CBSE Test Paper 04 Chapter 7 Coordinate Geometry

- 1. The centroid of a triangle whose vertices are (3, -7), (-8, 6) and (5, 10) is (1)
 - a. (0, 3)
 - b. (1, 3)
 - c. (3, 3)
 - d. (0, 9)
- 2. If the point P(2, 1) lies on the line segment joining points A(4, 2) and B(8, 4), then AP is equal to **(1)**

a.
$$AP = \frac{1}{4}AB$$

b. $AP = \frac{1}{2}AB$
c. $AP = \frac{1}{3}AB$
d. $AP = PB$

- 3. If the points (x, y), (1, 2) and (7, 0) are collinear, then the relation between 'x' and 'y' is given by **(1)**
 - a. 3x y 7 = 0
 - b. 3x + y + 7 = 0
 - c. x + 3y 7 = 0
 - d. x 3y + 7 = 0
- 4. The points A(1, 2), B(5, 4), C(3, 8) and D(-1, 6) are the vertices of a (1)
 - a. Rectangle
 - b. Rhombus
 - c. Square
 - d. Parallelogram
- 5. The triangle whose vertices are (3, 0), (1, 3) and (4, 1) is ______ triangle. (1)
 - a. Obtuse triangle
 - b. equilateral
 - c. right angled isosceles
 - d. scalene
- 6. If 18, a ,b ,- 3 are in A.P., then find a + b. (1)

- 7. Find the radius of the circle whose end points of diameter are (24,1) and (2,23)] (1)
- 8. Find the distance between the following pairs of points: (2, 3), (4,1) (1)
- 9. Find the coordinates of the point on y-axis which is nearest to the point (- 2, 5). (1)
- 10. What is the distance between the points A(c,0) and B(0, c)? (1)
- 11. Use distance formula to show that the points A (- 2,3), B (1, 2) and C (7,0) are collinear.(2)
- 12. If the mid-point of the line joining (3,4) and (k, 7) is (x, y) and 2x + 2y + 1 = 0 find the value of k. **(2)**
- 13. Show that the mid-point of the line segment joining the points (5, 7) and (3, 9) is also the mid-point of the line segment joining the points (8, 6) and (0, 10). **(2)**
- 14. If (5,2), (- 3,4) and (x, y) are collinear, show that x + 4y 13 = 0. (3)
- 15. If the point C(-1, 2) divides the line segment AB in the ratio 3 : 4, where the coordinates of A are (2, 5), find the coordinates of B. **(3)**
- 16. The three vertices of a parallelogram ABCD taken in order are A (-1, 0), B(3, 1) and C(2, 2). Find the height of a parallelogram with AD as its base. (3)
- 17. Find the ratio in which the line segment joining the points A(3, 3) and B(- 2,7) is divided by the x-axis. Also, find the coordinates of the point of division. (3)
- 18. Find the point on the x-axis which is equidistant from (2,-5) and (-2,9) (4)
- 19. The points A (x_1 , y_1), B (x_2 , y_2) and C (x_3 , y_3) are the vertices of \triangle ABC.
 - i. The median from A meets BC at D. Find the coordinates of the point D.
 - ii. Find the coordinates of the point P on AD such that AP : PD = 2:1.
 - iii. Find the points of coordinates Q and R on medians BE and CP respectively such that BQ : QE = 2 :1 and CR : RP = 2 :1.
 - iv. What are the coordinates of the centroid of the triangle ABC? (4)
- 20. Find the coordinates of the points Q on the x−axis which lies on the perpendicular bisector of the line segment joining the points A(−5, −2) and B(4, −2). Name the type of triangle formed by the points Q, A and B. **(4)**

CBSE Test Paper 04 Chapter 7 Coordinate Geometry

Solution

1. a. (0, 3)

Explanation: Given: $(x_1, y_1) = (3, -7), (x_2, y_2) = (-8, 6)$ and $(x_3, y_3) = (5, 10)$ Coordinates of Centroid of triangle = $x = \frac{x_1 + x_2 + x_3}{3}$ and $y = \frac{y_1 + y_2 + y_3}{3}$ $\therefore x = \frac{3 - 8 + 5}{3} = \frac{8 - 8}{3} = 0$ and $y = \frac{-7 + 6 + 10}{3} = \frac{9}{3} = 3$ Therefore, the coordinates of centroid of triangle are (0, 3).

2. b. $AP = \frac{1}{2}AB$

Explanation: AP =
$$\sqrt{(2-4)^2 + (1-2)^2}$$

= $\sqrt{4+1} = \sqrt{5} = \text{units}$
AB = $\sqrt{(8-4)^2 + (4-2)^2}$
= $\sqrt{16+4} = \sqrt{20} = 2\sqrt{5}$ units
Here AB = 2 × AP
 \therefore AP = $\frac{1}{2}$ AB

3. c.
$$x + 3y - 7 = 0$$

Explanation: Given: $(x_1, y_1) = (x, y), (x_2, y_2) = (1, 2)$ and $(x_3, y_3) = (7, 0)$ and these are collinear

$$egin{aligned} & \therefore rac{1}{2} |x_1 \left(y_2 - y_3
ight) + x_2 \left(y_3 - y_1
ight) + x_3 \left(y_1 - y_2
ight) | = 0 \ & \Rightarrow rac{1}{2} |x \left(2 - 0
ight) + 1 \left(0 - y
ight) + 7 \left(y - 2
ight) | = 0 \ & \Rightarrow rac{1}{2} |2x - y + 7y - 14| = 0 \ & \Rightarrow 2x + 6y - 14 = 0 \Rightarrow x + 3y - 7 = 0 \end{aligned}$$

4. c. Square

Explanation: Given: The points A(1, 2), B(5, 4), C(3, 8) and D(-1, 6)

$$\therefore AB = \sqrt{(5-1)^2 + (4-2)^2} = \sqrt{16+4} = 2\sqrt{5} \text{ units}$$

$$BC = \sqrt{(3-5)^2 + (8-4)^2} = \sqrt{4+16} = 2\sqrt{5} \text{ units}$$

$$CD = \sqrt{(-1-3)^2 + (6-8)^2} = \sqrt{16+4} = 2\sqrt{5} \text{ units}$$

AD = $\sqrt{(-1-1)^2 + (6-2)^2} = \sqrt{4+16} = 2\sqrt{5}$ units Therefore the 4 sides AB, BC, CD and DA are equal and the diagonal AC = $\sqrt{(3-1)^2 + (8-2)^2} = \sqrt{4+36} = 2\sqrt{10}$ units and BD = $\sqrt{(-1-5)^2 + (6-4)^2} = \sqrt{36+4} = 2\sqrt{10}$ units Therefore diagonals AC and BD are equal Since, all 4 sides are equal and both diagonals are also equal. Therefore, the given quadrilateral is a square.

5. c. right angled isosceles

Explanation: Let A (-3, 0), B(1, -3) and C (4, 1) are the vertices of a triangle ABC. $\therefore AB = \sqrt{(1+3)^2 + (-3-0)^2} = \sqrt{16+9} = \sqrt{25} = 5 \text{ units}$ $BC = \sqrt{(4-1)^2 + (1+3)^2} = \sqrt{9+16} = \sqrt{25} = 5 \text{ units}$ $CA = \sqrt{(-3-4)^2 + (0-1)^2} = \sqrt{49+1} = \sqrt{50} = 5\sqrt{2} \text{ units}$ Now, check if $AC^2 = AB^2 + BC^2$ $\Rightarrow (5\sqrt{2})^2 = (5)^2 + (5)^2$ $\Rightarrow 50 = 50$

Therefore, ΔABC is a right-angled triangle.and also AB = BC = 5 units Therefore triangle ABC is a right-angled isosceles triangle

6. Since 18, a, b, and - 3 are in A.P., Then

a - 18 = - 3 - b or, a + b = - 3 + 18 or, a + b = 15

7. $(x_1, y_1) = (24,1)$ and $(x_2, y_2) = (2,23)$

Diameter of Circle = $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(2 - 24)^2 + (23 - 1)^2}$ = $\sqrt{(-22)^2 + (22)^2} = \sqrt{(22)^2(1 + 1)}$ = $22\sqrt{2}$ units Therefore , Radius of circle, $r = \frac{d}{2} = \frac{22\sqrt{2}}{2} = 11\sqrt{2}$ units

8. Applying Distance Formula to find distance between points (2, 3) and (4,1), we get d = $\sqrt{(4-2)^2 + (1-3)^2} = \sqrt{(2)^2 + (-2)^2} = \sqrt{4+4} = \sqrt{8} = 2\sqrt{2}$ units 9. The point on y-axis that is nearest to the point(-2,5) is (0,5).

10. AB =
$$\sqrt{(0-c)^2 + (-c-0)^2}$$

= $\sqrt{c^2 + c^2}$
= $\sqrt{2c^2}$
= $\sqrt{2c}$

11. AB = $\sqrt{(1+2)^2 + (2-3)^2} = \sqrt{9+1} = \sqrt{10}$ BC = $\sqrt{(7-1)^2 + (0-2)^2} = \sqrt{36+4} = \sqrt{40} = 2\sqrt{10}$ AC = $\sqrt{(7+2)^2 + (0-3)^2} = \sqrt{81+9} = \sqrt{90} = 3\sqrt{10}$ Since AB + AC = $= \sqrt{10} + 2\sqrt{10} = (1+2)\sqrt{10} = 3\sqrt{10} = AC$ Hence, the points A, B and C are colinear.

12.
(x, y)
Since, (x, y) is the mid-point

$$x = \frac{3+k}{2}, y = \frac{4+7}{2} = \frac{11}{2}$$

Again,
 $2x + 2y + 1 = 0$
 $\Rightarrow 2 \times \frac{(3+k)}{2} + 2 \times \frac{11}{2} + 1 = 0$
 $\Rightarrow 3 + k + 11 + 1 = 0$
 $\Rightarrow 3 + k + 12 = 0$
 $\Rightarrow k + 15 = 0$
 $\Rightarrow k = -15$

13. Let A(5, 7), B(3, 9), C(8, 6) and D(0, 10) be the given points. Therefore,by mid-point formula,we have,

7)

- Coordinates of the mid-point of AB are $\left(\frac{5+3}{2}, \frac{7+9}{2}\right) = (4,8)$ Coordinates of the mid-point of CD are $\left(\frac{8+0}{2}, \frac{6+10}{2}\right) = (4,8)$ Therefore, the mid-point of AB = mid point of CD.
- 14. Since the points are collinear

The area of triangle = 0 \therefore Area of triangle =0 $\frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$

$$\frac{1}{2}[5(4-y) + (-3)(y-2) + x(2-4)] = 0$$

= $\frac{1}{2}[20 - 5y - 3y + 6 + (-2x)] = 0$
 $\frac{1}{2}[-2x - 8y + 26] = 0$
x + 4y - 13 = 0

Hence Proved.

15. Given: A (2,5) and C(-1,2)

Let the coordinate of the point B be (a,b).

it is given that AC : BC = 3:4

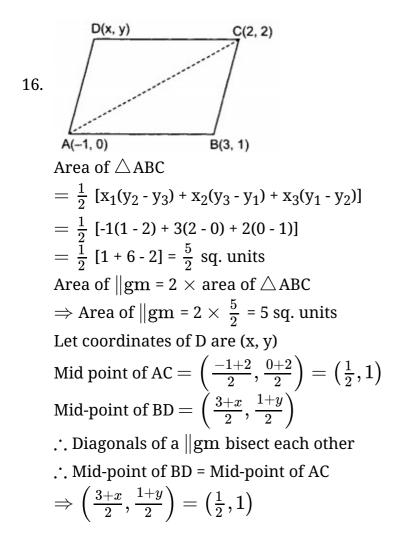
Then, by section formula, coordinates of C are given by

$$-1 = \frac{3 \times a + 4 \times 2}{3 + 4} \text{ and } 2 = \frac{3 \times b + 4 \times 5}{3 + 4}$$

$$\therefore -7 = 3a + 8 \text{ and } 14 = 3b + 20$$

$$\therefore 3a = -15 \text{ and } 3b = -6$$

Hence, coordinates of B are (-5,-2).



$$\Rightarrow \frac{3+x}{2} = \frac{1}{2} \text{ and } \frac{1+y}{2} = 1$$

$$\Rightarrow x = -2$$

$$\Rightarrow y = 1$$

Now AD = $\sqrt{(-1+2)^2 + (0+1)^2} = \sqrt{2}$
Also area of $||\text{gm}| = \text{base} \times \text{height}$

$$\Rightarrow AD \times \text{height} = 5$$

$$\Rightarrow \sqrt{2} \times \text{height} = 5$$

$$\Rightarrow \text{height} = \frac{5}{\sqrt{2}} = \frac{5}{2}\sqrt{2} \text{ units.}$$

- 17. According to the question,
 - A (3,-3) and B (- 2, 7)

On the x-axis, the y-coordinate is zero

So, let the point be (x, 0)

Let the ratio be k : 1

$$(x,0) = \left(\frac{-2k+3}{k+1}, \frac{7k-3}{k+1}\right)$$

$$\Rightarrow \frac{7k-3}{k+1} = 0$$

$$\Rightarrow 7k-3=0$$

$$\Rightarrow k = \frac{3}{7}$$

$$\therefore \text{ The line is divided in the ratio of 3:7}$$

$$\Rightarrow \frac{-2k+3}{k+1} = x$$

$$\Rightarrow \frac{-2\times\frac{3}{7}+3}{\frac{7}{7}+1} = x$$

$$\Rightarrow \frac{-\frac{6}{7}+3}{\frac{7}{10}} = x$$

$$\Rightarrow \frac{\frac{-6+21}{7}}{\frac{10}{7}} = x$$

$$\Rightarrow \frac{\frac{15}{7}}{\frac{10}{7}} = x$$

$$\Rightarrow x = \frac{3}{2}$$

Coordinate of y is 0 at x-axis,

 \therefore The coordinates of the point at which x axis divides AB is $\left(\frac{3}{2},0\right)$ in ratio of 3:7.

18. Let the point of x-axis be P(x, 0)

Given A(2, -5) and B(-2, 9) are equidistant from P
That is PA = PB
Hence
$$PA^2 = PB^2 \rightarrow (1)$$

Distance between two points is $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2]}$
PA = $\sqrt{[(2 - x)^2 + (-5 - 0)^2]}$
PA² = 4 - 4x + x² + 25
= x² - 4x + 29
Similarly, PB² = x² + 4x + 85
Equation (1) becomes
x² - 4x + 29 = x² + 4x + 85
- 8x = 56
x = -7

Hence the point on x-axis is (-7, 0)

- 19. A(x₁, y₁), B(x₂, y₂), C(x₃, y₃) are the three vertices of Δ ABC.
 - i. Median from A meets BC at D.

... D is the mid-point of BC.

.
$$\therefore$$
 Coordinates of $D=\left(rac{x_2+x_3}{2},rac{y_2+y_3}{2}
ight)$

ii. P divides AD in the ratio 2 : 1.

:. Coordinates of P =
$$\left(\frac{2 \times \frac{x_2 + x_3}{2} + 1 \times x_1}{2 + 1}, \frac{2 \times \frac{y_2 + y_3}{2} + 1 \times y_1}{2 + 1}\right)$$

= $\left(\frac{x_1 + x_2 + x_3}{2}, \frac{y_1 + y_2 + y_3}{3}\right)$

iii. Median from B meet AC at E and median from C meets AB at F.

: E is the mid-point of AC and F is the mid-point of AB.

$$\therefore$$
 Coordinates of $E=\left(rac{x_1+x_3}{2},rac{y_1+y_3}{2}
ight)$ and Coordinates of $F=\left(rac{x_1+x_2}{2},rac{y_1+y_2}{2}
ight)$

Q divides BE in the ratio 2 : 1.

:. Coordinates of Q =
$$\left(\frac{2 \times \frac{x_1 + x_3}{2} + 1 \times x_2}{2 + 1}, \frac{2 \times \frac{y_1 + y_3}{2} + 1 \times y_2}{2 + 1}\right)$$

= $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$

R divides CF in the ratio 2 : 1.

$$\therefore \text{ Coordinates of R} = \left(\frac{2 \times \frac{x_1 + x_2}{2} + 1 \times x_3}{2 + 1}, \frac{2 \times \frac{y_1 + y_2}{2} + 1 \times y_3}{2 + 1}\right)$$
$$= \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$

- iv. Coordinates of centroid of $\Delta ABC = \left(rac{x_1+x_2+x_3}{2}, rac{y_1+y_2+y_3}{3}
 ight)$
- 20. Let Q(x, 0) be a point on x–axis which lies on the perpendicular bisector of AB. Therefore, QA = QB

$$⇒ QA2 = QB2
⇒ (-5 - x)2 + (-2 - 0)2 = (4 - x)2 + (-2 - 0)2
⇒ (x + 5)2 + (-2)2 = (4 - x)2 + (-2)2
⇒ x2 + 25 + 10x + 4 = 16 + x2 - 8x + 4
⇒ 10x + 8x = 16 - 25
⇒ 18x = -9
⇒ x = $\frac{-9}{18} = \frac{-1}{2}$
Hence, the point Q is $\left(\frac{-1}{2}, 0\right)$.
Now, QA² = $\left[-5 + \frac{1}{2}\right]^{2} + \left[-2 - 0\right]^{2}$
= $\left(\frac{-9}{2}\right)^{2} + \frac{4}{1}$
⇒ QA² = $\frac{81}{4} + \frac{4}{1} = \frac{81 + 16}{4} = \frac{97}{4}$
⇒ QA² = $\left(\frac{4}{4} + \frac{1}{2}\right)^{2} + (-2 - 0)^{2} = \left(\frac{9}{2}\right)^{2} + (-2)^{2}$
⇒ QB² = $\frac{81}{4} + \frac{4}{1} = \frac{81 + 16}{4} = \frac{97}{4}$
⇒ QB² = $\frac{81}{4} + \frac{4}{1} = \frac{81 + 16}{4} = \frac{97}{4}$
⇒ QB = $\sqrt{\frac{97}{4}} = \frac{\sqrt{97}}{2}$ units
and AB = $\sqrt{(4 + 5)^{2} + [-2 - (-2)]^{2}} = \sqrt{(9)^{2}} = 9$ units
As QA = QB
So, ∆ QAB is an isosceles Δ.$$