Alkali Metals

- Group 1 elements: lithium, sodium, potassium, rubidium, caesium, and francium
- Called alkali metals because their hydroxides are alkaline in nature

Electronic Configuration

- General outer electronic configuration is ns¹.
- The electronic configurations of the alkali metals are given in the following table.

Element	Electronic configuration
Lithium (Li)	1 <i>s</i> ² 2 <i>s</i> ¹
Sodium (Na)	1 <i>s</i> ² 2s² 2 <i>p</i> ⁶ 3 <i>s</i> ¹
Potassium (K)	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ² 3 <i>p</i> ⁶ 4 <i>s</i> ¹
Rubidium (Rb)	1s² 2s² 2p ⁶ 3s² 3p ⁶ 3d ¹⁰ 4s² 4p ⁶ 5s¹
Caesium (Cs)	[Xe] 6s ¹
Francium (Fr)	[Rn] 7s ¹

Atomic and Ionic Radii

• Increase with increase in atomic number (i.e. on moving down the group)

Ionization Enthalpy

- Low
- Decreases on moving down the group, which is because of the following reasons:
- Increase in size
- Increase in screening of outermost electrons from the nuclear charge

Hydration Enthalpy

• Decreases on moving down the group

Physical Properties

- Silvery white, soft, and light metals
- Density increases down the group. (exception: Na is denser than K)
- Low melting and boiling points Reason: weak metallic bond due to the presence of only one electron in the outermost shell
- They and their salts impart characteristic colour to an oxidising flame. Reason: after getting heat from the flame, the valence electrons get excited to higher energy level.

Then they come back to ground state by emitting radiation in the visible region.

- Crimson red Lithium (Li)
- Golden yellow Sodium (Na)
- Pale violet Potassium (K)

Chemical Properties

- Highly reactive because of
- large size
- low ionization enthalpy
- Reactivity increases down the group
- Reaction with air:
- Tarnish in dry air
- Reason: formation of oxides and then hydroxides with moisture

• Burns vigorously in air

 $\begin{array}{l} 4\text{Li} + \text{O}_2 \longrightarrow 2\text{Li}_2\text{O} \text{ (monoxide)} \\ 2\text{Na} + \text{O}_2 \longrightarrow \text{Na}_2\text{O}_2 \text{ (Peroxide)} \\ \text{M} + \text{O}_2 \longrightarrow \text{MO}_2 \text{ (superoxide)} \\ \text{(M} = \text{K, Rb, Cs)} \end{array}$

- Kept in kerosene oil Reason: highly reactive towards air and water
- Li reacts directly with nitrogen of air to form lithium nitride (Li₃N).
- Reaction with water:

 $2M + 2H_2O \longrightarrow 2M^+ + 2OH^- + H_2$

(M = alkali metal)

- Reaction with acids:
- Reacts vigrously with even dil. acids to give out hydrogen gas.
- $2M + 2HCI \rightarrow 2MOH$
- Reaction with dihydrogen:

 $2M + H_2 \longrightarrow 2MH$ (hydride)

- Alkali metal hydrides are ionic solids with high melting point.
- Reaction with acids: React voilently with dilute acids

 $2 \text{ M} + 2 \text{ HCI} \rightarrow 2 \text{ MCI} + H_2$

- Reaction with halogen:
- Reacts vigorously to form halides which are ionic in nature (exception: LiX is some what covalent – Reason: High polarizing capability of Li⁺ ion)
- Lil is the most covalent.
- Reducing nature
- Strong reducing agent

- Form unipositive ions easily, $M(g) \rightarrow M + (g) + e^{-}$
- Li is the strongest and Na is the weakest.

Solutions in liquid ammonia

- Dissolve in liquid ammonia to give conducting deep blue solution
- $\mathbf{M} + (\mathbf{x} + \mathbf{y})\mathbf{N}\mathbf{H}_{3} \longrightarrow [\mathbf{M}(\mathbf{N}\mathbf{H}_{3})_{\mathbf{x}}][\mathbf{e}(\mathbf{N}\mathbf{H}_{3})_{\mathbf{y}}]^{-1}$
- Reason for blue colour The ammoniated electron absorbs energy in the visible region of light.
- The solution is paramagnetic in nature and liberates hydrogen to form amide.
- $M^{+}_{(am)} + e^{-} + NH_{3(I)} \longrightarrow MNH_{2(am)} + \frac{1}{2}H_{2(g)}$ ('am' stands for solution in ammonia)
- Its concentrated solution is bronze in colour and diamagnetic in nature.
- The metals also react with alcohol, gaseous ammonia, and alkynes

Uses

- In making useful alloys. For example, it is used with lead in making 'white metal' bearings for motor engines
- Li is used in making electrochemical cells.
- Na is used in making Na/Pb alloy, which are used to make organolead compounds PbEt₄ and PbMe₄. These compounds were earlier used as anti-knock additives to petrol.
- Liquid Na is used as a coolant in fast breeder nuclear reactors.
- K plays an important role in biological systems
- KCI used as a fertilizer
- KOH in the manufacture of soft soap and as an absorbent of CO2
- Cs is used in devising photoelectric cells.

Oxides and Hydroxides of Alkali Metals

• Alkali metals form oxides on combustion.

- Li Lithium oxide (Li₂O) (and some lithium peroxide Li₂O₂)
- Na Sodium peroxide (Na₂O₂) (and some sodium superoxide NaO₂)
- K, Rb, Cs Superoxides, MO₂
- The stability of peroxides or superoxides increases on moving down the group (i.e., with increase in size).
- Reasons Larger the cations, more is the stabilization of large anions through lattice energy.
- Oxides are hydrolysed by water to form hydroxides.

$$\begin{split} \mathbf{M}_{2}\mathbf{O} + \mathbf{H}_{2}\mathbf{O} &\longrightarrow \mathbf{2M}^{+} + \mathbf{2OH}^{-} \\ \mathbf{M}_{2}\mathbf{O}_{2} + \mathbf{2H}_{2}\mathbf{O} &\longrightarrow \mathbf{2M}^{+} + \mathbf{2OH}^{-} + \mathbf{H}_{2}\mathbf{O}_{2} \\ \mathbf{2MO}_{2} + \mathbf{2H}_{2}\mathbf{O} &\longrightarrow \mathbf{2M}^{+} + \mathbf{2OH}^{-} + \mathbf{H}_{2}\mathbf{O}_{2} + \mathbf{O}_{2} \end{split}$$

Oxides and peroxides – Colourless when pure

Superoxides - Yellow or orange

- Na₂O₂ Oxidizing agent in inorganic chemistry
- Superoxide O_2^- is paramagnetic.
- Reason Presence of one unpaired electron in π^*2p molecular orbital
- Hydroxides obtained by reaction of oxides with water White crystalline solids
- Hydroxides of alkali metals are the strongest of all the bases.
- Hydroxides dissolve freely in water with evolution of heat.

Halides

• Preparation:

By the reaction of aqueous hydrohalic acid (HX) with appropriate oxide, hydroxide or carbonate

• Physical properties:

- Colourless crystalline solids
- Have high melting points
- Trend in melting and boiling point:

Fluoride > Chloride > Bromide > Iodide

- Soluble in water
- LiF is less soluble.

Reason: High lattice enthalpy

• Csl is less soluble.

Reason: Low hydration enthalpy of the ions

- High negative enthalpies of formation ($\Delta_f H_{\ominus}$)
- Trend:

For fluorides – $\Delta_f H^{\ominus}$ is less negative down the group.

For chlorides, bromides, and iodides – $\Delta_t H_{\Theta}$ is more negative down the group.

For a given metal -

 $Fluoride \rightarrow Chloride \rightarrow Bromide \rightarrow Iodide$

 $\Delta_f H^{\Theta}$ becomes less negative

Salts of oxo-acids

- An oxo-acid is an acid which
- contains oxygen
- has at least one hydrogen atom attached to oxygen
- contains at least one other atom
- has the hydroxyl group and the oxo group attached to the same atom

Examples: Carbonic acid (H₂CO₃), sulphuric acid (H₂SO₄), nitric acid (HNO₃), phosphoric acid (H₃PO₄)

• Preparation:

By the reaction of alkali metals with oxo-acids

- Physical properties
- Soluble in water
- Thermally stable: Carbonates M₂CO₃; and in most cases, hydrogen carbonates (MHCO₃) are highly thermally stable

Exception (I) – $Li_2 CO_3$ is less stable to heat.

Reason: Small size of Li – polarization of large CO_3^{2-} ion – formation of more stable Li₂O and CO₂

Exception (II) – LiHCO₃ does not exist as solid.

• Stability of carbonates and hydrogen carbonates increases down the group.

Reason: The electropositive character increases down the group.

Anomalous Properties of Lithium

- Reasons for anomalous behaviour of lithium:
- The Li atom and ion are exceptionally small in size.
- Li has high polarizing power. [charge to radius ratio (charge/ radius)]
- Lithium compounds are soluble in organic solvents due to covalent character of lithium compounds because of the above reasons.
- Points of difference between lithium and alkali metals
- Li is harder and has high melting and boiling points.

- Strongest reducing agent, forms Li₂O and Li₃N by reacting with air
- LiCl is deliquescent and crystallises as a hydrate, LiCl. 2H₂O.
- LiHCO₃ does not exist as solid.
- Does not form ethynide with ethyne
- On heating, lithium nitrate decomposes to oxide while nitrates of other alkali metals decompose to nitrites.

 $4\text{LiNO}_{3} \longrightarrow 2\text{Li}_{2}\text{O} + 4\text{NO}_{2} + \text{O}_{2}$ $2\text{NaNO}_{3} \longrightarrow 2\text{NaNO}_{2} + \text{O}_{2}$

- Fluoride and oxide are less soluble in water.
- Li shows diagonal relationship to Mg.
- Points of similarities between Li and Mg
- Both are harder and lighter than the other elements in the respective groups.
- Both react slowly with water; oxides of both are less soluble in water; hydroxides of both decompose on heating.
- Both form nitrides (Li₃N and Mg₃N₂) by directly reacting with nitrogen.
- Both do not form superoxide.
- On heating, carbonates of both give oxides and CO₂; hydrogen carbonates of both do not exist as solid.
- Chlorides of both (LiCl, MgCl₂) are soluble in ethanol, deliquescent, and crystallize as hydrates (LiCl.2H₂O, MgCl₂.8H₂O).
- Reason for similarities between Li and Mg Similar size

Some Important Compounds of Sodium

Washing Soda or Sodium Carbonate (Na₂CO₃.10H₂O)

- Preparation
- Solvay process

 $2NH_{3} + H_{2}O + CO_{2} \longrightarrow (NH_{4})_{2}CO_{3}$ $(NH_{4})_{2}CO_{3} + H_{2}O + CO_{2} \longrightarrow 2NH_{4}HCO_{3}$ $NH_{4}HCO_{3} + NaCl \longrightarrow NH_{4}Cl + NaHCO_{3}$ $2NaHCO_{3} \xrightarrow{\Delta} Na_{2}CO_{3} + CO_{2} + H_{2}O$

Recovering of NH₃

 $2NH_4Cl + Ca(OH)_2 \longrightarrow 2NH_3 + CaCl_2 + H_2O$

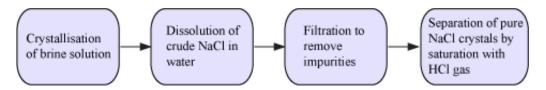
Solvay process is not applied to manufacture K₂CO₃.

Reason – KHCO₃ is soluble in water and hence, cannot be precipitated.

• Properties

- White crystalline solid
- · Easily soluble in water
- Loses water of crystallization on heating

 $Na_{2}CO_{3}.10H_{2}O \xrightarrow{373 \text{ K}} Na_{2}CO_{3}.H_{2}O + 9H_{2}O$ $Na_{2}CO_{3}.H_{2}O \xrightarrow{>373 \text{ K}} Na_{2}CO_{3} + H_{2}O$


• Carbonate part is hydrolysed by water, resulting in alkaline solution.

 $CO_3^{2-} + H_2O \longrightarrow HCO_3^- + OH^-$

- Uses
- In water softening
- In the manufacture of glass, soap, borax, and caustic soda
- In industries in the manufacture of paper, paints, and textile
- In laboratory as a reagent

Sodium Chloride (NaCl)

• Preparation

Impurities - Sodium sulphate, calcium sulphate, calcium chloride, magnesium chloride

- Physical Properties
- Melts at 1081 K
- Solubility is 36 g in 100 g of water at 273 K.
- With the increase in temperature, solubility does not increase.

• Uses

- For domestic purpose as common salt or table salt
- In the preparation of Na₂O₂, NaOH, and Na₂CO₃

Caustic Soda or Sodium Hydroxide (NaOH)

- Preparation
- By electrolysis of NaCl in Castner Kellner cell

At anode:
$$Cl^- \rightarrow \frac{1}{2}Cl_2 + e^{it}$$

At cathode: $Na^+ + e^- \xrightarrow{Hg} Na - amalgam$

 $2Na - amalgam + 2H_2O \longrightarrow 2NaOH + 2Hg + H_2$

Properties

- White translucent solid
- Gives alkaline solution by dissolving in water
- Crystals are deliquescent.

- At the surface of NaOH solution, Na₂CO₃ is formed by the reaction with CO₂ in the atmosphere.
- Uses
- In petroleum refining process
- In the manufacture of soap paper, artificial silk, and a number of chemicals
- In the process of purifying bauxite
- In textile industries to mercerise cotton fabrics
- In the preparation of pure fats and oils
- As a reagent in laboratory

Baking Soda or Sodium Hydrogen Carbonates (NaHCO₃)

Called Baking Soda

Reason – It decomposes, producing bubbles of CO_2 on heating. This is the reason why holes are formed in cakes or pastries and as a result, they are light and fluffy.

• Preparation

 $Na_2CO_3 + H_2O + CO_2 \longrightarrow 2NaHCO_3$

Uses

- As an antiseptic for skin infection
- For extinguishing fire

Biological Importance of Na and K

- Sodium ions take part
- in the transmission of nerve signals
- in regulating the water flow across cell membranes
- in the transportation of sugars and amino acids into cells

- Potassium ions participate in
- activating enzymes in cell fluids
- the oxidation of glucose to produce ATP
- the transmission of nerve signals

Alkaline Earth Metals

- Group 2 elements: Beryllium, magnesium, calcium, strontium, barium and radium.
- They are called alkaline earth metals because their oxides and hydroxides are alkaline in nature, and their oxides are found in earth's crust.

Electronic Configuration

- General outer electronic configuration is *ns*²
- The electronic configurations of the alkaline earth metals are given in the following table:

Element	Electronic Configuration
Beryllium (Be)	1 <i>s</i> ² 2 <i>s</i> ²
Magnesium (Mg)	1 <i>s</i> ²2 <i>s</i> ²2 <i>p</i> ⁶ 3 <i>s</i> ²
Calcium (Ca)	1 <i>s</i> ²2 <i>s</i> ²2 <i>p</i> ⁶ 3 <i>s</i> ²3 <i>p</i> ⁶ 4 <i>s</i> ²
Strontium (Sr)	[Kr] 5s ²
Barium (Ba)	[Xe] 6 <i>s</i> ²

Radium (Ra)	[Rn] 7 <i>s</i> ²
-------------	-------------------

Atomic and ionic radii

• Smaller than the corresponding alkali metals

Reason: Greater nuclear charge

• Increase with the increase in atomic number (i.e., on moving down the group)

Ionisation Enthalpy

- Low
- Decreases on moving down the group. This is because of:
- Increase in size
- Increase in the screening of valence electrons from the nuclear charge
- Higher first ionisation enthalpy than that of the corresponding alkali metals. This is due to smaller size and higher nuclear charge as compared to the corresponding group 1 alkali metals.
- Second ionisation enthalpy is lower than that of the corresponding alkali metals

Hydration enthalpy

- Decreases on moving down the group (i.e. with increase in ionic size)
- Larger hydration enthalpy than that of the corresponding alkali metal ions. This is why compounds of alkaline earth metals are more extensively hydrated than those of alkali metals.
- Example: NaCl is not hydrated whereas MgCl₂ exists as MgCl₂.6H₂O. KCl does not form hydrate whereas CaCl₂ exists as CaCl₂·6H₂O.

Physical properties

 Silvery white, lustrous and soft (harder than alkali metals) (Exception – Beryllium and Magnesium are greyish) • Melting and boiling points of these metals are higher than those of the corresponding alkali metals.

Reason: Smaller size than alkali metals

- Strongly electropositive in nature. Reason: Low ionisation enthalpies
- Flame test:
- Calcium Brick red
- Strontium Crimson
- Barium Apple green
- Mg and Be do not impart colour because the electrons are too strongly bound to be excited.
- Good conductors of heat and electricity

Chemical Properties

- Less reactive than alkali metals
- Reactivity increases down the group
- Reaction with air and water:
- Be and Mg are kinetically inert to oxygen and water. Reason formation of oxide film on their surface
- However, when Mg and powdered Be burn, they give MgO and Mg_3N_2, and BeO and Be_3N_2 respectively.
- Ca, Sr and Ba react readily with air to form oxides and nitrides; also react with water (even cold), to form hydroxides
- Reaction with halogens:
 - At high temperature

 $\mathsf{M} + \mathsf{X}_2 \to \mathsf{M}\mathsf{X}_2 \text{ (Halides)}$

(X = F, CI, Br, I)

- BeF₂ is prepared by the thermal decomposition of (NH₄)₂BeF₄
- BeCl₂ is prepared from BeO by heating it with carbon and chlorine to about 600-900 K

 $BeO + C + Cl_2 \Longrightarrow BeCl_2 + CO$

- Reaction with hydrogen:
- React with hydrogen to form hydrides (Exception Beryllium)
- Preparation of BeH₂ from BeCl₂ and LiAlH₄ –

 $2\text{BeCl}_2 + \text{LiAlH}_4 \rightarrow 2\text{BeH}_2 + \text{LiCl} + \text{AlCl}_3$

• Reaction with acids:

 $M \textbf{+} 2HCI \rightarrow MCI_2 \textbf{+} H_2$

(M = Alkali earth metal)

- Reducing nature:
- Strong reducing agent (weaker than corresponding alkali metals)
- Be is a weaker reducing agent than other alkaline earth metals.
- Solutions in liquid ammonia:

Dissolve in liquid ammonia to give deep, blue-black solution

 $M + (x + y)NH_3 \rightarrow [M(NH_3)_x]^{2+} + 2[e(NH_3)_y]^{-}$

Uses

- Beryllium:
- For making alloys such as Cu–Be alloys which are used for making high strength springs
- Metallic Be, for making windows of X-ray tubes
- Magnesium:
- For making alloys with AI, Zn, Mn and Sn
- Mg-Al alloys are used in the construction of aircraft
- Magnesium is used in flash powders and bulbs, incendiary bombs and signals
- Milk of magnesia (suspension of (MgOH)₂ in water) is used as an antacid
- MgCO₃ is a component in toothpaste

- Calcium:
- In the process of extraction of metals from oxides which are difficult to reduce with carbon
- For removing air from vacuum tubes. Reason reacts with oxygen and nitrogen at high temperature
- Barium:
- For removing air from vacuum tubes. Reason reacts with oxygen and nitrogen at high temperature
- Radium:
- In radiotherapy (e.g., in the treatment of cancer)

General characteristics of compounds of the alkaline earth metals

- Compounds of alkaline earth metals are ionic in nature (but less ionic than compounds of corresponding alkali metals).
- Reason Greater nuclear charge, smaller size
- Compounds of lighter elements (Be, Mg) are more covalent than those of heavier and large elements (Ca, Sr, Ba).

Oxides and hydroxides

- Oxides
- Burn in oxygen forming metal monoxide (MO)
- MO has rock salt structure. (Exception BeO)
- Thermally stable Reason: High enthalpies of formation
- Ionic in nature (Exception BeO is amphoteric)
- React with water to form hydroxides, which are sparingly soluble

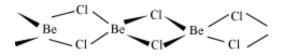
 $MO + H_2O \longrightarrow M(OH)_2$

• Hydroxide

Mg(OH)₂, Ca(OH)₂, Sr(OH)₂, Ba(OH)₂ (Solubility, thermal stability, basic character) increases

Basic in nature (less basic than alkali metal hydroxide)

Exception – $Be(OH)_2$ is amphoteric.


 $\begin{array}{c} \text{Be(OH)}_2 + 2\text{OH}^- \longrightarrow [\text{Be(OH)}_4]^{2-} \\ \text{Base} \qquad \text{Beryllate ion} \end{array}$

 $\begin{array}{c} \text{Be(OH)}_2 + 2\text{HCl} + 2\text{H}_2\text{O} \longrightarrow & [\text{Be(OH)}_4]\text{Cl}_2\\ \text{Acid} \end{array}$

• Less stable than alkali metal hydroxide

Halides

- Ionic in nature (Exception BeX₂ is covalent and soluble in organic solvents)
- Structure of BeCl₂ in solid state (chain structure) is

- In vapour phase, BeCl₂ forms chloro-bridged dimer. At high temperature (1200 K), this dimer undergoes dissociation to form linear monomer.
- Tendency to form halide hydrates decreases down the group.

 $\mathsf{Example} - \ ^{MgCl_2} \cdot ^{8}H_2O, \ ^{CaCl_2} \cdot ^{6}H_2O, \ ^{SrCl_2} \cdot ^{6}H_2O, \ ^{BaCl_2} \cdot ^{2}H_2O$

Salts of oxo-acids

- Carbonates
- Insoluble in water
- Precipitated by adding sodium or ammonium carbonate
- Solubility decreases down the group.
- When heated, decompose to given oxide and CO2

- Thermal stability increases down the group.
- BeCO₃ is unstable and hence, kept in the atmosphere of CO₂.
- Sulphate
- White solids
- Thermally stable
- Solubility decreases down the group.
- BeSO₄ and MgSO₄ are readily soluble in water. Reason High hydration enthalpy of Be²⁺ and Mg²⁺
- Nitrates
- Preparation: By dissolving carbonates in dilute nitric acid
- Tendency to form hydrates decreases down the group. Reason Increase in size, decrease in hydration enthalpy

Example - Mg(NO₃)₂.6H₂O, Ba(NO₃)₂

• When heated, decompose to give oxide

 $2M(NO_3)_2 \longrightarrow 2MO + 4NO_2 + O_2$

Anomalous Properties of Beryllium

- Exceptionally small size of the atom and the cation
- Forms covalent compounds (due to small size and high ionisation enthalpy)
- Highest coordination number is four while other members exhibit six.
- Reason: Be has four orbitals in its valence shell while other members can use *d*-orbitals
- Unlike other elements, the oxides and hydroxides of Be are amphoteric in nature.

Diagonal Relationship Between Be and Al

Reason: Same charge/radius ratio

- Similarities:
- Like AI, it is not readily attached by acids; (Reason presence of an oxide film on the surface of the metal)
- Both dissolve in excess of alkali, giving beryllate ion [Be(OH)₄]²⁻ and aluminate ion [Al(OH)₄]⁻.
- Like Al₂Cl₆, BeCl₂ has a Cl⁻ bridged polymeric structure. Both these compounds are Lewis acids, and are soluble in organic solvents.
- Both form fluoro complex ions, [BeF₄]²⁻, [AIF₆]³⁻

Some Important Compounds of Calcium

Quick Lime or Calcium Oxide (CaO)

• Preparation:

In rotary kiln,

```
CaCO_3 \xrightarrow{1070-1270K} CaO + CO_2
lime stone
```

For the completion of the reaction, CO₂ is removed as soon as it is produced.

- Properties:
- White amorphous solid
- Melts at 2870 K
- Absorbs moisture and CO2 when exposed to atmosphere

 $CaO + H_2O \longrightarrow Ca(OH)_2$ $CaO + CO_2 \longrightarrow CaCO_3$

• Basic oxide - combines with acidic oxides on heating

 $CaO + SiO_2 \longrightarrow CaSiO_3$ $6CaO + P_4O_{10} \longrightarrow 2Ca_3(PO_4)_2$

- Slaking of lime the process of breaking lump of lime by adding a limited amount of water
- When slaked with soda, it gives solid soda lime
- Uses:
- For manufacturing cement
- For manufacturing sodium carbonate from caustic soda
- For manufacturing dye stuffs
- For purifying sugar
- It is the cheapest form of alkali

Slaked Lime or Calcium Hydroxide [Ca(OH)₂]

• Preparation:

By adding water to quick lime

 $CaO + H_2O \longrightarrow Ca(OH)_2$ Quick lime

• Properties:

- White amorphous powder
- Sparingly soluble in water
- Lime water clear aqueous solution of Ca(OH)₂
- Milk of lime suspension of slaked lime in water
- With chlorine, slaked lime gives bleaching powder

 $2Ca(OH)_2 + 2Cl_2 \longrightarrow CaCl_2 + Ca(OCl)_2 + 2H_2O$ Bleaching Powder

• On passing carbon dioxide through lime water, it turns milky due to the formation of calcium carbonate (CaCO₃)

 $Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O$

 On passing excess of CO₂, calcium carbonate (CaCO₃) dissolves, forming calcium hydrogen carbonate

 $CaCO_3 + CO_2 + H_2O \longrightarrow Ca(HCO_3)_2$ Calcium hydrogencarbonate

• Uses:

- For the preparation of mortar, a building material
- Disinfectant in nature, and hence, used in white washing
- For the manufacture of glass
- For the preparation bleaching powder
- For purifying sugar
- In the tanning industry

Calcium Carbonate (CaCO₃)

- Naturally Occurs As Limestone, Chalk, Marble
- Preparation:
- By passing CO₂ through slaked lime

On passing excess of CO₂, CaCO₃ dissolves to form water-soluble calcium hydrogen carbonate.

 $CaCO_3 + CO_2 + H_2O \longrightarrow Ca(HCO_3)_2$

• By adding aqueous solution of sodium carbonate to calcium chloride

 $Na_2CO_3 + CaCl_2 \longrightarrow CaCO_3 + 2NaCl$

• Properties:

- White fluffy powder
- Insoluble in water
- Decomposes to CO₂ on heating

 $CaCO_3 \xrightarrow{1200K} CaO + CO_2$

• Reacts with dilute acids to liberate CO₂

 $CaCO_{3} + 2HCl \longrightarrow CaCl_{2} + H_{2}O + CO_{2}$ $CaCO_{3} + H_{2}SO_{4} \longrightarrow CaSO_{4} + H_{2}O + CO_{2}$

- Uses:
- As a building material in the form of marble
- For manufacturing quick lime
- As a flux with MgCO₃ in the extraction of metals such as iron
- Precipitated CaCO₃ for the manufacture of high quality paper
- As antacid, mild abrasive in toothpaste, in chewing gums, and as filler in cosmetics

$$\left(CaSO_{4}\!\cdot\!\frac{1}{2}H_{2}O\right)$$

Plaster Of Paris or Calcium Sulphate

- Hemihydrate of Calcium Sulphate
- Preparation:

By heating gypsum to 393 K

$$2(CaSO_4 \cdot 2H_2O) \longrightarrow 2(CaSO_4) \cdot \frac{1}{2}H_2O + 3H_2O$$

Gypsum

Above 393 K, water is liberated to form anhydrous calcium sulphate (CaSO₄), known as 'dead burnt plaster'.

• Property:

On mixing with water, it forms a plastic mass which sets into a hard solid in 5 - 15 minutes.

- Uses:
- As plaster and as building material
- In surgical bandages, for setting broken and fractured bones
- In dentistry
- For making statues, busts, and in ornamental work

Cement

- Also called Portland cement
- Reason: Resembles the natural limestone extracted in the Isle of Portland, England
- Composition of cement:

CaO = 50 - 60%

SiO₂ = 20 - 25%

 $AI_2O_3 = 5 - 10\%$

 $Fe_2O_3 = 1 - 2\%$

SO₃ = 1 - 2%

• For a good-quality cement:

The ratio of SiO₂: $AI_2O_3 = 2.5$ to 4

The ratio of CaO: $(SiO_2 + Al_2O_3 + Fe_2O_3) = 2$

- Manufacture of cement:
- Raw materials limestone and clay

On strong heating, clay and lime fuse and react to form 'Cement clinker'.

'Cement clinker' is mixed with 2 - 3% by weight of gypsum to form cement.

↓

• Important ingredients present in Portland cement:

Dicalcium silicate $(Ca_2SiO_4) = 26\%$

Tricalcium silicate (Ca_3SiO_5) = 51%

Tricalcium aluminate $(Ca_3Al_2O_6) = 11\%$

• Setting of cement:

On mixing with water, cement sets to give a hard solid

- Reason hydration of the molecules of the constituents and their rearrangement
- Reason for adding gypsum to slow down the process of setting of the cement; this
 results in sufficient hardening of the cement
- Uses:

As a construction material -

- In concrete and reinforced concrete
- In plastering
- In construction of buildings, bridges and dams

Biological Importance of Magnesium and Calcium

• Amount of Mg in the human body = 25 g (approx)

Amount of Ca in the human body = 1200 g (approx)

- Daily requirement of Ca and Mg in the human body = 200 300 mg
- Importance of Mg:
- Required as cofactor by the enzymes that utilise ATP in phosphate transfer
- Present in chlorophyll
- Importance of Ca:
- Bones and teeth contain about 99% body calcium.
- Plays important roles in neuromuscular function, inter-neuronal transmission, cell membrane integrity, blood coagulation
- The calcium concentration in plasma is maintained at 100 mgL⁻¹ by two hormones –
- Calcitonin
- Parathyroid hormone
- Bone is not an inert and unchanging substance. It is continuously being solubilised and re-deposited to the extent of 400 mg per day in humans.