HOTS (Higher Order Thinking Skills)

Que 1. Prove that sum of any two sides of a triangle is greater than twice the median with respect to the third side.

Sol. Given: A \triangle ABC in which AD is a median.

To prove: AB + AC > 2AD

Construction: Produce AD to E such that

AD = DE. Join EC

Proof: In triangles ADB and EDC, we have

	AD = DE	(By construction)	Fig. 7.35
	BD = DC	(∴ AD is the median)	
and,	∠ADB = ∠EI	DC (Vertically opposite angle	s)
	$\Delta \text{ADB} \cong \Delta \text{EDC}$	(SAS congruence criterion)	
⇒	AB = EC	(CPCT)	(i)
In ∆ Al	FC, we have		

AC + EC > AE

[As sum of the two sides of a triangle is greater than the third side]

Also, AE = 2AD(by construction) ...(iii)

Using (i) and (iii) in (ii), we get

AC + AB>2AD

Que 2. ABC is a triangle with $\angle B = 2 \angle C.D$ is a point on BC such that AD bisects $\angle BAC$ and AD = CD. Prove that $\angle BAC = 72^{\circ}$.

...(ii)

Sol. Given, In \triangle ABC, \angle B = 2 \angle C, AD = CD And AD bisects ∠BAC. Since AD = CD⇒ ∠C = ∠DAC But $\angle B = 2 \angle C$ ∠B = 2∠DAC ⇒ $\angle B = \angle A = x$ (say) [∴ AD in bisector of ⇒ ∠BAC]

D

Now, $\angle A + \angle B + \angle C = 180^{\circ}$	[Angle Sum Property]
---	----------------------

$$x + x + \frac{\angle B}{2} = 180^{\circ}$$

$$\Rightarrow \qquad 2x + \frac{x}{2} = 180^{0} \qquad \Rightarrow \qquad \frac{4x + x}{2} = 180^{0}$$

 \Rightarrow

$$\frac{5x}{2} = 180^{\circ} \qquad \Rightarrow \qquad x = \frac{180^{\circ} \times 2}{5}$$

 \Rightarrow

⇒

Que 3. O is a point in the interior of a square ABCD such that OAB is an equilateral triangle. Show that \triangle OCD is an isosceles triangle.

∠BAC = 72⁰

Sol. Given: $\triangle OAB$ is an equilateral triangle

To prove: $\triangle COD$ is an isosceles triangle

∠A = 72⁰

Since ΔAOB is an equilateral triangle

 $\therefore \qquad \angle OAB = \angle OBA = 60^0 \qquad \dots (i)$

Also, $\angle DAB = \angle CBA = 90^{\circ}$

Subtracting (i) from (ii), we get

$$\angle DAB - \angle OAB = \angle CBA - \angle OBA = 90^{\circ} - 60^{\circ}$$

i.e., $\angle DAO = \angle CBO = 30^{\circ}$

Now, in $\triangle AOD$ and $\triangle BOC$

AO =	BO	(given)
∠DAC) = ∠CBO	(proved above)
AD =	BC	(ABCD is a square)
ΔΑΟΕ	$D \cong \Delta BOC$	(By SAS congruence)

 $\Rightarrow \quad DO = OC \qquad (CPCT)$

Since, in $\triangle COD$, CO = OD

:.

 \therefore ΔCOD is an isosceles triangle.

...(ii) (: ABCD is a square)

Que 4. Prove that in a triangle, other than an equilateral triangle, angle opposite the longest side is greater than $\frac{2}{3}$ of a right angle.

Sol. Let $\triangle ABC$ be a triangle in which AC is longest side.

⇒	∠B is largest angle	
⇒	∠B > ∠A	(i)

...(ii) And ∠B > ∠C

Adding (i) and (ii), we get

- $\Rightarrow \angle B + \angle B > \angle A + \angle C$
- \Rightarrow 2 \angle B> \angle A + \angle C

$$\Rightarrow \qquad 2\angle B + \angle B > \angle A + \angle B + \angle C$$

- \Rightarrow 3∠B> 180⁰ \Rightarrow ∠B> 60⁰
- $\angle B > \frac{2}{3} x$ right angle. [Note: $60^{\circ} = \frac{2}{3} \times 90^{\circ}$] \Rightarrow

