•	ons were not transferred to	genetic variations				
330.		riment was performed to pr					
555.	(a) Pre-adaptive muta		(b)Variations				
	(c) Isolations		(d)Reproductive m	utation			
			•				

340.	Name of the sh	nip in whic	h Charles	Darwin	went	t for his ex	pedi	tion				
	(a) Siboga	(b)	Beagle			(c) Sea gu	111		(d).	Atlantic		
341.	Which one of	f the follo	owing sec	quences	was	proposed	by	Darwin	and	Wallace	for	organic
	evolution	evolution										
	(a) Variations,	(a) Variations, natural selection, overproduction, constancy of population size										
	(b) Overproduc	ction, varia	tions, con	istancy (of pop	oulation siz	ze, n	atural se	lectio	n		
	(c) Variations,	constancy	of popula	tion siz	e, ove	erproductio	on, n	atural se	election	on		
	(d) Overproduc	ction, cons	tancy of p	opulatio	on siz	e, variation	ns, n	atural se	lectio	n		
342.	Industrial mela	ınism is an	example	of								
	(a) Defensive a	adaptation	of skin ag	ainst ult	travio	let radiatio	ons					
	(b) Drug resista	ance										
	(c) Darkening	of skin due	e to smoke	e from in	ndusti	ries						
	(d) Protective 1	resembland	ce with the	surrou	nding	SS.						
343.	Parallelism is											
	(a) Adaptive di	ivergence	in evolutio	on								
	(b) Adaptive co	onvergence	e of widel	y differe	ent sp	ecies in ev	olut	ion				
	(c) Adaptive co	onvergence	e of closel	y relate	d spec	cies in evo	lutic	on	(d)	None of t	hese	
344.	Master plate in	replica pl	ating expe	eriment o	conta	ined the						
	(a) Drug resista	ant bacteri	a			(b) Stertile	e col	lony of b	acteri	ia		
	(c) Different co	olonies of	fertile bac	teria		(d) None	of th	e above				
345.	Darwinian theo	ory was un	able to ex	plain								
	(a) The signific	cance of m	inute vari	ations		(b) Presen	ice o	of vestigia	ıl or ı	useless or	gans	
	(c) The present	ce of over	specialize	d organ	S	(d) All of	the a	above				
346.	Neo-Darwinism	n or synth	etic theory	of evol	lution	is based u	ıpon					
	(a) Variation a	ppeared in	the struct	ure and	phys	iology of c	orgai	nism due	to ha	phazard 1	nuta	tions
	(b) High death	rate and fo	ormation o	of sub-sp	pecies	S						
	(c) Mutation a	_	mbination	1								
	(d) All the abo	ve										
347.	The basic unit				is co	mmunal in	terb	reeding, i	n a s	pecies is	knov	vn as
	(a) Cline		Sub-spec			(c) Sibling	g spe	ecies	(d)	Deme		
348.	The example o											
	(a) Embryonic		_	les		(b) Tadpo			_			
	(c) Placenta of					(d) Canine		_				
349.	The importance	e of rando	m accumu	lation of	f sma	ll genetic o	chan	ges suffi		-	n evo	olution
	(a) Haeckel	(b)	Mayr			(c) Darwi	n		(d)	Lamarck		

350.	Evolutionary conver	gence is characterized by		
	(a) Development of	characteristics by random r	nating	
	(b) Replacement of o	common characteristics in o	lifferent group	
	(c) Development of	dissimilar characteristics in	closely related groups	
	(d) Development of a	a common set of characteri	stics in group of differer	nt ancestry
351.		vays of looking at living regard to life could vary no		t the molecular level and
	(a) Result of Newtor	nian laws	(b)Matter energy in	teraction
	(c) Matter velocity re	elationship	(d)Physical express	ion of moment of mass
352.	Indicate the complete	ely correct statement about	human races	
	(a) All human races	can interbreed but most wi	ll produce infertile youn	g ones
	(b) Different human	races cannot interbreed		-
	(c) Some human race	es can interbreed		
	(d) All human races	can interbreed and produce	fertile offspring	
353.	The term 'phyletic ev	volution' was proposed by		
	(a) Lamarck	(b) Mayer	(c) Darwin	(d) None of these
354.	Species diversity ger	nerally increase as one proc	eeds from	
	(a) Low altitude to h	igh altitude, and from low	latitudes to high latitude	S
		ow altitude, and from low l	_	
		ow altitude, and from high		S
		igh altitude, and from high		
355.		al history of mammalian h		
333	-	heart, three-chambered from		-
		n this above cited statemen		· ·
	(a) Biogenetic law	(b) Hardy Weinberg law	(c) Lamarck's principle	e (d) Mendelian principle
356.	"Darwin's finches" re	efers to		
	(a) Fossil of birds co	llected by Darwin at Galar	oagos islands	
	(b)A type of birds pr	esent on Galapagos islands	S	
	(c) Migratory birds of	collected by Darwin at Gala	pagos islands	
	(d) Fossils of reptiles	s collected by Darwin at Ga	alapagos island	
357.	The scientists regard	ed as Neo-Lamarckist are		
	(a) August Weisman	n and T.H. Morgan	(b) Hardy Weinberg	
	(c) Correns, Tsherma	ak and Hugo do Vries	(d) Kammerer and Mc	Dougall
358.	A species is taxonom	nically		
	(a) A group of evolu	tionary related populations		
	(b) A population with	h common characteristics a	s evolutionary base of v	rariation
	(c) A fundamental un	nit in the phylogenetic histo	ory of organisms	

(d) A basic category to which most taxonomic information is attached

359.	Most modern breeds	of the domestic dog have	evolved as a result of	
	(a) Natural selection	(b) Artificial selection		
	(c) Sexual selection	(d) Reproductive isolation	n	
360.	population from gene	eration to generation remains		-
_	(a) Lederberg-Lederb		• •	` '
361.	animals was given by	7	-	ationship among different
	(a) Haeckel	(b) Foxon	(c) L. de Vinci	(d) H.F. Nuttal
362.	-	generations of <i>Drosophil</i> approves the theory of	da in darkness. Even af	ter that the first flies had
	(a) Natural selection	(b) Acquired characters	(c) Use and disuse	(d) Synthetic theory
363.	The idea of natural se	election as the fundamenta	l process of evolutionary	change was reached
	(a) Independently by	charles Darwin and Alfre	ed Russel Wallace in 190	0
	(b) By Charles Darwi	in 1866		
	(c) By Alfred Russel	Wallace in 1901		
	(d) Independently by	Charles Darwin and Alfre	ed Russel Wallace in 185	9
364.	Two zoogeographical	l regions separated by high	n mountain ranges are	
	(a) Palaearctic and O	riental	(b) Oriental and Austra	lian
	(c) Nearctic and Pala	earctic	(d) Neotropical and Eth	niopian
365.	•	ype of beaks of finches ac y Darwin provides eviden	•	ng habits on the Galapagos
	(a) Origin of species	by natural selection	(b) Intraspecific variation	ons
	(c) Intraspecific comp	petition	(d) Interspecific compe	tition
366.	Co-worker of Darwin	n was		
	(a) Wallace	(b) Mendel	(c) Bateson	(d) Lamarck
367.	Phenomenon of 'indu	ustrial melanism' demonstr	rates	
	(a) Natural selection		(b) Induced mutation	
	(c) Geographical isol	ation	(d) Reproductive isolat	ion
368.	Convergent evolution	is illustrated by	-	
	(a) Dogfish and whal	e	(b) Rat and dog	
	(c) Bacterium and pro	otozoan	(d) Starfish and cuttle f	ish
369.	_	a theory very similar to tl	hat given by Darwin was	
	(a) Malthus	(b) Wallace	(c) Goldstein	(d) Mendel
370.	A mutation from the	wild to a new type is calle	d	,
		(b) Frame-shift mutation		(d) Forward mutation
371.		of the fittest" was given b		· · · · · · · · · · · · · · · · · · ·
J, .	(a) Darwin	(b) Herbert Spencer		(d) Lyell
		1	` /	· / •

372.		ry of pangenesis says that each cell of the body of	passage of factors th	rough generation occurs by
	(a) Nuclei	(b) Germs	(c) Gemmules	(d) DNA molecules
373.	H.J. Muller wa	as awarded Nobel Prize for		
	(a) Discovering	g that ionising radiations can	cause mutation	
	(b) Gene mapp	ing in <i>Drosophila</i>		
	(c) Reduction i	in nuclear weapons		
	(d)Discovered	that chemicals can cause gene	e mutation	
374.	The existence of	of marsupials in Australia and	New Zealand prove	
	(a) Genetic dri	ft (b) Geological period	(c) Continental drift	(d) Both (b) and (c)
375.	Occurence of h	nigher number of endemic spe	cies in South America a	nd Australia is due to
	(a) Retrogressi	ve evolution	(b)Continental separ	ration
	(c) These speci	ies have become extinct from	other regions	
	(d) Absence of	terrestrial links between these	e places	
376.	The statement	"nothing in biology makes sen	nse except in the light of	f evolution" was given by
	(a) Dobzhansk	y (b) Darwin	(c) Oparin	(d) Hooker
377.	Darwin's finch	es provide evidence of evolut	ion from	
	(a) Anatomy	(b) Morphology	(c) Biogeography	(d) All the above
378.	Coevolution do	oes not occur in case of		
	(a) Parasitism	(b) Mutualism	(c) Both A and B	(d) Commensalism
379.	Presence of ve	stigial organs supports		
	(a) Natural sele	ection	(b) Germplasm theo	ry
	(c) Evolution b	out not Lamarck's theory	(d) Synthetic theory	
380.	De Vries theor	y of mutation is		
	(a) Opposed to	natural selection theory	(b) Not opposed to a	natural selection theory
	(c) Opposed to	germplasm theory	(d) Opposed to Lam	arck's theory
381.	Industrial mela	nism is an example of		
	(a) Drug resista	ance		
	(b) Darkening	of skin due to smoke from inc	lustries	
	(c) Protective 1	resemblance with the surround	dings	
	(d)Defensive a	daptation of skin against ultra	violet radiations	
382.	Light coloured to	Peppered Moth/Biston betule	aria gets changed to its	darker carbonaria variety due
	(a) Translocati	on of block of genes in respon	nse to heavy carbons	
	(b) Deletion of	gene segment due to industri	al pollution	
	(c) Mutation of	f single mendelian gene for sur	rvival in smoke laden Ind	dustrial environment
	(d) Industrial c	arbon deposited on wings		

383.	Some bacteria can gro	ow in streptomycin contai	ning medium due to			
	(a) Induced mutation	(b) Natural selection	(c) Reproductive isolat	tion (d)Mimicry		
384.	Concept of genetic dr	ift was introduced by				
	(a) Sewal Wright	(b) Hardy Weinberg	(c) Julian Huxley	(d) G.G. Simpon		
385.	Natural Selection the	ory of Darwin states that				
	(a) Environment does	not play any role in evolu	ution			
		ns arise through changes i		cies		
		acts on favourable variation				
		ed during the life of an inc		-		
286	_		-	ganisms. The phenomenon		
300.	is	be detection from enemies	by resembling other of	gamsms. The phenomenon		
	(a) Homology	(b) Mimicry	(c) Artificial selection	(d) Natural selection		
285	Genetic drift is found	•	(c) Thursday Selection	(a) Tratarar selection		
30/.		with or without mutated g	onos (b)I orga nonulatio	n with random mating		
		_		_		
	(c) Animal population		(d)Plant population	1		
388.		ue about gene mutations i	-	- 1. 1		
	(a) A mutation that is detrimental in one environment may prove to be beneficial in another environment					
		nly when needed by the sp	necies			
		on is not affected by low i				
		ays disadvantageous to th	•			
389.		idney since birth. This var	•			
J -J.	_	(b) Negative meristic	(c) Substantive	(d) Blastogenic		
390.		his "Theory of Continuity	` '	(1)		
	(a) 1986	(b) 1859	(c) 1863	(d) 1959		
391.	Hybrid breakdown is	· /				
	•	develop into offspring	(b) Hybrid adult to rep	roduce		
		sperms of two species	(d) None of the above			
392.	Evolutionary converg	gence is development of				
	(a) Common set of ch	naracters in group of differ	rent ancestry			
	(b) Dissimilar charact	ters in closely related grou	ıps			
	(c) Common set of ch	naracters in closely related	groups			
	(d) Development of c	haracters by random matin	ng			

393.	Match li	st-I with list	t-II and a	nswer the co	rrect o	ne from codes	s given bel	low in lists	
	List I		List II						
	A. A.l. (Oparin	I. phile	osophic Zool	ogique				
	B. Charl	es Darwin	II. Ori	gin of Life					
	C. Lama	rck	III. Spe	ecies Plantar	rum				
	D. Carl	Linnaeus	IV. Or	igin of Speci	es				
	A	В	C	D					
	(a) I	III	II	IV					
	(b) II	IV	I	III					
	(c) III	II	IV	I					
	(d) IV	I	III	II					
394.	struggle	for existen es of events	ce. Acco	rding to Date gin of new s	rwinis species	m, which of	the follow	survival of the fittes ving represents the co	
205	. ,					laws are excep		(u) +, 2, 3, 1	
395.	(a) Vola		•	guligrades		(c) Cursorial		(d) Fossorial	
206	` /			etularia was		•		(d) 1 055011a1	
390.		D. Kettlewe			схріаі	•	Vries	(d) Lederberg	
397.	Accordin	ng to Leder ce to streptor	berg's re mycin wl	plica experir	ollowin	_	ection if vld be most	we want to grow a consuitable	olony
				mycin		• •		e from streptomycin	
398.			_	•		_		ene modification relat	ted to
	(a) First	eta chain	(b) An	nino second	lpha chair	n (c)Second	β chain	(d) First α chain	
399.	period. young or	A single fe	male rep	roduces on a	an ave	rage 6 young	g ones du	0 and have large gestring its lifetime. If a the end of 750 years	ll the
	(a) Inher	ritance of ac	quired cl	naracters		(b) Mutation			
	(c) Part	of Darwin's	theory-o	ver-production	on	(d) Mendelia	n theory ir	nheritance	
400.	Adaptati	ons of anim	als is the	ir					
	(a) Shed	ding of skin	(b) Ge	netic trait		(c) Acquired	trait	(d) Metamorphosis	
401.		•			or ove	r lapping area		•	
	(a) Symp	_	es (b) All	opatric speci		(c) Sibling sp		(d) Polytypic species	3
	(a) Strug	ggle for exis	tence (b)	Variation		(c) Survival	of the fitte	st (d)Gene theory	

403.	What is the most imp	ortant factor for the succe	ss of animal population	
	(a) Natality	(b) Unlimited food	(c) Adaptability	(d) Interspecies activity
404.	Which of the followi	ng is related with reproduc	ctive isolation	
	(a) Genetic isolation	(b) Temporal isolation	(c) Behavioural isolation	on (d)All of these
405.	A species that contain	ns two or more sub-specie	s are called	
	(a) Sibling species	(b) Sub-species pool	(c) Polyptic species	(d) Biological races
406.	Sibling species are al	lso known as		
	(a) Sub-species	(b) Genus	(c) Subline species	(d) Biological races
407.	The ultimate source of	of continuous variations is		
	(a) Natural selection	(b) Sexual reproduction	(c) Hormonal action	(d) Mutations
408.	Multiplication of spe	cies is also known as		
	(a) Over production	(b) Speciation	(c) Sub-species	(d) Sibling species
409.	Species occurring in	different geographical are	a are called as	
	(a) Sibling	(b) Neopatric	(c) Sympatric	(d) Allopatric
410.	Possession of venom	in animals is an attribute	toAdaptation	
	(a) Fossorial	(b) Desert	(c) Arboreal	(d) Aquatic
411.	Role of isolation in e	volution is		
	(a) Differentiation of	species	(b) Maintenance of spe	ecies
	(c) Evolution of spec	ries	(d) Extermination of sp	pecies
412.	Humming birds and	Hawk illustrate		
	(a) Convergent evolu	tion (b)Homology	(c) Adaptive radiation	(d) Parallel evolution
413.	It is not a volant adap	otation		
	(a) Pneumatic bones	(b) Stream-lined body	(c) Fusion of certain bo	ones (d) Hygroscopic skin
414.	'Variations are the ra	nw material on which natu	ral selection operates' th	is concept was put forward
	by			
	(a) Bonnet	(b) Weismann	(c) Darwin	(d) Cuvier
415.	Frequency of a chara	cter increases when it is		
	(a) Recessive	(b) Dominant	(c) Inheritable	(d) Adaptable
416.	Environment elimina	ites		
	(a) Cells and tissues		(b) Non-advantageous	variations
	(c) Advantageous va	riations	(d) None of these	
417.	Closely related, modesignated as	orphologically similar re	productively isolated s	sympatric populations are
	(a) Clones	(b) Clines	(c) Demes	(d) Sibling species
418.	Mammals occur on la	and, air and water. It is		
	(a) Convergent evolu	ntion (b)Micro evolution	(c) Adaptation	(d) Adaptive radiation
419.	Speciation leads to			
	(a) Increase in number	er of species	(b) Decrease in number	r of species
	(c) Maintenance of n	umber of species	(d) All these results	

420.	Speciation in two adia	acent populations refers to	•	
4-01	(a) Sympatry	(b) Allopatry		(d) Parapatric speciation
421.	· / J I J	• •	• •	avour of hybridization was
4	given by	01 1001 0 01011	J 41.00 1.000 1.00 1.00 1.10 1.10 1.10 1.	avour or my errorement was
	(a) De Vries theory	(b) Darwin	(c) Dobzhansky	(d) Lamarck
422.	•		•	ing, flying and swimming.
-	This proves		1	
	_	(b) Genetic drift	(c) Adaptive converger	nce (d) Adaptive radiation
423.	Biological species con	ncept emphasizes on		•
	(a) Geographical isola		(b) Reproductive isolat	ion (c)Physiological isolation
424.		ve arisen in the evolutiona	•	
		(b) Mutation		(d) Adaptation
425.			• • •	which one of the following
4-3.	in organic evolution	i selection Theory are not	t sene ve in any 1916 of v	which one of the following
	(a) Discontinuous var	riations	(b) Parasites, predators	and natural enemies
	(c) Survival of the fit	test	(d) Struggle for existen	
426.	Development of patag	gia in animals is an		
		(b) Volant adaptation	(c) Aquatic adaptation	(d) Arboreal adaptation
427.	Role of isolation in ev	-	•	•
	(a) Differentiation of	species	(b) Maintenance of spe	cies
	(c) Evolutionary dive	rgence	(d) Extermination of sp	pecies
428.	A star fish with six ar	rms may be a case of		
	(a) Variation	(b) Evolution	(c) Autotomy	(d) Mutation
429.	Adaptation of a speci	es is its		
	(a) Ecdysis	(b) Metamorphosis	(c) Acquired character	(d) Hereditary character
430.	Animals living in co	lder region have shorter t	tail and ears as compare	ed to the animals living in
	warmer regions. This	phenomenon is called		
	(a) Bergman's law	(b) Glober's law	(c) Allen's law	(d) Jordan's law
431.	Allopatric speciation	is due to		
	(a) Mutation		(b) Geographical separa	ation of populations
	•	ber of species form one to		
	•	ween closely related specie	es	
432.	Sympatric speciation		() A 11	(1) I 1 ('
	(a) Polyploidy	(b) Hybridization	(c) Allopatric species	(d) Isolation
433.	(a) Isolation	from pre-existing species (b) Speciation		(d) Riogeography
42.4		(b) Speciation essful adaptations in case ((c) Polyplodiy	(d) Biogeography
434•	(a) Genetic divergence	•		(d) Mega-evolution
	(a) Sonotio di voi golic	(o)inition o volution	(e) mucio evolution	(a) moga o romanom

436. 437.	environment is called	ence(b)Adaptive radiation		in adaptation to a similar
436. 437.	(a) Adaptive converg Genetic species conce	ence(b)Adaptive radiation	on (c) Adaptive divergen	as (d) A domtive industion
436. 437.	Genetic species conce	• •		ce – (a) Adabiive induction
437.	•		() 1	(*)
437.		(b) Lotsy	(c) Ernst Mayer	(d) Linnaeus
	isolation refers to courtship behaviour	•	•	of different species in their
	(a) Ethological	(b) Mechanical	(c) Ecological	(d) Seasonal
438.	The diversity in the t	ype of beaks of finches	adapted to different feed	ing habits on the Galapagos
	lslands, as observed b	y Darwin, provides evid	ence for	
	(a) Origin of species	by natural selection	(b) Intraspecific variat	ions
	(c) Interspecific varia	tions	(d) Interspecific comp	etition
439.	Evolution of new spe	cies (speciation) occurs	when different population	ns of same species
	(a) Are geographicall	y separated	(b) Are reproductively	isolated
	(c) Some populations	become extinct	(d) Populations spread	I far and wide
		HUMAN	EVOLUTION	
Basic	: Level			
440.	Common origin of ma	an and chimpanzee is be	st shown by	
	(a) Dental formula	(b) Cranial capacity	(c) Binocular vision	(d) Chromosome number
		possible because our ape	like ancestors had	. ,
	_	(b) Binocular vision		(d) Large cranial cavity
	_	owing statements is corr	•	•
	(a) <i>Homo erectus</i> is the			
		s fossil has been found in	n Ethiopia	
	_	is the real ancestor of mo	-	
	-	is the direct ancestor of I		
	Neanderthal man live		zomo suprems	
	(a) Desert	(b) Deep forest	(c) Mountains	(d) Cave
	In human evolution w	_	(b) 1/10 u 111 u 1115	(4) 6476
	(a) Middle Paleolithic		c (c) Neolithic	(d) Mesolithic
		f modern day man is con	` '	(d) Mesontine
		•		(d) Cibbon
	(a) Chimpanzee	(b) Orangutan	(c) Apes	(d) Gibbon
		owing is direct ancestor		/ 1\ Y Y
	(a) Australopithecus	•	(c) Homo erectus	(d) Homo habilis
		first exhibited bipedal g	gait	
	(a) Australopithecus	(b) Cro-Magnon man	(c) Java ape man	(d) Peking man
448.	Which primitive man	resembles with modern	man	
	(a) Peking man	(b) African man	(c) Java ape man	(d) Cro-magnon man

449.	Earliest evidences of	social life are attributed to	1	
	(a) Cro-Magnon man	(b) Neanderthal man	(c) Peking man	(d) Java man
450.	Geological evidence	for most primitive mamma	al is found in	
	(a) Central Africa	(b) China	(c) India (Shivalik hills	a)(d) Australia
451.	Evolution of man too	k place in		
	(a) Central Africa	(b) Central Asia	(c) Australia	(d) America
452.	First evidences of cer	remonial burial of dead have	ve been found with fossi	ls of
	(a) Cro-magnon man	(b) Java ape man	(c) Neanderthal man	(d) Peking man
453.	Neanderthal man was	followed by		
	(a) Cro-Magnon man neanderthalaeie	(b) Homo sapiens sapiens	s(c) Homo erectus	(d) Homo
454.	In Homo habilis, 'hal	bilis' refers to		
	(a) Wandering specie	es(b) Ancient man	(c) Modern man	(d) Tool maker
455.	Which of the following	ng stood erect first		
	(a) Java man	(b) Peking man	(c) Australopithecus	(d) Cro-Magnon man
456.	The modern man evo	lved		
	(a) 10,000 years ago	(b) 25, 000 years ago	(c) 2,50,000 years ago	(d) 5,00,000 years ago
457.	Who first discovered	fossils of 'Ramapithecus'		
	(a) Dubois	(b) R. Dart	(c) G.E. Lewis	(d) J.K. Fuhlort
458.	There are how many	total races of man		
	(a) 6	(b) 4	(c) 8	(d) 16
459.	The most recent and o	direct prehistoric ancestor	of present man is	
	(a) Cro-Magnon	(b) Pre Neanderthal	(c) Neanderthal	(d) None of the above
460.	Which of the following	ng was expect in making to	ools, weapons, paintings	etc. O
	Who drew excellent j arrows etc.	pictures of animals in cave	es, made tools, carved o	rnaments from ivory stone
	(a) Java ape man	(b) Peking man	(c) Cro-Magnon man	(d) Rhodesian man
461.	By the discovery of be to predict	panding pattern in chromo	some technique of goril	la and man, what was easy
	(a) Showed the evolu	tionary trend	(b) Had almost similar	structures
	(c) Had same gene po	ool	(d) Common origin of a	ancestor
462.	Oldest tool maker is			
	(a) African man	(b) Java man	(c) Proconsul	(d) China man
463.	Which of the following	ng fossil men had religious	s feelings of worship and	l used burial customs
	(a) Neanderthal man	(b) Peking men	(c) Java men	(d) African ape men
464.	Island (continent) wh	ere largest number of hum	an fossils have been dis-	covered
	(a) Europe	(b) Africa	(c) America	(d) Asia

465.	Palaeolithie evidence	s of coloured rock painting	ig was of						
	(a) Neanderthal man	(b) Cro-Magnon man	(c) Java ape man	(d) Peking man					
466.	Bipedal locomotion i	s advantages because it							
	(a) Releases fore limb	os to performs the importa	ant functions						
	(b) Increases the spee	ed							
	(c) Reduces body we	ight	(d) Provides better support to the body						
467.	Which of the fossil m	nan is most recent							
	(a) Cro-Magnon	(b) Neanderthal	(c) Zinjanthropus	(d) Sinanthropus					
468.	The cranial capacity	of Java ape man was abou	ıt						
	(a) 560 <i>c.c</i> .	(b) 900 <i>c.c</i> .	(c) 1,300 <i>c.c</i> .	(d) 1,000 <i>c.c</i> .					
469.	Australopithecus had	a cranial capacity							
	(a) 800 <i>c.c.</i>	(b) 500 <i>c.c</i> .	(c) 600 <i>c.c</i> .	(d) 700 c.c.					
470.	The lowest capacity of	of cranium was found in the	he						
	(a) Neanderthal man	(b) Australopithecus	(c) Cro-Magnon man	(d) Java man					
471.	Branch of science des	aling with the study of cul	ltural evolution of manki	nd is					
	(a) Archaeology	(b) Anthropology							
472.	In the evolution from	om Homo erectus to Ho	omo sapiens, one of th	e following has played a					
	significant role								
	(a) Binocular vision		(b) Cultural evolution						
	(c) Evolution of expr	ession	(d) Evolution of brain						
473.	Which of the following	ng is true for 'Homo sapie	ens'						
	(a) Protruded mouth	(b) Cranial capacity of 1	450 c.c.						
	(c) Omnivorous	(d) Developed chin							
474.	The earliest fossil of	human ancestors from Inc	lia is						
	(a) Australopithecus	(b) Ramapithecus	(c) Oreopithecus	(d) None of these					
475.	'Homo erectus' is the	e zoological name of							
	(a) Cro-Magnon man	(b) Peking man	(c) Nut cracker man	(d) Neanderthal man					
476.	Which has played an	important and significant	t role in the evolution of human						
	(a) Banding pattern		(b) Communicable lang	guage					
	(c) Cultural evolution	1	(d) Decrease in one par	ir of chromosome					
477.	The specific characte	ers of human are							
	(a) Intelligence	(b) Erect body	(c) Sensibility	(d) All of the above					
478.	The ancestors of ape	and human both are							
	(a) Australopithecus	(b) Dryopithecus	(c) Homo habilis	(d) Ramapithecus					
479.	Name of Pie is associ	ated with							
	(a) Java man	(b) Cro-Magnon man	(c) Peking man	(d) Ape man					
480.	Biological name of the	ne Java man is							
	(a) Homo erectus	(b) Homo sapiens							
	(a) Heme creems	(6) 110.110 supre.115							

481.	Cranial capacity of m	nodern man is		
	(a) $350-400 \text{ cm}^3$	(b) $500-1000 \ cm^3$	(c) $1350-1700 \text{ cm}^3$	(d) $1350-1500 cm^3$
482.	Cranial capacity of N	Veanderthal man is		
	(a) $1350-1500 \text{ cm}^3$	(b) $1400-1450 \text{ cm}^3$	(c) $915-1250 \text{ cm}^3$	(d) $750-900 \text{ cm}^3$
483.	Who succeeded the years ago	Neanderthal man about	50,000 years ago and be	ecame extinct about 20,000
	(a) Atlantic man	(b) Homo habilis	(c) Cro-Magnon man	(d) Homo erectus
484.	The fossils of Cro-M	agnon were found in		
	(a) Algeria-In ternific	ne deposits	(b) Germany-In avines	S
	(c) France-Rock shel	ters	(d) Africa-Olduvi	
485.	Cranial capacity of C	Cro-Magnon was		
	(a) 1600 <i>c.c</i> .	(b) 1350 <i>c.c</i> .	(c) 1075 <i>c.c</i> .	(d) 1450 <i>c.c</i> .
486.	The recent ancestors	of modern man were		
	(a) Java ape man and	l Peking man	(b) Peking man and Rh	nodesian man
	(c) Rhodesian man a	nd Cro-Magnon man	(d) Cro-Magnon man a	and Neanderthal man
487.	The theory of evolution	on indicates that		
	(a) Man evolved from	n monkeys	(b) Monkey evolved fr	om man
	(c) Man evolved from	n dinosaurs	(d) Man and apes had	a common ancestors
488.	Which amongst the f	following is nearest to mo	dern man	
	(a) Java Ape man	(b) Australopithecus	(c) Neanderthal Man	(d) Homo habilus
489.	Man (Homo) originat	ted in		
	(a) Palaeocene	(b) Miocene	(c) Oligocene	(d) Pleistocene
490.	Which is the most pr	imitive ancestor of man		
	(a) Ramapithecus neanderthalensis	(b) Australopithecus	(c) Homo habilus	(d) Homo
491.	Peking Man was kno	wn as		
	(a) Australopithecus	(b) Pithecanthropus	(c) Homo sapiens	(d) Sinanthropus
492.	Which of the followi	ng is closest relative of m	nan	
	(a) Sinanthropus	(b) OrangUtan	(c) Gorilla	(d) Gibbon
493.	Cranial capacity is m	inimum in		
	(a) Chimpanzee	(b) Gorilla	(c) Rhesus monkey	(d) Orangutan
494.	The closest primate t	o humans is		
	(a) Gorilla	(b) Orangutan	(c) Lemur	(d) Rhesus monkey
495.	Modern Man differs	from apes in		
	(a) Protruding eyes	(b) Sparse body hair	(c) Arms shorter than 1	legs (d) Wearing of clothe
496.	Proconsuls are ances	tors of		
	(a) Apes only	(b) Man only	(c) Both A and B	(d) All primates

497.	Homo erectus erectus	s is scientific name of									
	(a) Java Ape Man	(b) Peking Man	(c) Cro-Magnon Man	(d) Neanderthal Man							
498.	Hominids originated	during									
	(a) Pliocene	(b) Palaeocene	(c) Miocene	(d) Oligocene							
499.	Evolution of man was	s possible perhaps becau	use our ape-like ancestors								
	(a) Had no food prob	lems	(b)Adopted group hunting								
	(c) Used fire		(d)Adopted bipedal locom	otion upon open ground							
500.	Name given to the fo	ssil hominid of Shivalik	Hills in India								
	(a) Ramapithecus	(b) Australopithecus	(c) Pithecanthropus	(d) Sinathropus							
501.	Characteristic which	was not in the direction	of evolution of man is								
	(a) Binocular vision	(b) Browridges	(c) Shortening of jaws	(d) Prehensile tail							
502.	The first probable fos	ssil man (<i>Homo</i>) was									
	(a) Australopithecus	(b) Pithecanthropus	(c) Homo habilis	(d) Ramapithecus							
503.	Neanderthal man										
	(a) Resembled modern man										
	(b)Often had a somewhat larger brain than modern man										
	(c) Was culturally mo	ore advanced than mode	rn man								
	(d) Had a much small	ler brain than that of mo	dern man								
504.	Which of the following	ng word is related to Ho	omo sapiens								
	(a) Herbivorous	(b) Carnivorous	(c) Autotroph	(d) Omnivorous							
505.	The main diet of Autr	ralopithecus was									
	(a) Banana	(b) Apple	(c) Rice	(d) Meat and vegetables							
506.	Speech developed in										
	(a) Java man	(b) Neanderthal man	(c) Cro-Magnon man	(d) None of these							
507.	Homo sapiens is incl	uded under the order									
	(a) Primates	(b) Rodents	(c) Carnivora	(d) Ungulata							
508.	Which of these presu that of today's man	imably possessed a crar	nial capacity almost equal	to or even a bit larger than							
	(a) Peking man	(b) Australopithecus	(c) Java ape man	(d) None of these							
509.	Study of human race	is called									
	(a) Eugenics	(b) Entomology	(c) Ecology	(d) Pathology							
510.	Primates originated a	bout									
	(a) 100 million years	ago (b)65 million years	ago								
	(c)10 million years ag	go (d)30 million years	ago								
511.	Peking man (Homo e	rectus pekinensis) was									
	(a) 1.2 to 1.5 meters to	tall (b)1.65 to 1.75 met	ers tall								
	(c)1.55 to 1.65 meter	s tall(d)None of the abo	ve								

512.	During evolution of man many changes have to the following an unsignificant change	aken place in his ancestral characters. Which one of
	(a) Change of diet from hard tough fruits and re	oots into soft food
	(b) Qualitative improvement in the structure of	hand skills for making tools
	(c) Disappearance of tail	
	(d) Improvement in speech for communication	and social behaviour
513.	Which one of the following statements is corre	ct regarding evolution of mankind
	(a) Neanderthal man and Cro-Magnon man we	re living at the same time
	(b) Australopithecus was living in Australia	
	(c) Homo erectus is preceded by Homo habilis	
	(d) None of these	
514.	The earliest site where human civilization and	crop cultivation started was presumably
	(a) Around Caspian and Mediterranean seas	(b) Around river Nile
	(c) Chinese river valley	(d) All of these
515.	Modern palaeontologists have renamed Java m	an as
	(a) Homo habilis	(b) Homo erectus modjokertensis
	(c) Homo erectus mauritianicus	(d) Homo sapiens
516.	Which one of the following sets represents the	correct sequence of the evolution of man
	(a) Kenyapithecus-Australopithecus-Homo-hal	pilis-Pithecanthropus-Homo sapiens
	(b) Kenyapithecus-Australopithecus-Pithecanth	hropus-Homo habilis-Homo sapiens
	(c) Australopithecus-Kenyapithecus-Homo hab	ilis-Pithecanthropus-Homo sapiens
	(d) Pithecanthropus-Australopithecus-Kenyapi	thecus-Homo habilis-Homo sapiens
517.	In recent years, DNA sequences (nucleotide considered for the study of human evolution, b	sequence) of <i>mt</i> -DNA and <i>Y</i> chromosomes were ecause
	(a) The can be studied from the samples of foss	sil remains
	(b) They are small, and therefore, easy to study	,
	(c) They are uniparental in origin and do not ta	ke part in recombination
	(d) Their structure is known in greater detail	
518.	Correct sequence of stages in the evolution of t	he modern man. (Homo sapiens), is
	(a) Neanderthal man, Australopithecus, Cro- magnon modern man	magnon, Homo erectus, Neanderthal man, Cro-
	(b) Australopithecus, Homo erecuts, Neanderth	nal man, Cro-magnon man, modern man
	(c) Homo erectus, Australopithecus, Neanderth	nal man, Cro-magnon man, modern man
	(d) Australopithecus, Neanderthal man, Cro-m	agnon man, Homo erectus, modern man
519.	Which of the following was the transitional sta	ge between apes and humans
	(a) Homo habilis	(b) Homo erectus
	(c) Australopithecus ramidus	(d) Australopithecus africanus

520.	Which one of the follo	owing character different	tiate man from other man	nmals
	(a) Superior intelligen	ace (b)Power of speech		
	(c) Social life	(d)Greater cranial ca	apacity	
521.	Which of the following	ig is the correct order or	evolutionary history of m	an
	(a) Peking man, heide	l berg man, neanderthal	, cro-magnon	
	(b) Peking man, home	osapiens, cro-magnon, ne	eanderthal	
	(c) Peking man, nean	derthal, homosapiens, he	eidelberg	
	(d) Peking man, cro-n	nagnon, homosapiens, ne	eanderthal	
522.	Homo sapiens origina	ted how many years ago		
	(a) About $1\frac{1}{2}$ lakh yea	rs ago	(b)About 2 lakh years a	ago
	(c) About $2\frac{1}{2}$ lakh year	rs ago	(d) About 3 lakh years	ago
523.	Which of the following	g has the lowest cranial	capacity	
	(a) Gorilla	(b) Chimpanzee	(c) Modern man	(d) Java ape man
524.	Most primitive living eographical distribut		rovide an evidence of	organic evolution from
	(a) China	(b) India	(c) Australia	(d) Africa
525.	The first probable fos	sil of man is		
	(a) Australopithecus	(b) Zizenthropus	(c) Pithecanthropus	(d) Pleasianthropus
526.	Dubois in 1891 found	the fossil of Java ape m	an It is	
	(a) Sinanthropus peki	nensis	(b) Homo erectus	(c) Homo rhodesiensis (d)
527.	Simian shelf is a chara	acteristic of apes, which	connects the	
	(a) Limbs with girdle		(b) Brain	
	(c) Posterior part of th	ne mandibles	(d) Anterior part of the	mandibles
528.	Dart in 1925 found th	e skull of a body whom l	he named	
	(a) Neanderthal man	(b) Australopithecus	(c) Zinzanthropus	(d) Parapithecus
529.	Oligopithecus possess	sed		
	(a) 36 teeth	(b) 34 teeth	(c) 32 teeth	(d) 20 teeth
530.	Which primitive man	lived on earth at the end	of pleistocene era	
	(a) Australopithecus	(b) Zinzanthropus	(c) Neanderthal man	(d) Atlantic man
531.	Pithecanthropus erect	tus fossil was found in		
	(a) China	(b) Japan	(c) Java	(d) Texas
532.	When the entire sole i	ests on the ground durin	g walking as in case of a	man, it is known as
	(a) Plantigrade	(b) Digitigrade	(c) Perikaryon	(d) Hallux
533.	Arched palate uniforn	ned sized teeth were four	nd in which of the following	ing ancestor
	(a) Limmopithicus	(b) Kenyapithicus	(c) Ramapithecus	(d) Oriopithicus

534.	Java ape man is consi	dered to have existed in										
	(a) Java only	(b) China only										
	(c) Africa only	(d) Java, China and Afric	ca									
535.	Cro-Magnon man wa											
	(a) Herbivorous	(b) Frugivorous	(c) Sanguivorous	(d) Carnivorous								
536.	The prehistoric ances	or of man which existed during late pleistocene, is										
	(a) Australopithecus	(b) Zinjanthropus	(c) Neanderthal man	(d) Atlantic man								
537.	Neanderthal man diffe	ers from modern man in										
	(a) Receding jaws		(b) Protruding jaws									
	(c) Could make good	tools	(d) Could make good p	oictures								
538.	Evolution of man is p	ossible because our apelik	ke ancestors has									
	(a) Migratory instinct	(b) Developed brain	(c) Binocular vision	(d) Large cranial capacity								
539.	"In different races, the same". It was the opin	·	culture and ways of liv	ving but capacity in all the								
	(a) Darwin	(b) Wallace	(c) Lamarck	(d) Shapiro								
540.	Which one is related	to the cultural evolution of	f human									
	(a) Binocular vision		(b) Evolution of expres	ssion								
	(c)Development of ha	ands	(d) Development of car	nines								
541.	Fore runners of 'Hom	ninids' are										
	(a) Java ape man and	Peking man	(b) Neanderthal and Ra	amapithecus								
	(c) Ramapithecus and	l Peking man	(d) Ramapithecus and	Sivapithecus								
542.	Which one of the foll	owing is highly evolved										
	(a) Homo habilis	(b) Homo erectus	(c) Ramapithecus	(d) Australopithecus								
543.	Which one of the foll	owing ape is not seen in n	nodern period									
	(a) Java ape man	(b) Gibbon	(c) Orangutan	(d) Gorilla								
544.	The ancestors of ape	and man began to evolve i	in									
	(a) 10 to 15 million ye	ears ago	(b) 15 to 20 million yes	ars ago								
	(c) 25 to 30 million ye	ears ago	(d) 20 to 25 million yes	ars ago								
545.	Which of the following	ng was not in the direction	of evolution of human	species								
	(a) Raised orbital ridg	ges (b)Binocular vision	(c) Developed brain	(d) Opposable thumb								
546.	Fire was first used for	r protection and cooking b	y									
	(a) Java man	(b) Neanderthal man	(c) Peking man	(d) Cro-Magnon man								
547.	Which of the primate	is the closest relative of n	nan									
	(a) Orangutan	(b) Gorilla	(c) Sinanthropus	(d) Gibbon								

548.	What is the correct ch	nronological sequence of h	uman evolution									
	(a) Ramapithecus \rightarrow	Australopithecus $\rightarrow Home$	$oerectus \rightarrow Neanderthal$	\rightarrow Homo sapiens sapiens								
	(b) Ramapithecus →	$Homo\ habilis ightarrow Homo\ sagarage$	piens sapiens \rightarrow Homo	erectus								
	(c) Australopithecus	\rightarrow Ramapithecus \rightarrow <i>Homo</i>	habilis \rightarrow Homo sapie	ns sapiens								
	(d) Homo habilis \rightarrow A	Australopithecus $\rightarrow Homo$	erectus → Homo sapier	ıs sapiens								
549.	Which primitive man	used stones to produce fir	e									
	(a) Java ape man	(b) Neanderthal man	(c) Cro-Magnon man	(d) All the above								
550.	The fossils of Sinanth	aropus pekinensis have bee	en discovered in which e	poch								
	(a) Pleistocene	(b) Pliocene	(c) Eocene	(d) Palaeocene								
551.	Largest cranial capaci	ial capacity was found in										
	(a) Neanderthal man	(b) Cro-Magnon man	(c) Java ape man	(d) Peking man								
552.	Receeding fore head,	prominent eye brow ridge	, heavy jaws and almost	no chin was found in								
	(a) Java man	(b) Peking man	(c) Homo habilis	(d) Australopithecus								
553.	Thick skull, cranial copresent in	apacity about 1075 c.c. lo	w fore head, absence of	chin and large canine were								
	(a) Java man	(b) Peking man	(c) Homo habilis	(d) Australopithecus								
554.	Low and slopping for present in	re head, skull with thick	bones, deep lower jaw	and absence of chin were								
	(a) Java man	(b) Neanderthal man	(c) Cro-Magnon man	(d) Homo habilis								
555.	Cradle of human evol	lution is										
	(a) Grassland of Sout	h Africa	(b) Savannah of Centra	l Africa								
	(c) Subarctic Europe		(d) Arabia									
556.	Dryopithecus occurre	ed about										
	(a) 2.5×10^6 years ba	ck (b) 25×10^6 years back	k (c) 50×10^6 years ba	ack (d) 75×10^6 years back								
557.	Prosimian found only	on the island of Madagas	car is									
	(a) Galagos	(b) Loris	(c) Lemur	(d) Bush Baby								
558.	Which one is connect	ed with human evolution										
	(a) Binocular vision	(b) Flat nails	(c) Loss of tail	(d) Shortening of jaws								
559.	Apes shareblood	d groups with man										
	(a) A, B, AB	(b) A, B, O	(c) AB, O	(d) A and B only								
560.	Solo man belongs to											
	(a) Java only	(b) Africa	(c) China	(d) China and Africa								
561.	Dryopithecus had wh	ich of the following charac	cteristics									
	(a) Broadened jaws	(b) Semierect gait	(c) Large canines	(d) All of these								

	(a) Zambia	·	y Leaky <i>et al.</i> (1964) in (c) Australia	(d) Tonzonio			
	` '	(b) Europe		(d) Tanzania			
563.	One of the following	event was favourable du	ring evolution of man				
	(a) Loss of chin	(b) Receeding jaws	(c) Raised orbitals	(d) Binocular vision			
564.	Fossils of neandertha	were first obtained from	n Neander valley in				
	(a) Germany	(b) Italy	(c) America	(d) France			
565.	Which of the following	ng monkey has prehensile	e tail				
	(a) Loris	(b) Tarsiers	(c) Spider monkey	(d) Rhesus monkey			
566.	The first domesticate	d animal by primitive ma					
	(a) Dog	(b) Horse	(c) Cat	(d) Cow			
567.	Neanderthal man was	replaced by which of the	e man in Europe				
	(a) Cro-magnon man	(b) Homo sapiens sapie	ns(c) Rhesus monkey	(d) New World monkey			
568.	The scientific name of	f Indian ape is					
	(a) Presbytis	(b) Macaca	(c) Hylobates	(d) Gorilla			
569.	Immortality of soul h	ypothesis has given rise t	to the discovery of				
	(a) Heidelberg man	(b) Ternifier man	(c) Neanderthal man	(d) Homo sapiens			

ANSWER

ASSIGNMENT (BASIC & ADVANCE LEVEL)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
c	С	b	a	b	b	b	b	d	b	d	c	d	a	a	a	a	d	b	c
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	c	d	a	a	b	b	b	a	c	c	a	d	c	c	b	b	d	c	c
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
a	b	c	a	c	d	b	c	a	b	a	a	a	a	a	b	d	a	c	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
a	a	c	b	d	b	b	b	a	d	c	b	d	a	c	a	a	a	d	d
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
c	a	a	c	c	b	d	b	d	b	c	c	c	b	c	a	a	b	b	d
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
a	d	d	c	a	a	c	b	b	a	b	c	d	b	b	c	b	c	b	d
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
c	d	b	b	c	d	d	b	a	a	d	d	b	b	a	a	b	c	b	c
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
a	b	a	b	d	c	b	С	c	a	c	c	b	c	a	a	a	a	d	d
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
a	b	a	d	c	a	a	b	b	c	c	b	c	b	b	a	b	c	d	a
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
b	a	b	a	b	b	c	b	d	b	b	c	a	b	d	d	b	d	b	c
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
a	c	a	d	c	c	a	d	a	a	a	a	c	c	b	a	c	a	d	d
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
c	b	a	a	b	b	a	С	c	c	a	b	c	c	c	a	b	b	d	a
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
b	С	d	a	b	c	С	b	a	С	С	c	b	С	a	b	С	d	a	c
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
c	a	b	a	c	b	b	С	b	b	c	c	d	c	c	b	c	c	a	a
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
a	b	c	b	d	c	d	d	d	d	b	d	d	d	d	d	a	a	c	a
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
a	d	a	d	d	a	d	a	b	d	a	c	b	a	d	c	d	b	d	c
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
c	b	d	d	d	b	c	b	d	c	b	b	d	b	d	b	a	a	b	b
341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360

d	d	c	c	d	c	d	b	b	d	b	d	c	c	a	b	d	c	c	c
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380
d	b	d	a	a	a	b	a	b	d	b	c	a	d	b	a	c	d	c	b
381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400
c	c	b	a	c	b	a	a	b	a	b	a	b	d	d	a	c	c	c	c
401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420
a	b	c	d	c	d	b	b	d	b	c	c	d	c	d	b	d	d	d	d
421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440
c	d	b	d	a	b	c	a	d	a	b	d	b	c	a	b	a	b	b	d
441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460
a	d	d	c	c	c	a	d	b	a	a	c	a	d	c	b	c	b	a	c
461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480
b	b	a	b	b	a	a	b	b	b	b	d	c	b	b	c	d	b	c	a
481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500
d	b	c	c	a	d	d	c	d	b	d	a	c	a	c	c	a	a	d	a
501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520
d	c	b	d	d	b	a	d	a	b	c	c	c	a	b	a	c	b	c	d
521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540
a	a	b	a	С	b	d	b	С	С	c	a	c	d	d	С	b	d	b	b
541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560
d	b	a	С	a	a	c	a	a	a	b	a	b	b	b	b	c	d	d	a
561	562	563	564	565	566	567	568	569											
b	d	b	a	С	a	a	С	С											