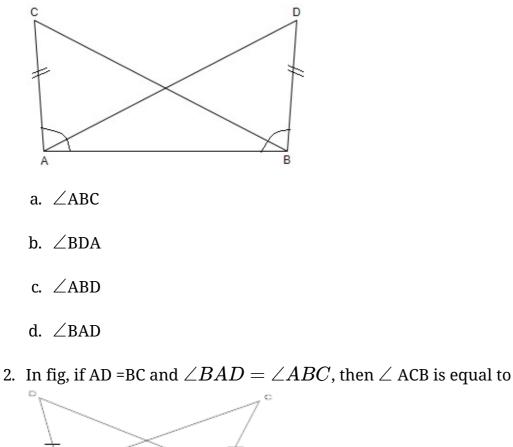
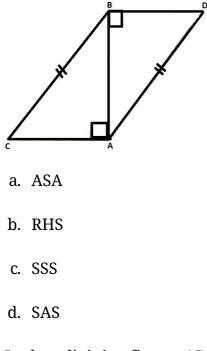
CBSE Test Paper 02 CH-7 Triangles

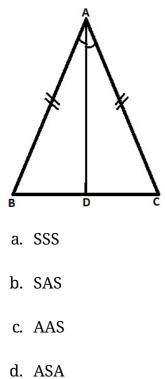
1. In the adjoining figure, AC = BD. If \angle CAB = \angle DBA, then \angle ACB is equal to



- a. ∠BDA
- b. ∠BAC
- c. ∠ABD
- d. ∠BAD
- 3. In the adjoining figure, BC = AD, CA \perp AB and BD \perp AB. The rule by which $\triangle ABC \cong \triangle BAD$ is



4. In the adjoining figure, AB = AC and AD is bisector of \angle A. The rule by which $\triangle ABD \cong \triangle ACD$



- 5. The sum of the interior angles of a triangle is:
 - a. 270^0
 - b. 360^0

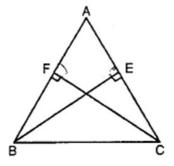
- c. 180^0
- d. 90^0
- 6. Fill in the blanks:

In \triangle PQR, if $\angle R = \angle P$, QR = 4cm and PR = 5cm, then the length of PQ is _____.

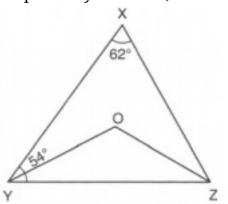
7. Fill in the blanks:

If the altitudes from two vertices of a triangle to the opposite sides are equal, then the type of triangle will be formed is _____.

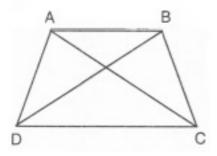
- 8. In a \triangle ABC, \angle B = 105°, \angle C = 50°. Find \angle A.
- 9. The sum of two angles of a triangle is equal to its third angle. Determine the measure of the third angle.
- 10. ABC is an isosceles triangle in which altitudes BE and CF are drawn to sides AC and AB respectively (See figure). Show that these altitudes are equal.



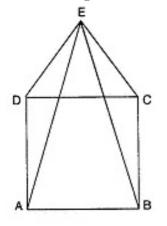
11. In a given figure, $\angle X = 62^{\circ}$, $\angle XYZ = 54^{\circ}$. If YO and ZO are bisectors of $\angle XYZ$ and $\angle XZY$ respectively of $\triangle XYZ$, find $\angle OZY$ and $\angle YOZ$.



12. In Fig., AD = BC and BD = CA. Prove that \angle DAB = \angle CBA.



- 13. ABCD is a parallelogram, if the two diagonals are equal, $\angle ABC = 90^{\circ}$
- 14. ABCD is a square and DEC is an equilateral triangle. Prove that AE = BE.



15. \triangle ABC and \triangle DBC are two triangles on the same base BC such that A and D lie on the opposite sides of BC, AB = AC and DB = DC. Show that AD is the perpendicular bisector of BC.

CBSE Test Paper 02 CH-7 Triangles

Solution

1. (b) ∠BDA

Explanation: In Triangle CAB and traingle DBA,

AC = BD and \angle CAB = \angle DBA (Given)

AB (Common)

```
Therefore, Triangle CAB and traingle DBA are congruent by SAS criteria
```

Therefore, $\angle ACB = \angle BDA$ (by CPCT)

2. (a) ∠BDA

Explanation: The two triangles are congruent according to (SAS CONGRUENCY) as AD = BC(given), \angle BAD = \angle ABC (given) and AB = AB (common) and hence corresponding angles are equal(cpct).

3. (b) RHS

Explanation:

```
In 	riangle ABC and 	riangle 	riangle BAC = 	riangle ABD
```

BAD, we have (Right angles)

BC = AD (Hypotentuses and Given)

AB = AB (common in both)

Hence, $riangle ABC\cong riangle BAD$ by RHS criterion.

4. (b) SAS

Explanation:

In \triangle ABD and \triangle ADC, we have

```
AB = AC (Given)
```

 $\angle BAD = \angle DAC$ (Since AD, bisects $\angle A$)

AD = AD (common in both)

```
Hence, 	riangle ABD\cong	riangle ACD by SAS
```

```
5. (c) 180^{\circ}
```

Explanation:

For a triangle,

Number of sides (n)= 3

Sum of interior angles = (n-2) x 180°

= (3 – 2) x 180°

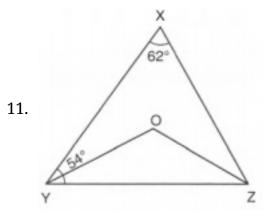
- = 1 x 180°
- = 180°
- 6. 4cm
- 7. isosceles
- 8. Using angle sum property in \triangle ABC, we obtain
 - $\angle A + \angle B + \angle C = 180^{\circ}$ $\Rightarrow \angle A + 105^{\circ} + 50^{\circ} = 180^{\circ} \Rightarrow \angle A = 180^{\circ} 155^{\circ} = 25^{\circ}$
- 9. Let ABC be a triangle such that $\angle A + \angle B = \angle C \dots (i)$ We know that $\angle A + \angle B + \angle C = 180^{\circ} \dots (ii)$ Putting $\angle A + \angle B = \angle C$ in (ii), we get $\angle C + \angle C = 180^{\circ} \Rightarrow 2\angle C = 90^{\circ}$

Thus, measure of the third angle is 90° .

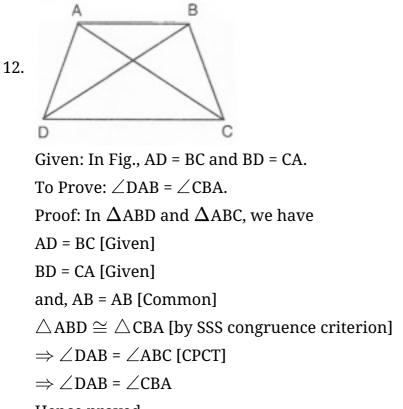
10. In \triangle ABE and \triangle ACF,

 $\angle A = \angle A$ [Common] $\angle AEB = \angle AFC = [90^{\circ}]$ AB = AC [Given] $\therefore \triangle ABE \cong \triangle ACF$ [By ASA congruency] $\therefore BE = CF$ [By C.P.C.T.]

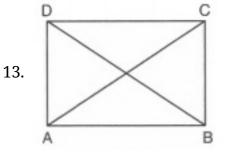
So Altitudes are equal.



Given: $\angle X = 62^{\circ}$, $\angle XYZ = 54^{\circ}$ and YO and ZO are bisectors of $\angle XYZ$ and $\angle XZY$ respectively To find: $\angle OZY$ and $\angle YOZ$. Consider \triangle XYZ, we have $\angle X + \angle Y + \angle Z = 180^{\circ}$ [By angle sum property for triangles] $62^{\circ} + 54^{\circ} + \angle XZY = 180^{\circ}$ $\Rightarrow \angle XZY = 180^{\circ} - 116^{\circ}$ $\Rightarrow \angle XZY = 64^{\circ}...(i)$ Now given that YO is the bisector of \angle XYZ, we get $\Rightarrow \angle XYZ = 2 \angle OYZ$ $\Rightarrow 2\angle OYZ = 54^{\circ}$ $\Rightarrow \angle OYZ = 27^{\circ}....(ii)$ Again given that ZO is the bisector of \angle XZY, we get $\Rightarrow \angle XZY = 2 \angle OZY$ $\Rightarrow 2 \angle OZY = 64^{\circ}$ [from (i)] $\Rightarrow \angle OZY = 32^{\circ}...(iii)$ In OYZ, we have, \angle OYZ + \angle OZY + \angle YOZ = 180° [By angle sum property for triangles] \Rightarrow 27° + 32° + \angle YOZ = 180° $\Rightarrow \angle$ YOZ = 180° - (27° + 32°) [from (ii) and (iii)] $\Rightarrow \angle YOZ = 180^{\circ} - 59^{\circ}$ $\Rightarrow \angle YOZ = 121^{\circ}$ Hence $\angle OZY = 32^\circ$, $\angle YOZ = 121^\circ$



Hence proved.



Given: ABCD is a parallelogram and AC = DB

To find: $\angle ABC$.

Solution: Since ABCD is a parallelogram. Therefore,

Consider \triangle ABD and \triangle ACB, we have

AD = BC [:: Opposite sides of a parallelogram are equal]

BD = AC [:: Opposite sides of a parallelogram are equal]

and, AB = AB [Common]

 $\triangle ABD \cong \ \triangle ACB$ [By SSS criterion of congruence]

 $\Rightarrow \angle BAD = \angle ABC [CPCT] ...(i)$

Now, AD || BC and transversal AB intersects them at A and B respectively. The sum of the interior angles on the same side of a transversal is 180°.

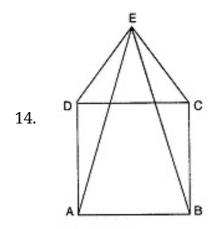
 $\therefore \angle BAD + \angle ABC = 180^{\circ}$

$$\Rightarrow \angle ABC + \angle ABC = 180^{\circ} [Using (i)]$$

$$\Rightarrow 2\angle ABC = 180^{\circ}$$

 $\Rightarrow \angle ABC = 90^{\circ}$

Hence, the measure of $\angle ABC$ is 90°.



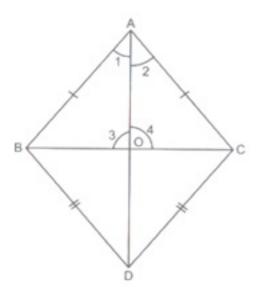
In DEDA and DECB,

DE = CE [Sides of an equilateral triangle] AD = BC [Sides of a square] \angle EDA = \angle ECB[As \angle EDC = \angle ECD and \angle ADC = \angle BCD] \angle EDC + \angle ADC = \angle ECD + \angle BCD[By addition] $\Rightarrow \angle$ EDA = \angle ECB \therefore DEDA \cong DECB . . . [By SAS property] \therefore AE = BE . . . [c.p.c.t.]

15. Given: ΔABC and ΔDBC are on the same base BC.

Also given, AB = AC and BD = DC.....(1)

To prove: AD is the perpendicular bisector of BC. i.e., AD \perp BC & OB = OC



Proof: In ΔBAD and ΔCAD , we have :-

AB = AC [from (1)]

BD = CD [from (1)]

AD = AD [Common side]

So, by SSS criterion of congruency of triangles, we have

 $\Delta BAD \cong \Delta CAD$

 $\Rightarrow ot DAB = ot DAC$ [CPCT]

 $\therefore \angle 1 = \angle 2$ (2)

Now, in $\Delta BAO\,$ and $\Delta CAO\,$, we have :-

AB = AC [from (1)]

igstarrow 1 = igstarrow 2 [From (2)]

AO = AO [Common side]

So, by SAS criterion of congruency of triangles, we have

 $\Delta BAO \cong \Delta CAO$

 $\therefore BO = CO$ [CPCT](3)

&,
$$\angle AOB = \angle AOC$$
 [CPCT]

$$\Rightarrow \angle 3 = \angle 4$$
(4)

But, ${igstarrow}3+{igstarrow}4=180^\circ$ [angles on the same line]

$$\Rightarrow \angle 3 + \angle 3 = 180^\circ$$
 [from (4)]
 $\Rightarrow 2\angle 3 = 180^\circ$
 $\Rightarrow \angle 3 = \frac{180^\circ}{2} = 90^\circ$
 $\Rightarrow AD \perp BC$ (5)

Hence ,from (3) & (5)

AD is perpendicular bisector of BC [:: BO = CO & $AD \perp BC$]

Hence, proved.