THEORY OF COMPUTATION TEST I

Number of Questions: 25

Directions for questions 1 to 25: Select the correct alternative from the given choices.

- 1. Which of the following is FALSE?
 - Any regular language is context free language. I:
 - II: There exists a DPDA (Deterministic Push Down Automata) for every CFL.
 - (A) I only (B) II only
 - (C) Both I and II (D) Neither I nor II
- 2. Which of the following figure correctly specifies the relation between regular languages (R), deterministic CFL's (DC) and CFL's (C)?

- 3. Consider the regular expression, $RE = ab^* + ba^*$. Then the reversal of RE, given by RE^R is equal to:
 - (A) $ab^* + ba^*$ (B) *a***b*

(C)
$$b^*a + a^*b$$
 (D) $(a^*b)(b^*a)$

- 4. The statement: 'For every regular language L, every subset of L is regular as well' is:
 - (A) TRUE
 - (B) False
 - (C) TRUE, only if L is CFG
 - (D) False, only if L is CFG.
- 5. Which of the following strings are not accepted by the language L (((010 \cup 10)*1)*)?
 - (A) 1 (B) 0101
 - (C) 10101110 (D) 01001011
- 6. Which of the following is FALSE?

(A)
$$(L_1^*)^* = L_1^*$$

(B)
$$L_1^* = (L_1 L_1)^*$$

- (C) If $L_1 \subset L_2$ then $L_1^* \subset L_2^*$
- (D) If L_1 is finite then it is regular.
- 7. Which of the following strings are generated by the regular expression,

		$R = (ab\varepsilon)^* (a$	(+ b)	ba?
(i)	3		(ii)	aba
(iii)	ababba		(iv)	abababa
(A)	(i), (iii)		(B)	(ii), (iii)
(C)	(ii), (iv)		(D)	(i), (iv)

- 8. The regular expression $R = (ab\varepsilon)^* ((a + b) \cdot \phi) ba$ is equivalent to
 - (A) $(ab\epsilon)^* (a + b) ba$ (B) (abε)* ba (C) *ba* (D) ø
- 9. Which of the following identity is FALSE for regular expressions?
 - (i) R + R = R(ii) $RR^* = R^*R$ (iii) $\varepsilon R = R\varepsilon = R$
 - (A) (i), (ii), (iii) (B) (i) only
 - (C) (ii), (iii) (D) None of these
- 10. Which of the following language is Regular?
 - I: $\{ww|w \in \{0, 1\}^*\}$ II: $\{w/w = w^R, w \in \{0, 1\}^*\}$

 - III: $\{ww^R/w \in \{0, 1^*\}\}$
 - IV: Set of all strings with un-equal number of 0's and 1's.
 - (A) I, III only (B) II, IV only
 - (D) None of the above (C) IV only
- 11. Consider the following NFA:

Which of the following gives the language accepted by given NFA?

- (A) All strings of the form a^k , $k \ge 0$.
- (B) All strings of the form $\{a^m a^n | m \ge 0, n \ge 0\}$
- (C) All strings of the form $\{a^m a^n \mid m \text{ is a multiple of } 2\}$ and *n* is multiple of 3}
- (D) All strings of the form $\{a^k \mid k \text{ is a multiple of } 2\}$ or 3}
- **12.** Which of the following is not context-free language?
 - (i) $\{a^k \mid k \text{ is a perfect square}\}$

Section Marks: 30

3.136 | Theory of Computation Test 1

- (ii) $\{a^{i} b^{j} c^{i} d^{j} | i, j \ge 0\}$ (iii) $\{a^{i} b^{2i} a^{i} | i \ge 0\}$ (A) (i), (ii) (B) (ii)
- (A) (i), (ii) (B) (ii), (iii) (C) (i), (iii) (D) (i), (ii), (iii)
- **13.** Consider the following DFA D:

Which of the following is TRUE?

- (i) *D* accepts all strings which contain the sub-word *'ab'* two times only.
- (ii) D accepts all strings which terminate with 'b'.
- (iii) The strings baabb, abbba are not in the language.
- (A) (i), (ii) only (B) (iii) only
- (C) (ii), (iii) (D) (i), (iii)
- 14. Consider the following FA:

Which of the following states are equivalent?

(1)	q_0, q_1	(11)	q_2, q_3	
(iii)	a a	(iv)	aa	

(111)	q_3, q_4	(\mathbf{IV})	q_0, q_4
(Λ)	(1) (1)	(D)	(::) $(:-)$

- (C) (iii) only (D) (ii), (iii)

15. Consider the following FA:

The number of states in the minimized FA is (A) 3 (B) 2

- (C) 1 (D) None of the above
- **16.** Which of the following represents a language in automata theory?

(i)	Σ^*	(ii)	3
(iii)	<u>ф</u>	(iv)	{ \$ }
(v)	{8}		
(A)	(i), (iii) only	(B)	(i), (iii), (v) only
(C)	(ii), (iv) only	(D)	(iv), (v) only
	· · · · · ·		· · · · ·

17. Consider the following NFA:

The number of states in its equivalent DFA is

- (A) 4 (B) 5
- (C) 6 (D) 7
- **18.** Which of the following language is regular?
 - (i) $\{x = y + z \mid x, y, z \text{ are binary integers and } x \text{ is the sum of } y \text{ and } z\}$
 - (ii) {w|w is a binary representation of a number greater than 3}
 - (A) (i) only (B) (ii) only
 - (C) Both (i) and (ii) (D) Neither (i) nor (ii)
- 19. Consider the following grammar:
 - $S \rightarrow PaP$
 - $P \rightarrow \epsilon |PaPbP|PbPaP|Pa|aP$

What is the language generated by this grammar over $\{a, b\}$?

- (A) Set of all strings with more a's than b's
- (B) Set of all strings with more b's than a's
- (C) Set of all strings with twice *a*'s than *b*'s
- (D) Set of all strings with equal number of a's and b's.
- 20. Consider a regular language L. A new language DELchar(L) = {W|W is some string from L with exactly one character deleted} is defined. Then DELchar(L) is (A) a regular language
 - (B) a CFG but not regular
 - (C) neither CFG nor regular
 - (D) not accepted by a PDA
- **21.** Consider the following grammar:
 - $S \rightarrow a Sb | P$
 - $P \rightarrow bP | Pa | \varepsilon$

Which of the following language represents the grammar?

- (A) $\{a^n b^n \mid n \in N\}$
- (B) $\{a^n b^m b^n \mid m, n \in N\}$
- (C) $\{a^n b^m a^p b^n | n, m, p \in N\}$
- (D) $\{a^n b^m \mid n > m\}$
- **22.** Let M_1 and M_2 are two DFA's with 5-tuple format as given below:

$$M_1 = \{Q_1, \Sigma, \delta_1, S_1, F_1\} M_2 = (Q_2, \Sigma, \delta_2, S_2, F_2)$$

where Q_1 , Q_2 are set of states; Σ is the alphabet set; δ_1 , δ_2 are transition functions; S_1 , S_2 are start states;

 F_1 , F_2 are final states. Then which of the following are necessary for $L(M_1) = L(M_2)$?

- (i) $Q_1 = Q_2$ (ii) $F_1 = F_2$ (iii) $S_1 = S_2$ (iv) $\delta_1 = \delta_2$
- (C) (i), (ii), (iii), (iv) (D) (iii), (iv)
- **23.** Which of the following language is both regular and context free?
 - (i) $\{a^{n}(bc)^{n}: n \ge 0\}$ (ii) $\{a^{n}a^{n}a^{n}: n \ge 0\}$ (A) (i) only (B) (ii) only
 - (C) Both (i) and (ii) (D) Neither (i) nor (ii)
- **24.** Match the following:

	List I	List II		
1	$r^*s + s$	А	r*	
2	φ*	В	φ	
3	*ع	С	З	
4	$(\varepsilon + r)^*$	D	r* s	

(A) 1-*a*, 2-*b*, 3-*c*, 4-*d*

- (B) 1-d, 2-c, 3-c, 4-a
- (C) 1-*a*, 2-*c*, 3-*c*, 4-*d*
- (D) 1-d, 2-c, 3-b, 4-a
- **25.** Consider the following FA:

What is the language accepted by above FA?

- (A) $\{w | w \in \{0, 1\}^* \text{ and } w \text{ do not end with } 1\}$
- (B) $\{w|w \in \{0, 1\}^*$ and w contains more zeros than 1's $\}$
- (C) $\{w|w \in \{0, 1\}^* \text{ and } w \text{ do not end } with 01\}$
- (D) $\{w|w \in \{0, 1\}^*$ and w do not have consequent 0's and 1's $\}$

Answer Keys									
1. B	2. B	3. C	4. B	5. C	6. B	7. C	8. D	9. D	10. D
11. D	12. D	13. B	14. D	15. A	16. B	17. B	18. B	19. A	20. A
21. C	22. C	23. B	24. B	25. C					

HINTS AND EXPLANATIONS

8.

1. Every regular language is a CFL but not vice versa. Every CFL has a PDA but that PDA need not be a deterministic PDA. Choice (B)

2. Regular \subset DCFL \subset CFL Choice (B)

3. Given regular expression,

$$RE = ab^{*} + ba^{*}$$

$$RE^{R} = (ab^{*} + ba^{*})^{R}$$

$$= (ab^{*})^{R} + (ba^{*})^{R}$$

$$= (b^{*})^{R} a^{R} + (a^{*})^{R} b^{R}$$

$$= (b^{R})^{*}a + (a^{R})^{*}b$$

$$= b^{*}a + a^{*}b$$
Choice (C)

- 4. Given statement is false. Ex: $L = \{a, b\}^*$; subset of L is $\{a^n b^n | n \in N\}$, which is not regular. Choice (B)
- 5. Given language,

 $L(((010 \cup 10)^{*1})^{*})$ The regular expressions which are accepted by 'L' are of the form $((m)^{*1})^{*}$, where $m = 010 \cup 10$. Any string in L is either ε or ends with '1'. Choice (C)

6. $L_1^* = (L_1 L_1)^*$ is false. Let $L_1 = \{a\}$ then L_1^* will have 'a' but $(L_1 L_1)^*$ do not have 'a'. 7. Given regular expression, $R = (abe)^* (a + b) ba$ ' ε ' is not accepted. 'aba' is accepted.

'ababba' is not accepted.

'abababa' is accepted.

Choice (C)

$$\phi R = R\phi = \phi$$
, so $(a + b)\phi = \phi$
 $ba = \phi (abs)^* \phi = \phi$

$$\phi \cdot ba = \phi, (ab\varepsilon)^* \cdot \phi = \phi$$
 Choice (D)

9. All the three are valid identities of regular expressions. Choice (D)

- **10.** None of the four languages is regular. Finite automata cannot check the equality of two substrings of a string. Choice (D)
- 11. Given NFA accepts number of a's which is a multiple of 2 or 3. Choice (D)
- 12. $\{a^k \mid k \text{ is a perfect square}\}$ This is not context-free. The PDA can't check whether a number is perfect square or not. $\{a^i b^j c^i d^j \mid i, j \ge 0\}$ Not context free. PDA can check the equality of *a*, *b* and *c*, *d* or *a*, *d* and *b*, *c* but not *a*, *c* and *b*, *d*. $\{a^i b^{2i} a^i \mid i \ge 0\}$ is also not recognized by a PDA.

Choice (B)

Choice (D)

3.138 | Theory of Computation Test 1

13. Given DFA accepts all strings which contain at least two sub-words '*ab*'. It do not accept *baabb*, *abbba*.

Choice (B)

14. In given FA, non-final states are $\{q_0, q_2, q_3, q_4\}$ and final state is $\{q_1\}$.

A state is equivalent to another state if both are either non-final or final states.

Also each transition from those states leads to either final state or non final state only.

- $\therefore q_0, q_1$ are not equivalent.
- q_0, q_4 , are not equivalent.

 q_2 , q_3 are equivalent as both are non-final states and q_2 , q_3 with 'a' reaches a final state and q_2 , q_3 with 'b' reaches a non-final state.

Similarly, q_3 , q_4 are also equivalent. Choice (D)

15. Given FA is the minimal FA. No minimization is possible. (:: With transition '1', both the non-final states are reaching a final and non-final state). Choice (A)

16. Σ^* , $\phi(\text{empty})$, $\{\epsilon\}$ are languages. Choice (B)

17. Given NFA,

The DFA equivalent to given NFA is given as,

	а	b
$\rightarrow [q_0]$	$[q_1]$	[q ₃]
$[q_1]$	$[q_1, q_2]$	$[q_1]$
$[q_3]$	[q ₃]	$[q_3, q_4]$
$[q_1, q_2]$	$[q_1, q_2]$	$[q_1]$
$[q_3, q_4]$	$[q_3]$	$[q_3, q_4]$

 \therefore Number of states in the equivalent DFA is 5.

Choice (B)

- **18.** (i) is not regular. (This will be shown using pumping Lemma). (ii) is regular and the expression is given as 0*1 (0+1) (0+1) (0+1)* Choice (B)
- **19.** Given grammar is

$$S \rightarrow PaP$$

 $P \rightarrow e|PaPbP|PbPaP|Pa|aF$

Consider some derivations:

1.	$S \rightarrow PaP$	2.	$S \rightarrow PaP$
	\rightarrow a		\rightarrow PaaP
			\rightarrow aa
3.	$S \rightarrow PaP$	4.	$S \rightarrow PaP$
	\rightarrow PaPbPaP		\rightarrow baa
	\rightarrow aba		
:: I	More <i>a</i> 's than <i>b</i> 's.		Choice (A)

20. DELChar (L) is a regular language. Choice (A)

$$S \rightarrow aSb|P$$

 $P \rightarrow bP|Pa|e$

The strings generated by given grammar are

 $S \rightarrow P$ $\rightarrow \varepsilon$ $S \rightarrow aSb$ $\rightarrow aPb$ $\rightarrow aPb$ $\rightarrow aPb$ $\rightarrow aPb$ $\rightarrow aab$ $S \rightarrow aSb$ $\rightarrow aPb$ $\rightarrow abPb$ $\rightarrow abPb$ $\rightarrow abb$ $S \rightarrow aSb$ $\rightarrow aSb$

→ aaSbb → aabbb

In the starting and end of the string we need to have equal number of *a*'s and *b*'s. in between there will be any number of *b*'s and *a*'s.

... The language accepted by given grammar is

$$\{a^n b^m a^p b^n \mid n, m, p \in N\}.$$
 Choice (C)

22.
$$L(M_1) = L(M_2)$$
 if $Q_1 = Q_2$; $F_1 = F_2$; $S_1 = S_2$;
 $\delta_1 = \delta_2$. Choice (C)

- 23. (i) is CFL but not regular.(Checking the equality of *a*'s and (*bc*) is not done using FA)
 - (ii) is regular and CFL. $\{a^{3n} | n \ge 0\}$ is regular.

 $(\varepsilon + r)^* = r^*$

$$= \varepsilon^* = \varepsilon$$
$$= r^*$$
Choice (B)

25. Given FA do not accept the strings which will terminate with '01'. Choice (C)