
Friction
Definitions
 1. Static friction: It is the friction between two bodies 

which is a tangential force and which opposes the 
sliding of one body relative to the other. 

 2. Limiting friction: It is the maximum value of the 
static friction that occurs when motion is impending.

 3. Kinetic friction: It is the tangential force between 
two bodies after motion begins. Its value is less than 
the corresponding static friction.

 4. Angle of friction: It is the angle between the action 
line of the total reaction of one body on another and 
the normal to the common tangent between the bodies 
when motion is impending.

   It is also defined as the angle made by the resultant 
(S) of the normal reaction (R) and the limiting force of 
friction (F) with the normal reaction R (see the figure 
given below). It is denoted by f. From the figure, we 
have:
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 5. Coefficient of static friction
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  It is defined as the ratio of the limiting force of 
friction (F) to the normal reaction (R) between two 
bodies (see above figure, where a solid body rests on 
a horizontal plane). It is denoted by m. 

m = =
Limiting force of friction

Normal reaction

F

R

\ =F mR

Friction, Centre of Gravity, 
Moment of Inertia
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 7. Angle of repose

R
S

F
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  The above figure shows a block of weight W on 
a rough and plane inclined at an angle a with the 
horizontal. Let R be the normal reaction and F be 
the force of friction. From applying the condition 
of equilibrium, algebraic sum of the forces resolved 
along the plane:

    = =W Fsin a  (1)

  Algebraic sum of the forces resolved perpendicular to 
the plane:

    = =W R cos a  (2)

  From equations (1) and (2)
tan a F

R
  But tan f =

F

R

\ = Angle of plane Angle of friction

  Suppose the angle of the plane a is increased to a 
value f, so that the block is at the point of sliding 
or the state of impending motion occurs, then at this 
angle,

m = tan l = tan a  \ l = a
  Hence, the angle of repose is defined as the angle 

to which an inclined plane may be raised before an 
object resting on it will move under the action of the 
force of gravity and the reaction of the plane.

   Hence, angle of repose = angle of plane

Laws of Friction
First law: Friction always opposes motion and comes into 
play only when a body is urged to move. Frictional force 
will always act in a direction opposite to that in which the 
body tends to move.

Second law: The magnitude of the frictional force is just 
sufficient to prevent the body from moving. That is, only 
as much resistance as required to prevent motion will be 
offered as friction.

Third law: The limiting frictional force or resistance bears 
a constant ratio with the normal reaction. This ratio depends 
on the nature of the surfaces in contact. The limiting fric-
tional resistance is independent of the area of contact.

Fourth law: When motion takes place as one body slides 
over the other, the magnitude of the frictional force or 
resistance will be slightly less than the offered force at that 
condition of limiting equilibrium. The magnitude of the 
frictional force will depend only on the nature of the slid-
ing surfaces and independent of the shape or extent of the 
contact surfaces.

Force Determinations for Different Scenarios
Least force required to drag a body on a rough horizon-
tal plane:

W P

R

qF = μR

Force P is applied, at an angle q  to the horizontal, on a block 
of weight W such that the motion impends or the block tends 
to move.

Force, P
W

=
-

sin

cos ( )

a
q f

Least force required, Pleast = W sin f

Force  acting on a block (weight = ) along a rough 
inclined plane:

W P

R

F = μR

a

Motion
direction

For motion down the plane, P
W

=
-sin( )

cos

a f
f

For motion up the plane, P
W

=
+sin ( )

cos

a f
f

Force  acting horizontally on a block (weight = ) resting on 
a rough inclined plane:

For motion down the plane, P = W tan (a  - f)
For motion up the plane, P = W tan (a  + f)

W

R

P

F = μR

a

Motion
direction
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Force  acting, at an angle q to the plane, on a block 
(weight = ) resting on a rough inclined plane:

P

R

W

F = mR

a

q

Motion
direction

sin( )

cos( )
For motion down the plane, P

W
=

-
+

a f
q f

For motion up the plane, P
W

=
+

-
sin( )

cos( )

a f
q f

Cone of Friction

f f
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Let OR represent the normal reaction offered by a surface on 
a body and let the direction of impending motion be along 
OA while the direction in which the frictional force acts is 
in the opposite direction, i.e., along OB. Assuming that the 
body is in a state of limiting equilibrium, the resultant reac-
tion S makes an angle of f with the normal OR. If the body 
slides in any other direction, the resultant reaction S will 
still make the same angle f with the normal. It is, therefore, 
seen that when limiting equilibrium is maintained, then 
the line of action of the resultant reaction should always 
lie on the surface of an inverted right circular cone; whose 
semi-vertical angle is f. This cone is known as the cone of 
friction.

Solved Examples

Example 1: Determine whether the 2 kN block, shown in 
the figure, will be held in equilibrium by a horizontal force 
of 3 kN? The coefficient of static friction is 0.3.

3 kN

W = 2 kN
30°

(A) 0.96 kN (B) 0.86 kN
(C) 0.75 kN (D) 0.65 kN

Solution:

3 kN

2 kN

Applying the conditions of equilibrium and summing the 
force parallel and perpendicular to the plane, we have:

Σ F(parallel to the plane) = 0
= -F - 2 sin 30° + 3 cos 30° = 0

F = - × + ×2
1

2
3 0 866.

    = -1 + 2.598 = 1.598 kN
Σ F(perpendicular to the plane) = 0

R - 2 cos 30° - 3 sin 30° = 0
R = 2 × 0.866 + 3 × 0.5 = 1.732 + 1.5
 = 3.232 kN

This indicates that the value of F necessary to hold the 
block from moving up the plane is 1.598 kN. However, the 
maximum value obtainable as the frictional force, 

F = mR = 0.3 × 3.232 = 0.9696 kN

This means that the block will move up the plane.

Example 2: An effort of 2 kN is required just to move a 
certain body up an inclined plane of angle 15°, the force 
acting parallel to the plane. If the angle of inclination of the 
plane is made 20°, the effort required, again applied parallel 
to the plane, is found to be 2.3 kN. Find the weight of the 
body and the coefficient of friction.
(A) 3.9 kN, 0.258  (B) 4.5 kN, 0.26
(C) 3.8 kN, 0.24   (D) 3.8 kN, 0.268

Solution:
Let W be the weight of the body, m be the coefficient of fric-
tion and P be the effort when the inclination of the plane is a.

Applying the conditions of equilibrium and summing the 
forces parallel and perpendicular to the plane, we have,

Σ F(parallel to the plane) = 0
  P - mR - W sin a = 0 (1)
Σ F(perpendicular to the plane) = 0
      R - W cos a = 0 (2)
Eliminating R from equations (1) and (2) we have, 

P = m W cos a + W sin a or
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  P = W (m cos a + sin a) (3)

When a = 15°, P = 2 kN and when a = 20°, P = 2.3 kN. 
Substituting in equation (3) we have,

   2 = W(m cos a + sin a)
   2 = W(m cos 15° + sin 15°) (4)
2.3 = W(m cos 20° + sin 20°) (5)

Dividing equation (5) by (4), we have, 

2

2 3

15 15

20 20.

cos sin

cos sin
=

° + °
° + °

m
m

   
2

2 3

0 966 0 258

0 939 0 342.

. .

. .
=

× +
× +

m
m

 or

m[(2.3 × 0.969) - (2 × 0.939)]

= × - ×[( . ) ( . . )]2 0 342 2 3 0 258

or 0.3507 m = 0.0906

m = =
0 0906

0 3507
0 258

.

.
.

From equation (5),

2.3 = W [0.258 × 0.939 + 0.342]
      = W (0.242 + 0.342) = 0.584W

 
W = =

2 3

0 584
3 938

.

.
. kN

Virtual Work
Virtual displacement: Virtual displacement is defined 
as an infinitesimal (exceedingly small) and displacement, 
given hypothetically to a particle or to a body or a system 
of bodies in equilibrium consistent with the constraints. The 
displacement is only imagined and it does not have to take 
place for which it is called virtual displacement.

Virtual work: Virtual work is defined as the work done, 
by a force on a body due to a small virtual (i.e., imaginary) 
displacement of the body.

Principle of  Virtual Work
If a system of forces acting on a body or a system of bodies 
be in equilibrium and if the system be assumed to undergo 
a small displacement consistent with the geometrical condi-
tions, then the algebraic sum of the virtual work done by the 
forces of the system is zero.

y

B

A

F

k

r
r

h
C

A ′

y

x

x x

 

q

a

To illustrate the principle of work, let us consider a body 
at equilibrium at a point A. A force F acts on the body and 
displaces it to the point A′, where the displacement consists 
of the following:

 1. A very small rotation through the angle a about the 
origin of the rectangular 2-D coordinate system, say 
origin O in the xy plane.

 2. A very small displacement h along the x-axis, and, 
 3. A very small displacement k along the y-axis.

If the components of the force F along the x-axis and 
y-axis are Fx and Fy respectively, then  work done by the 
force F when its point of application is displaced from point 
A to A′

= + + -hFx kFy xFy yFxa( )

If a system of forces act on the body where h, k and a are 
the same for every force, then work done by all the forces:

= ∑ + ∑ + -∑h Fx k Fy xFy yFxa ( ),

Where, ∑ FX and ∑ FY are the sums of the resolved parts 

of the forces along the x-axis and y-axis respectively, 
and ( )xFy yFx-∑ is the moments of the forces about 

the origin O.
Since the system is in equilibrium, all the three terms in 

the above expression, for the work done by all the forces, is 
zero. Hence, the sum of the virtual works done by the forces 
is zero.

Lifting Machine 
Lifting machines are defined as those appliances or  
machines which are used for lifting heavy loads. They are also 
called simple machines. Some commonly used machines are:

 1. Lever
 2. Inclined plane
 3. Wedge
 4. Wheel and axle
 5. Winch crab
 6. A pulley and system of pulleys
 7. Screw jack

Screw jack is the most important among all the above sim-
ple machines.

Load or resistance: A machine has to either lift a load or 
overcome a resistance. It is usually denoted by W and its 
unit is N. Examples: A lifting device lifts a load or heavy 
weight whereas a bicycle overcomes the frictional resist-
ance between the wheels and the road.

Efforts: It is the force which is applied to a machine to lift 
a load or to overcome the resistance against a movement. It 
is usually denoted by P and its unit is N. Examples: Force 
applied on the pedals of a bicycle or on the handle of a 
screw jack.
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Input of a machine: It is defined as the amount of total 
work done on the machine. This is measured by the product 
of the effort and the distance through which it moves.

Input = Effort × Distance moved by the effort = P × y

It has the unit of Nm.

Output of a machine: It is defined as the amount of work 
got out of a machine or the actual work done by the machine 

Output of the machine:
= Load × Distance through which load is lifted = W × x

It has the unit of Nm.

Velocity Ratio (VR): It is defined as the ratio of the dis-
tance moved by the effort and to the distance moved by the 
load during the same interval of time.

VR = =
Distance moved by the effort

Distance moved by the load

yy
x

In all machines y > x.

NOTE

Mechanical advantage (): It is defined as the ratio of the 
load or weight lifted to the effort applied.

MA
W
P

= =
Weight lifted

Effort applied

In all machines W > P.

NOTE

Ideal machine: It is defined as the machine which is abso-
lutely free from frictional resistances. In such a machine, 
input = output.

For an ideal machine, VR = MA

Efficiency of a machine: It is the ratio of output of the 
machine to the input of the machine.

h=
×output of the machine 100

input of the machine

=
×useful work done by the machine 100

energy supplied to the  machine
=

×
×

×
W x

P y
100

For an ideal machine, h = 100%. For an actual machine,

h = =
Ideal effort

Actual effort

Actual load

Ideal load
.

Relation between MA, VR and h

h=
×
×

= =
W x

P y

W

P
y

x

MA

VR

Frictional losses
Output = Input - Losses due to friction

Effort lost in friction = -P
W

VR

Loss in load lifted due to friction = P × VR - W.
Here P is the actual effort required to overcome resist-

ance W or lift load W.

Reversible and Irreversible Machine
A machine is said to be reversible when the load W gets 
lowered on the removal of the effort. In such a case, work is 
done by the machine in reverse direction.

A machine is said to be irreversible when the load W 
does not fall down on the removal of the effort. In such a 
case, work is not done in the reverse direction.

The condition of irreversibility or self locking of a 
machine is that its efficiency should be less than 50%. 

Compound Efficiency
It is defined as the overall efficiency of the combination of 
machines and it is the product of the efficiencies of the indi-
vidual machines.

The overall efficiency h of n machines coupled together 

is h h=
=

∏ i
i

n

1

, where, h i is the efficiency of the ith machine.

Law of a Machine
It is defined as the relationship which exists between the 
effort applied and the load lifted. 

P mW C= +

P is the effort applied, W is the corresponding load, m and 
C are coefficients which are determined in any machine after 
conducting a series of tests and plotting the W versus P graph.

The expression for maximum mechanical advantage is 

given by ( )maxMA
m

=
1

.

The expression for maximum efficiency is given by 

hmax
( )

.=
×

1

m VR

Screw Jack
It is a device for lifting heavy loads by applying compara-
tively a smaller effort at the end of the handle. The screw 
jack works on the principle of inclined plane.

Nut

l

W

d

Screw head
Handle
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It mainly consists of a nut which forms the body of the 
jack and a screw is fitted into it. The threads are generally 
square. The load W is placed on the head of the screw. By 
rotating the screw with a handle the load is lifted or lowered. 
Let W be the load lifted, a be the angle of helix of the screw 
and f be the angle of friction. 

Here, efficiency =
+

tan

tan( )

a
a φ

, which shows that effi-

ciency is independent of the load lifted or lowered.
Assuming that the effort is applied at the end of the han-

dle, let us consider the following two cases. 

 Let the weight W be lifted: Let PE be the effort applied at 
the end of the handle. Let l be the length of the handle and 
let d be the mean diameter of the screw.

Σ m about, the axis is zero.
Let p be the pitch and m be the coefficient of friction, then:

   
tan a

p
=

p

d
tan f = m

   
P

Wd

l

p d

d p
E

2
⋅

+
-
mp

p m

 Let the weight W be lowered: Let Q be the effort applied 
at the circumference of the screw and let QE be the actual 
effort applied at the end of the handle.

 Q = W tan(f - a  )

Q
Wd

l

d p

d p
E = ⋅

-
+2

mp
p m

For an n-threaded screw, tan a = np/p d.

Differential Screw Jack
Instead of only one threaded spindle as in the case of a sim-
ple screw jack it has two threaded spindles S1 and S2. The 
spindle S1 is screwed to the base which is fixed.

S 2

S1

l  

W

This spindle carries both internal as well as external 
threads. The spindle S2 is engaged to spindle S1 by means 
of an internal thread. When spindle S1 ascends, the spindle 
S2 descends. This is also known as ‘Differential Screw’ jack. 

The principle of working of this jack is similar to the one as 
described in the above figure.

Let ps1
 = pitch of the threads on S1

ps2
 = pitch of the threads on S2

Let the lever length be l and the effort be applied at the 
end of this lever.

When the lever is moved by one revolution, the distance 
covered by the effort P is 2p l and correspondingly the load 
distance is equal to ps1

 - ps2
.

Then, velocity ratio ( ) .VR
l

p pS S

=
-

2

1 2

p

ps1 
is always greater than ps2

. Due to this difference, the 
mechanical advantage as well as the velocity ratio will 
be more.

NOTE

Direction for questions 3 and 4: A screw jack has a pitch 
of 12 mm with a mean radius of thread equal to 25 mm a 
lever 500 mm long is used to raise a load of 1500 kg. The 
coefficient of friction is 0.10.

Example 3: Find the helix angle a  and q (i.e., friction angle)
(A) 6.2°, 4.5°  (B) 4.85°, 5.7°
(C) 4.85°, 5.7°  (D) 4.36°, 5.7° 

Solution: Given P = 12 mm, d = 2r = 25 × 2 = 50 mm,
l = 500 mm
W = 1500 kg, m = 0.10, tan f = m = 0.10,
f = 5.71°

tan .a
p p

= =
×

=
P

d

12

50
0 076

a = 4.36 °
Example 4: What force is necessary when applied normal 
to the lever at its free end
(A) 13.319 kg  (B) 12.8 kg.
(C) 14.5 kg  (D) 18.3 kg.

Solution: P
wd

l
= + =

×
×

× +
2

1500 50

2 500
4 36 5 71tan( ) tan ( . . )a φ

    P = 13.319 kg.

Direction for questions 5, 6 and 7: A uniform ladder of 
weight 500 N and the length 8 m rests on a horizontal ground 
and leans against a smooth vertical wall. The angle made by 
the ladder with the horizontal is 60°. When a man of weight 
500 N, stands on the ladder at a distance of 4 metre from the 
top of the ladder, the ladder is at the point of sliding.

Example 5: Find the coefficient of friction in terms of RB.

B

60°

RB

RA

μRA

A

W + w 
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(A) m =
RB

1000
 (B) m = 1400 RB

(C) m = 500 RB (D) m =
RB

500

Solution: Resolving all the forces RB = mRA

RA = W + w = 500 + 500 = 1000 
RB = m × RA = m × 1000

 m =
RB

1000
.

Example 6: Find the reaction at B (i.e., RB ) 
(A) 289   (B) 300
(C) 350   (D) 400

Solution: Taking moment at A, MA = 0

RB × × = × × + × ×8
3

2
500

8

2

1

2
500 4

1

2

          
RB =

× +
=

500 2 1000

6 92
289

.

Example 7: Find the value of coefficient of friction
(A) 0.370  (B) 0.486
(C) 0.289  (D) 0.355

Solution: From equation m = = =
RB

1000

289

1000
0 289.

Centre of Gravity
The centre of gravity of a body is the point, through which 
the whole weight of the body acts, irrespective of the posi-
tion in which body is placed. This can also be defined as the 
centre of the gravitational forces acting on the body. It is 
denoted by G or c.g.
Centroid: It is defined as that point at which the total area 
of a plane figure (like rectangle, square, triangle, quadrilat-
eral, circle etc.) is assumed to be concentrated. The centroid 
and the centre of gravity are one and the same point. It is 
also denoted by G or c.g..
Centroidal axis: It is defined as that axis which passes through 
the centre of gravity of a body or through the centroid of an area.
Lamina: A very thin plate or sheet of any cross-section is 
known as lamina. Its thickness is so small that it can be con-
sidered as a plane figure or area having no mass.

Determination of the Centre 
of Gravity of a Thin Irregular Lamina

x1

x 2

a1

a2

y1 y2yG

xG G

y

o x

The above figure shows an irregular lamina of total area 
A whose center of gravity is to be determined. Let the lam-
ina be composed of small areas a1, a2 … etc.  Such that:

A = a1 + a2 + … = Σai

Let the distances of the centroids of the areas a1, a2, … etc. 
from the x-axis be y1, y2, … etc. respectively and from the 
y-axis be x1, x2, … etc. The sum of moments of all the small 
areas about the y-axis

= a1 x1 + a2 x2 + … = Σ ai xi

Let xG and yG be the coordinates of the centre of gravity G 
from the y-axis and x-axis respectively. From the principle 
of moments, it can be written that:

AxG = Σaixi

or          x
a x

A

a x

a
G

i i i i

i

=
∑

=
∑
∑

Similarly, it can be shown that:

y
a y

a
G

i i

i

=
∑

∑

1.  The axis of reference of a plane figure is generally taken 
as the bottom most line of the figure for determining yG 
and the left most line of the figure for calculating xG.

2.  If the figure is symmetrical about the x-axis or y-axis, 
then the centre of gravity will lie on the axis of 
symmetry.

3.  For solid bodies, elementary masses m1, m2, etc., are 
considered instead of the areas a1, a2, etc., and the 
coordination of centre of gravity are given as follows:

x
m x

m
y

m y

m
G

i i

i
G

i i

i

=
∑
∑

=
∑
∑

,

NOTES

Example 8: Determine the position of the center of gravity 
for the following figure.

2 m

2 m

5 m

5 m

3 m

3 m

10 m

10 m
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Solution: 
y

B C

D E

FGG ′
C ′

A H xO

The x-axis and y-axis of reference are chosen as shown in 
the above figure such that the origin O coincides with the 
point A of the figure and the axes coincide with the left most 
and bottom most lines of the figure respectively. The posi-
tion of the centre of gravity is determined with respect to 
the origin O.

The figure is broken down into the three areas AHGG′, 
G′FC′B and CC′ED

For rectangle AHGG′,
Area A1 = 3 × 2 = 6 m2

c.g. coordinates, x1
2

2
1= = m

 
y1

3

2
1 5= = . m

For rectangle G′FC′B, 
Area A2 = (2 + 10) × (5 - 3) = 24 m2

c.g. coordinates, x2
2 10

2
6=

+
=

( )
m

   
y2 3

5 3

2
4= +

-
=

( )
m

For rectangle CC′ED,
Area A3 = 3 × 2 = 6 m2

c.g. coordinates, x3 10
2

2
11= + = m

y3 5
3

2
6 5= =+ . m

c.g. of the figure coordinates, 

x
A x A x A x

A A A
G =

+ +
+ +

=1 1 2 2 3 3

1 2 3

6 m

 
y

A y A y A y

A A A
G =

+ +
+ +

=1 1 2 2 3 3

1 2 3

4 m

Integration Method for Centroid 
Determination in a Thin Lamina or Solid
In this method, the given figure is not split into shapes of 
figures of known centroid as done in the previous section. 
The centroid is directly found out by determining Σ aiyi or 
Σ aixi and Σ ai by direct integration.

First moment of area: Consider a plane region of area A as 
shown in the following figure.

y x

G y

x

yG

xG

dA
Plane region 

•

Let dA be a differential (i.e., infinitesimal) area located at 
the point (x, y) in the plane region area A.

Here, A dA
A

= ∫
First moments of the area about the x-axis and y-axis are 
respectively:

M y dAX

A

= ∫  

M x dAY

A

= ∫  

The coordinates (xG , yG) of the centre of gravity of the plane 
region is given by:

x
M

A

xdA

dA
G

y A

A

= =
∫

∫

y
M

A

ydA

dA
G

X A

A

= =
∫

∫

1.  If the x-axis passes through the centre of gravity, then 
Mx = 0. Similarly, My = 0, when the y-axis passes 
through the centre of gravity.

2.  If the plane region is symmetric about the y-axis, then 
My = 0 and xG = 0, i.e., the centre of gravity would lie 
somewhere on the y-axis. Similarly, Mx = 0 and yG = 0, 
if the plane region is symmetric about the x-axis, i.e., 
the centre of gravity would lie somewhere on the x-axis.

NOTES

If instead of a plane region, we have a plane curve of 
length L and on which a differential length dL is considered 
which is located at the point (x, y) on the curve, then the 
coordinates of the centre of gravity for the planar curve is 
given as follows:

x
M

L

xdL

dL
G

y L

L

= =
∫

∫

y
M

A

ydL

dL
G

X L

L

= =
∫

∫
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Example 9: The centre of gravity of the following shown 
area OBC, where the curve OC is given by the equation 
y = 0.625 x2, with respect to the point O (0, 0) is:

y

C

xO
4 B

(A) (6, 5)  (B) (6, 3)
(C) (3, 5)  (D) (3, 3)

Solution:

y

y

C

x
x

dx
O (0, 0) B(4, 0)

Let us consider an elementary rectangular area of height y 
and width dx as shown in the above figure. 

Area of the elementary rectangle, dA = ydx = 0.625x2 dx

Area of OBC, A dA x dx= = ∫∫ 0 625 2

0

4

0

4

.

        
= ×0 625

4

3

3

.

Moment of area about x-axis, 

M dA
y

x dx
x

X = =∫ ∫
0

4
2

0

4 2

2
0 625

0 625
2

.
.

      
= ×

0 625

2

4

5

2 5.

Moment of area about y-axis, 

Mx dAx x dxx= = = ×∫ ∫
0

4
2

0

4 4

0 625 0 625
4

4
. .

Let xG and yG be the x and y coordinates of the centre of 
gravity of OBC with respect to the point O.

Then, Mx = A yG and My = AxG

yG
0 625

2
4

5

3
0 625 4

3
2 5

3

.
.

× ×
×

=

xG = × ×
×

=0 625
4

4

3
0 625 4

3
4

3
.

.

Example 10: The centre of gravity of the following hatched 
figure with respect to the point E is:

y

A

40

80

30

40

60

B

C

D F
x

E

(A) (20, 30)
(B) (37.84, 27.45)
(C) (20, 27.45)
(D) (37.84, 30)

Solution:

For Δ ABC, area A1 = 
1

2
80 × (60 - 40) = 800

c.g. coordinates, x1
2
3

80
160

3
= × =

      
y1 40

1

3
60 40

140

3
= + × - =( )

For ACFE, area A2 = 40 × 80 = 3200

c.g. coordinates, x2
80

2
40= =

y2
40

2
20= =

For Δ CFD, area A3 = 
1

2
30 × 40 = 600

c.g. coordinates, x3 50
2
3

30 70= + × =

y3
1

3
40

40

3
= × =

Since Δ CFD is cut out from the figure ABFE to obtain the 
hatched figure, the area of Δ CFD is assigned a negative 
sign.

\ A3 = -600

Let xG and yG be the x and y coordinates of the centre 
of gravity of the hatched figure with respect to the point E, 
then:

x
A x A x A x

A A A
G =

+ +
+ +

=1 1 2 2 3 3

1 2 3

37 84.

y
A y A y A y

A A A
G =

+ +
+ +

=1 1 2 2 3 3

1 2 3

27 45.

Theorems of Pappus–Guldinus
A surface of revolution is a surface which can be generated 
by rotating a plane curve about a fixed axis.
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x

L

y
y

L

r

x

BG
r

A

r

•

For example, in the above figure, the curved surface of a 
cylinder is obtained by rotating the line AB about the x-axis.

Theorem I
The area of a surface of revolution is equal to the product 
of the length of the generating curve and the distance trave-
led by the centroid of the curve while the surface is being 
generated.

The generating curve must not cross the axis about which 
it is rotated.

NOTE

In the above figure, length of the generating curve = L.
Distance traveled by the centroid while the surface is 

being generated = 2p r (circumference of a circle of radius r)
\ Area of the surface of the cylinder generated = L 

× 2p r = 2p rL
A body of revolution is a body which can be generated 

by rotating a plane area about a fixed axis.

y

A

B x
rr

O

y

xrr

(a)            (b)

For example, in the above figure, the volume of a sphere 
is obtained by rotating the semi-circle OAB about the x-axis.

Theorem II
The volume of a body of revolution is equal to the product 
of the generating area and the distance traveled by the cen-
troid of the area while the body is being generated. 

The theorem does not apply if the axis of rotation inter-
sects the generating area.

NOTE

In the figure, generating area = 
1

2
p r2.

Distance traveled by the centroid of the area while the 

body is being generated = 2
4

3
p

p
×

r  (circumference of a cir-

cle of radius  4r 
3p )

\  Volume of the sphere generated 

= × × =
1

2
22

34

3

4

3
p p

p
p

r
r r

Example 11: A quartered circular arc AB when rotated 
about the y-axis generates a surface of area A y. The same

r r

r

A

B x

y

arc when rotated about the x-axis generates a surface of 
area Ax. If the ratio Ay : Ax is related to the length r by the 

equation 
Ay

Ax
krn= ,  where k, n are constants, then the value 

of k and n respectively are
(A) 0.27 and 0  (B) 0.27 and 1
(C) 3.75 and 0  (D) 3.75 and 1

Solution:
Length of the arc = 1

2
p  r;

x coordinate of the centroid of the arc = -2
2

r
r

p
.

Distance travelled by the centroid when the arc is rotated 

about the y-axis =
× -2 2 1p p

p
r( )

Using Pappus–Guldinus theorem I,

A r
r r

ry = -⎛
⎝⎜

⎞
⎠⎟ ×

× -
= -2

2 2 2 1
2 12

p
p p

p
p p( )

( )

y coordinate of the centroid of the arc = -r
r2

p
.

Distance travelled by the centroid when the arc is rotated 

about the x-axis =
× -2 2p p

p
r( ) .

Using Pappus–Guldinus theorem I,

A r
r r

rx = -⎛
⎝⎜

⎞
⎠⎟ ×

× -
= -2 2 2

22

p
p p

p
p p( )

( )

    
\ = = -

-
Ay

Ax
krn 2 1

2
( )p
p

    
⇒ = =

-
-

n k0
2 1

2
 and 

( )
.

p
p
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Example 12: A solid ring (torus) of circular cross-section 
is obtained by rotating a circle of radius 25 mm about the 
x-axis as shown in the following figure.

100 mm

x

y

If the density of the material making up the circular cross-
section is 7800 kg/m3, the weight of the ring generated is:
(A) 82.6 N  (B) 94.4 N
(C) 123.4 N  (D) 90.6 N

Solution:
y coordinate of the centroid of the circle = 100 mm = 0.1 m

Area of the circle = p × (0.025)2

Distance traveled by the centroid of the circle while gen-
erating the ring = 2p × (0.1) (circumference of a circle of 
radius 0.1 m)

Using Pappus–Guldinus theorem II,
Volume of the ring generated 

          = p × (0.025)2 × 2p × (0.1) = 0.001233 m3

Weight of the generated ring
= 7800 × 0.001233 × 9.81 = 94.4 N.

Area Moment of Inertia
In a plane region of area A, a differential area dA located at 
the point (x, y) is considered as shown in the below figure.

r

x

xO

y

Y

dA

Plane
region

The moment of inertia of the area about the x-axis and 
y-axis respectively are:

I y dA I x dAx

A

y

A

= =∫ ∫2 2and

Ix and Iy are also called as the second moments of the 
area. 

Polar Moment of Inertia
In the above figure, the polar moment of inertia of the area 
about the point O (actually, about an axis through the point 
O, perpendicular to the plane of the area) is

J r dA

J I I
A

x y

0
2

0

=

= +

∫

The above equation states that the polar moment of inertia 
of an area about a point O is the sum of the moments of iner-
tia of the area about two perpendicular axes that intersect  
at O.

Radius of Gyration
In the above figure, the radii of gyration of an area about the 
x-axis, y-axis and the origin O are:

k
I

A
k

I

A
and k

J

A
x

x
y

y
o

o= = =,

Parallel Axis Theorem
The moment of inertia of a plane region area about an axis, 
say AB, in the plane of area through the centre of gravity of 
the plane region area be represented by IG, then the moment 
of inertia of the given plane region area about a parallel 
axis, say OX, in the plane of the area at a distance d from the 
centre of gravity of the area is IX = IG + Ad 2,

Plane region,
area = A

X

BA

O

G

d

Where,
IX =  moment of inertia of the given area about the OX 

axis
IG = moment of inertia of the given area about AB axis 
A = area of the plane region
d =  perpendicular distance between the parallel axes AB 

and OX
G = centre of gravity of the plane region

Perpendicular Axis Theorem
If IOX and IOY are the moments of inertia of a plane region 
area about two mutually perpendicular axes OX and OY in 
the plane of the area, then the moment of inertia of the plane 
region area IOZ about the axis OZ, perpendicular to the plane 
and passing through the intersection of the axes OX and OY 
is:

I I IOZ OX OY= +
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Plane regionY

X

Z

O

IOZ is also called as the polar moment of inertia and the 
axis OZ is called as the polar axis.

NOTE

Example 13: In the below figure, the axes AB and OX 
are parallel to each other. If the moments of inertia of the 
rectangle PQRS along the axis AB, which passes through 
the centroid of the rectangle, and the axis OX are IG and IX 
respectively, then the value of IX /IG is

X

A

Q R

G

P S

B

O

•

(A) 4   (B) 12   (C) 3   (D) 0.25

Solution:
From parallel axis theorem, we have IX = IG + A (perpen-
dicular distance between axes)2,

Let PQ = d and QR = b, then the perpendicular distance 

between the axes =
d

2

\ = + = +I I A
d

I bd
d

X G G

2 2

4 4
So,

I

I

bd

I
X

G G

= +1
4

3

To determine IG, let us consider a rectangular strip of thick-
ness dy at a distance y from the axis AB as shown below:

BA

P S

RQ 

y
dy d

2
d

2
d−

b

Area of the rectangular strip = bdy
Moment of inertia of the strip about the axis 

AB = (bdy) y2

Moment of inertia of the rectangle PQRS about the axis 

AB, I by dy
bd

G
d

d

= =
-
∫ 2

2

2 3

12

\ =
I

I
X

G

4.

Example 14: The moment of inertia for the following 
hatched figure about the axis AB (which passes through the 
centroid of the figure), where AB = DC = 30 m, PQ = SR 
= 20 m, BC = AD = 20 m and QR = PS = 10 m, is: 

A B

C

A B

D

S R

P Q

(A) 6.78 × 104 m4 (B) 5.41 × 103 m4

(C) 1.83 × 104 m4 (D) 2.6 × 105 m4

Solution:
Moment of inertia of the hatched figure = moment of inertia 
of  ABCD - Moment of inertia of  PQRS

= × × - ×

= × × - ×

=

1

12
1

12
30 20 20 10

18333 33

3 3

3 3

4

( )

( )

. .

DC AD SR QR

m

Example 15: A circular section of diameter d is lying on the 
xy–plane where the centre of the circular section coincides 
with the origin O as shown in the following figure.

y

x

z

O

If the moments of inertia of the circular section along the x, 
y and z axes are IX, IY and IZ respectively, then which of the 
following statements is NOT correct?

(A) I
d

X =
p 4

32
 (B) IX = IY

(C) I
d

Z =
p 4

32
 (D) I

d
Y =

p 4

64



Chapter 3  •  Friction, Centre of Gravity, Moment of Inertia  | 3.43

Solution:

y

x

z

dr

•O

r

Let us consider an elementary ring of thickness dr and 
located at a distance r from the origin O. 

Area of the elementary ring = 2p rdr .
Moment of inertia of the elementary ring about the z-axis 

= 2p rdr × r2 = 2p r3dr.
Moment of inertia of the whole circular section about the 

z-axis = =∫ 2
32

3

0

2 4

p p
r dr

d
D /

.

From the symmetry of the circular section, it can be writ-
ten that IX = IY.

From the perpendicular axis theorem,we have, 
IZ = IX + IY

i.e., IZ = 2IX

\ =I
d

IX Y
p 4

64

Description Shape L cx cy

Horizontal line

y

x
 a

a
2
a

0

Vertical line

y

a

x

a 0
2
a

Inclined line with q

y

x

a

q

a cos
2
a θ 

  
sin

2
a θ 

  

Semicircular arc

y

r r

p r 0
2r
p

Quarter circular arc

y

y

• 

x

x

CG p r
2

2r
p

2r
p

Circular arc

y

x
a /2

a /2

a r
2 sin /2r α

α 0

(Continued)



3.44 |  Part III  •  Unit 1  •  Engineering Mechanics

Description Shape L cx cy

Rectangle

y

c

b
x

b /2

h /2
bh

2
b

2
h

Square

y

ac

a x

a2
2
a

2
a

Parallelogram a

b

c

y

x

a
ab sin a

cos
2

b a α+ sin
2

a α

Triangle

a

h

b

y

x

2
bh

3
a b+

3
h

Semi circle c

o

y

x

3p
4R

R
•

p R2

2 0
4 R
3p

Quarter circle
c

y

yc

xc

xR

• p r2
2

4 R
3p

4 R
3p

Sector of a circle

y

xc

x•
a

a R2a
2 sin
3

R α
α 0

Quarter ellipse

y

xc

yc

xa

b •
p ab
3

4 a
3p

4 b
3p
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Quarter parabola

y
y 2 = kx

xc

yc

xa

b•
p ab
3

3
5
a 3

5
b

General spandrel

y
y = kxn

xc

yc

xao

bc
• 3

ab 3
4
a 3

4
b

Description Figure Xl Yl

Rectangle

b/2

b/2

a/2 a/2

x

y

3

12
ab 3

12
ba

Circle x
r

y

p r4
4

p r4
4

Ellipse

b

a

p  ab3

4
p  ba3

4

Triangle

y

h x

b

C

h/3

3

36
bh 3

36
hb

Quadrant Circle C

r

x

4r
3p

4r
3π

0.0549 r4 0.0549 r4
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Centroid of Solids
If dm is an elemental mass in a body of mass M and xG, yG 
are the coordinates of the center of gravity of the body from 
the reference axes y-axis and x-axis respectively, then: 

X
xdm

dm

xdm

M
y

ydm

dm

ydm

M
G G= = = =∫

∫
∫ ∫

∫
∫

,

Let us consider a right circular solid cone whose centre of 
gravity is to be determined. Let the diameter of the base of 
the right circular solid cone be 2R and its height H as shown 
in the following figure.

Since the cone is symmetric about the VX axis, its centre 
of gravity will lie on this axis. The cone can be imagined 
to be consisting of an infinite number of circular discs with 
different radii, parallel to the base. 

y

X

x
H

B

2R

A

C

V

F

D

E
dy

Consider one such disc of radius x, thickness dy and at a 
depth y from the vertex of the cone, i.e., from V.

From the geometry of the above figure,

x

R

y

H
or X

yR

H
= =

Volume of disc = =p pX dy
y R

H
dy2

2 2

2

If r is the density of the material making up the cone, 

then dm = r p y R

H
dy

2 2

2

\ = = [ ] =∫ ∫

∫
y

ydm

dm

y R

H
dy

y R

H
dy

y HG

H

H

H

r p

r p

3 2

2
0

2 2

2
0

0

3

4

3

4

\  Centroid or centre of gravity of a right circular cone 

is situated at a distance of 
3

4  
H from its vertex V and 

lies on its axis VX.

Example 16: In the homogenous hollow hemisphere, shown 
in the following figure, OP = 10 cm = the radius of the 
hemisphere. The points P, G and O lie on a straight line that is 
perpendicular to the base CD. If G is the centroid of the hollow 
hemisphere, then which one of the following statements is not 
correct?

P

G

O DC

•

(A) OG = 5 cm (B) OG OP=
3

8
(C) CO = 10 cm (D) OD = 2 × OG

Solution:
The centre of gravity of a hollow hemisphere with respect 
to the x-axis would lie on an perpendicular axis along which 
the homogeneous hemisphere is symmetrical.

Since G is the centre of gravity, then the hemisphere 
should be symmetrical along OP, i.e., CO = OD.

It can also be deciphered that CO = OD = radius of the 
hemisphere = OP = 10 cm.

Now OG will be equal to R/2, where R is the radius of the 
hollow hemisphere.

\ OG = 0.5 OP = 5 cm

It can be written OP = CO = OD = 2 OG, hence the 
option (B) is NOT correct.

Option B would be right if the hemisphere had been a 
homogeneous solid hemisphere.

NOTE

Mass Moment of Inertia
The Moment of Inertia of an element of mass is the product 
of the mass of the element and the square of the distance of 
the element from the axis.

The mass moment of inertia of the body with respect to 
Cartesian frame xyz is given by:

I y z dm y z dvxx

v

= + = +∫∫ ( ) ( )2 2 2 2 r

I x z dm x z dvYY v
= + = +∫ ∫( ) ( )2 2 2 2 r

I x y dm x y dvzz

v

= + = +∫ ∫( ) ( ) ,2 2 2 r  where, IXX, IYY and 

IZZ are the axial moments of inertia of mass with respect to 
the x-, y- and z-axes respectively.

For thin plates essentially in the x-y plane, the following 
relations hold.

I y dm

I x dm

I z dm x y dm

I I I

xx

YY

zz

zz XX YY

=

=

= = +

= +

∫
∫

∫∫

2

2

2 2 2( )

Izz is also called the polar moment of inertia.
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Mass Moment of Inertia and  
Radius of Gyration

I K m

I K m

I K m

K
I

m

K
I

m

K
I

m

xx x

yy y

zz z

x
xx

y
YY

z
zz

=
=

=

=

=

=

2

2

2

The parallel-axis theorem for the mass moment of iner-
tia states that the mass moment of inertia with respect to 
any axis is equal to the moment of inertia of the mass with 
respect to a parallel axis through the centre of mass plus 
the product of the mass and the square of the perpendicular 
distance between the axes.

Mathematically IAB = IG + md2

For a thin plate, 

I t I

I t I

I t I

xx xx

YY YY

zz zz

( )mass area

mass area

mass a

=

=

=

( )

( ) ( )

( )

r

r

r rrea( )

Where t is the uniform thickness and r is the mass of the 
thin plate.

I I Izz xx YY= +

The mass moment of inertia about a centroidal axis per-
pendicular to a uniform thin rod of length , mass m and 
small cross section is given by

I mYY =
1

12
2�

Radius of gyration about a centroidal axis perpendicular 
to a uniform thin rod of the length , mass m and a small 
cross section is given by

K y =
�
12

The mass moment of inertia about the longitudinal and 
transverse axes passing through the centre of mass of a rec-
tangular prism (block) of cross section (axb), uniform den-

sity r and length  is given by I m bxx = +
1

12
2 2( ).�

I

I

YY

zz

m a b

m a

= +

= +

1

12
1

12

2 2

2 2

( )

( )�

In the above case, if the three axes were chosen through a 
corner instead of centre of mass, the results are:

I

I

I

xx

YY

zz

m b

m a b

m a

= +

= +

= +

1

3
1

3
1

3

2 2

2 2

2 2

( )

( )

( )

�

�

For a right circular cylinder of radius R, length or height  
and mass m, the mass moment of inertia about the centroi-
dal x-axis is given by

I m
R

xx = +
⎡

⎣
⎢

⎤

⎦
⎥

4 2

4 12

�

Solid Body Centroid Mass moment of inertia

Solid hemisphere 

z

G
R

O
x

y

xG = yG = 0
3
8GZ R=

22
5XX YY ZZI I I mR= = =

Solid sphere
z

G R

O
x

y

xG = yG = zG = 0

22
5

2
5y

XX YY ZZI I I mR

K R

= = =

=

(Continued)
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Solid Body Centroid Mass moment of inertia

Solid cylinder 

R

G

O

z

y

L

x

xG = yG = 0

2G
L

z =

2 2

2

1 1
4 3

1
2

XX YY

ZZ

I I mR mL

I mR

= = +

=

Rectangular block (cuboid)

z
b

G

O

a

x

y

L

xG = yG = 0

2G
L

z =

2 2

2 2

2 2

1 1
12 3
1 1

12 3
1

( )
12

xx

yy

zz

I ma mL

I mb mL

I m a b

= +

= +

= +

Slender rod (thin cylinder)

L

G

x

y

z

O

2G
L

z =

yG = zG = 0

Ixx = 0
2

3YY ZZ
mL

I I= =

Solid disk 

z

R

O
x

y

xG = yG = zG = 0

2

2

4

2

2

XX YY

zz

z

mR
I I

mR
I

r
K

= =

=

=
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Exercises

Practice Problems 1
 Select the correct alternative from the given choices.

 1. A belt supports two weights W1 and W2 over a pulley 
as shown in the figure. If W1 = 2000 N, the minimum 
weight W2 to keep W1 in equilibrium (assume that the 
pulley is locked and m = 0.25) is:

•
O

BA

T1 T2

W1
W 2

2000 N

b

 (A) 911.9 N (B) 812.8 N
 (C) 913 N (D) 715.5 N

 2.   

B
A

C
••

r = 0.25 m

50 cm25 cm

45°

  A rotating wheel is braked by a belt AB attached to the 
lever ABC hinged at B. The coefficient of friction be-
tween the belt and the wheel is 0.5. The braking mo-
ment exerted by the vertical weight W = 200 N is:

 (A) 98.23 Nm (B) 95.96 Nm
 (C) 95.00 Nm (D) 93.24 Nm

 3. A screw jack has square threaded screw of 5 cm diam-
eter and 1 cm pitch. The coefficient of friction at the 
screw thread is 0.15. The force required at the end of a  
70 cm long handle to raise a load of 1000 N and the 
force required, at the end of the same handle to raise the 
same load, if the screw jack is considered to be an ideal 
machine, respectively, are:

 (A) 7.702 N and 2.123 N
 (B) 7.702 N and 2.273 N
 (C) 8.162 N and 1.850 N
 (D) 8.162 N and 1.798 N

Direction for question 4: A locomotive of weight W is at rest.

 4. The reactions at A and B are

B

W RBRA

A a a

b

PC

••

 (A) 
W

N
2

 (B) 2WN

 (C) 
2

3
WN  (D) 3WN

Direction for question 5: When it is pulling a wagon, the 
draw bar pull P is just equal to the total friction at the points 
of contact, A and B. 

 5. The new magnitudes of the vertical reactions at A and 
B respectively are:

 (A) 
Wa Pb

a

Wa Pb

a

- +
2 2

,  (B) 
W W

a2 2
,

 (C) 
W W

2 3
,  (D) 

W
W

2

2

3
,

 6. A four wheel vehicle with passengers has a mass of 
2000 kg passengers. The road, on which the vehicle is 
moving, is inclined at an angle q with the horizontal. If 
the coefficient of static friction between tyres and the 
road is 0.3, the maximum inclination q at which the 
vehicle can still climb is:

•

•

1 m 0.25 m

mg

0.5
q

q

 (A) 18° (B) 16.7° (C) 15° (D) 17.2°
 7. A weight W of 2000 N is to be raised by a system of 

pulleys as shown in the following figure.

W

P

•

•

2000 N

+ dv

2
y−d
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  The value of the force P which can hold the system in 
equilibrium is:

 (A) 5000 N (B) 1000 N
 (C) 2000 N (D) 1500 N

Direction for questions 8, 9 and 10: A weight of 600 N just 
starts moving down a rough inclined plane supported by a 
force of 200 N acting parallel to the plane and it is at the point 
of moving up the plane when pulled by a force of 300 N paral-
lel to the plane.

F

R

q

q

P = 200 N

•

 8. The values of the normal reaction R and the limiting 
friction F, respectively are:

 (A) 500 cos q and 500m cos q
 (B) 400 cos q and 400m cos q
 (C) 600 cos q and 600m cos q
 (D) 600 cos q and 500m cos q

 9. The inclination of the plane q is:
 (A) 30° (B) 25.6°
 (C) 24.6° (D) 32.1°

 10. The coefficient of friction is:
 (A) 0.092 (B) 0.1124
 (C) 0.1510 (D) 0.2130

Practice Problems 2
Direction for questions 1 to 10: Select the correct alterna-
tive from the given choices.

 1. The block shown in figure below is kept in equilibrium 
and prevented from sliding down by applying a force of 

600 N. The co-efficient of friction is 
3

5
. The weight of 

the block would be:

600 N

30°

 (A) 4000 N (B) 2500 N
 (C) 3000 N (D) 5000 N

 2. Mention the statements which are governing the laws 
of friction between dry surfaces.

    (i)  The friction force is independent on the velocity of 
sliding. 

  (ii)  The friction force is proportional to the normal 
force across surface of contact 

 (iii)  The friction force is dependent on the materials of 
the contacting surfaces.

  (iv)  The friction force is independent of the area of 
contact.

 (A) 2, 3, 4 (B) 1 and 3
 (C) 2 and 4 (D) 1, 2, 3 and 4

 3. The limiting friction between two bodies in contact is 
independent of 

 (A) Nature of surfaces in contact;
 (B) The area of surfaces in contact;
 (C) Normal reaction between the surfaces.
 (D) All of the above.

 4. A body of weight 50 N is kept on a plane inclined at an 
angle of 30° to the horizontal. It is in limiting equilib-
rium. The co-efficient friction is the equal to:

 (A) 
1

3
 (B) 3

 (C) 
1

50 3
 (D) 

3

5

 5. A man of weight 60 N stands on the middle rung of a lad-
der of weight 15 N. The co-efficient of friction between 
contacting surfaces is 0.25. The reaction at the floor is:

 (A) 80 N (B) 73.25 N
 (C) 85.6 N (D) 72.75 N

 6. Determine the effort required at the end of an arm 50 cm 
long to lift a load of 5 kN by means of a simple screw 
jack with screw threads of pitch 1 cm if the efficiency 
at this load is 45%.

 (A) 40.8 N (B) 43.6 N
 (C) 44.8 N (D) 35.36 N

 7. Determine the effort needed if the jack in above question 
is converted into a differential screw jack with internal 
threads of pitch 7 mm and efficiency of operation is 30%.

 (A) 15.9 N (B) 19.8 N
 (C) 17.2 N (D) 18 N

 8. A wooden block is being split by a 20° wedge with a force 
of 70 N applied horizontally as shown. Taking the co-
efficient of friction between wood and the wedge as 0.4 
estimate the vertical force tending to split the wood apart.

70 N

20° Wedge
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 (A) -54.24 N, 54 N (B) -65 N, 64 N
 (C) -48 N, 46 N (D) -56 N, 54 N

 9. A screw thread of screw jack has a mean diameter of 
10 cm and a pitch of 1.25 cm. The co-efficient of fric-
tion between the screw and its nut housing is 0.25. The 
force F that must be applied at the end of a 50 cm lever 
arm to raise a mass 6000 kg, is:

 (A) 1985 N (B) 1723 N
 (C) 1630 N (D) 1874 N

 10. Efficiency of the screw jack in problem above is:
 (A) 12% (B) 13.7%
 (C) 15% (D) 16.4%

Previous Years’ Questions
 1. An elevator (lift) consists of the elevator cage and 

a counter weight, of mass m each. The cage and the 
counterweight are connected by a chain that passes 
over a pulley. The pulley is coupled to a motor. It 
is desired that the elevator should have a maximum 
stopping time of t seconds from a peak speed v. If the 
inertia of the pulley and the chain are neglected, the 
minimum power that the motor must have is: [2005]

Pulley

Cage

v m

Counter weight

Chain

vm

 (A) 
1

2
2mv  (B) 

mv

t

2

2

 (C) 
mv

t

2

 (D) 
2 2mv

t

 2. If a system is in equilibrium and the position of the 
system depends upon many independent variables, 
the principle of virtual work states that the partial 
derivatives of its potential energy with respect to each 
of the independent variable must be: [2006]

 (A) -1.0 (B) 0
 (C) 1.0 (D) ∞
 3. A block weighing 981 N is resting on a horizon-

tal surface. The coefficient of friction between the 
block and the horizontal surface is m = 0.2. A verti-
cal cable attached to the block provides partial sup-
port as shown. A man can pull horizontally with a 
force of 100 N. What will be the tension, T (in N) 
in the cable if the man is just able to move the block 
to the right? [2009]

T

G
100 N

μ = 0⋅2

 (A) 176.2 (B) 196.0
 (C) 481.0 (D) 981.0

 4. A 1 kg block is resting on a surface with coefficient of 
friction m = 0.1. A force of 0.8 N is applied to the block 
as shown in the figure. The friction force is: [2011]

0⋅8 N 1 kg

 (A) 0 (B) 0.8 N
 (C) 0.98 N (D) 1.2 N

 5. A block R of mass 100 kg is placed on a block S of mass 
150 kg as shown in the figure. Block R is tied to the wall 
by a massless and inextensible string PQ. If the coeffi-
cient of static friction for all surfaces is 0.4, the minimum 
force F (in kN) needed to move the block S is: [2014]

P Q
R

S F

 (A) 0.69 (B) 0.88
 (C) 0.98 (D) 1.37

 6. A block weighing 200 N is in contact with a level 
plane whose coefficients of static and kinetic friction 
are 0.4 and 0.2 respectively. The block is acted upon 
by a horizontal force (in newton) P = 10t, where t 
denotes the time in seconds. The velocity (in m/s) of 
the block attained after 10 seconds is: ____ [2014]
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 7. A body of mass (M) 10 kg is initially stationary on a 
45° inclined plane as shown in figure. The coefficient 
of dynamic friction between the body and the plane 
is 0.5.? The body slides down the plane and attains a 
velocity of 20 m/s. The distance travelled (in meter) 
by the body along the plane is _______ [2014]

M

45°

 8. A wardrobe (mass 100 kg, height 4 m, width 2 m, 
depth 1 m), symmetric about the Y-Y axis, stands on 
a rough level floor as shown in the figure. A force P 
is applied at mid-height on the wardrobe so as to tip 
it about point Q without slipping. What are the mini-
mum values of the force (in newton) and the static 
coefficient of friction m between the floor and the 
wardrobe, respectively? [2014]

Y

P

Q

Y

2 m

4 m

 (A) 490.5 and 0.5
 (B) 981 and 0.5
 (C) 1000.5 and 0.15
 (D) 1000.5 and 0.25

 9. For the same material and the mass, which of the fol-
lowing configurations of flywheel will have maximum 
mass moment of inertia about the axis of rotation OO′ 
passing through the center of gravity. [2015]

O O ′

  

O O ′

 (A) Solid Cylinder (B) Rimmed wheel
 (C) Solid sphere (D) Solid cube

O

O ′

 

O O ′

 10. The value of moment of inertia of the section shown 
in the figure about the axis-XX is: [2015]

120

45

45

60

All dimensions
are in mm

X X
15

15

30

30

 (A) 8.5050 × 106 mm4 (B) 6.8850 × 106 mm4

 (C) 7.7625 × 106 mm4 (D) 8.5725 × 106 mm4

 11. A block of mass m rests on an inclined plane and is 
attached by a string to the wall as shown in the figure. The 
coefficient of static friction between the plane and the block 
is 0.25. The string can withstand a maximum force of 20 N. 
The maximum value of the mass (m) for which the string 
will not break and the block will be in static equilibrium is 
_______ kg. [2016]

Take cos q = 0.8 and sin q = 0.6

Acceleration due to gravity g = 10 m/s2

θ

 12. The figure shows cross-section of a beam subjected 
to bending. The area moment of inertia (in mm4) of this 
cross-section about its base is ________. [2016]
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10  

8 

10

10  

R4  R4  

All dimensions 
are in mm

 13. A system of particles in motion has mass center G 
as shown in the figure. The particle i has mass mi and its 
position with respect to a fixed point O is given by the 
position vector ri. The position of the particle with respect 
to G is given by the vector ri. The time rate of change of 

the angular momentum of the system of particles about G 
is (The quantity ��ri  indicates second derivative of ri with 
respect to time and likewise for ri). [2016]

O

ri

r

ρ

G

System boundarymi

(A)  Σi i i ir m× ��r   (B)  Σi i i im rr × ��
(C)  Σi i i ir m r× ��  (D)  Σi i i imr r× ��

Answer Keys

Exercises
Practice Problems 1
 1. A 2. B 3. B 4. A 5. A 6. B 7. B 8. C 9. C 10. A

Practice Problems 2
 1. C 2. A 3. B 4. A 5. D 6. D 7. A 8. A 9. B 10. B

Previous Years’ Questions
 1. C 2. B 3. C 4. B 5. D 6. 4.8 to 5 7. 56 to 59 8. A 9. B 10. B
 11. 5 12. 1873 to 1879 13. B
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