Chemical Changes and Reactions

A chemical reaction is the process of breaking the chemical bonds of the reacting substances (reactants) and making new bonds to form new substances (products).

A chemical bond is the force which holds the atoms of a molecule together, as in a compound.

Conditions Necessary for a Chemical Change

The following conditions are necessary for a chemical change:

Close physical	A chemical reaction occurs when two substances are mixed in their solid			
contact (Mixing)	state.			
	lodine and sulphur react explosively when brought into close contact.			
Solution	A chemical reaction occurs when two substances are mixed in the			
	solution form.			
	Sodium carbonate and tartaric acid vigorously react only in the solution			
	state.			
Heat	Some chemical reactions occur only on heating.			
	$CuCO_3 \xrightarrow{Heat} CuO + CO_2$			
Light	Reactions which occur by the action of light are called photochemical			
	reactions or photolysis . Molecules of the reactants absorb light energy,			
	get activated and then react rapidly.			
	Photosynthesis:			
	$6CO_2 + 6H_2O \xrightarrow{\text{Sunlight}} C_6H_{12}O_6 + 6O_2$			
	(Glucose)			
Electricity	Chemical reactions such as decomposition of compounds occur only			
	when electricity is passed through the substance.			
	$2H_2O \xrightarrow{\text{Electric Current}} 2H_2\uparrow + O_2\uparrow$			
Pressure	Some reactions occur only when substances are subjected to high			
	pressure.			
	$N_2 + 3H_2 \implies 2NH_3$			
Catalyst	Some chemical reactions need a catalyst to accelerate or decelerate			
	their rates of reaction. Catalysts themselves do not take part in the			
	reaction. A catalyst such as Pt or MnO ₂ initiates a change in the rate of			
	the reaction without undergoing any change in its chemical composition.			
	$4NH_3 + 5O_2 \xrightarrow{Pt} 4NO + 6H_2O$			
	Positive catalyst:			
	A positive catalyst accelerates a reaction.			
	Negative catalyst:			
	A negative catalyst retards a reaction.			

Sound	Some chemical reactions proceed only by absorption of sound energy.	
	Sound energy speeds up the reacting molecules, atoms or ions causing	
	a reaction to occur.	
	$C_2H_2 \xrightarrow{Sound Energy} 2C + H_2$	

Characteristics of a Chemical Reaction

1.	Evolution of gas	In a chemical reaction, a gas may be one of the products.	
		$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2\uparrow$	
2.	Change of colour	Some chemical reactions are characterised by a change in the	
		colour of the reactants.	
		$Fe + CuSO_4 \rightarrow FeSO_4 + Cu$	
3.	Formation of	Some chemical reactions are characterised by the formation of a	
	precipitate	precipitate. The precipitate is an insoluble solid substance.	
		$AgNO_3$ + NaCl \rightarrow AgCl + NaNO_3	
4.	Change of state	In some reactions, a change of a state is observed. The reaction	
		starts with solid or liquid reactants and ends up with gaseous	
		products and vice versa.	
		$NH_{3(g)} + HCI_{(g)} \implies NH_4CI_{(s)}$	

Types of Chemical Changes or Chemical Reactions

A chemical reaction is the process of breaking chemical bonds of the reacting substances (reactants) and making new bonds to form new substances (products).

1.	Direct	A chemical reaction in which two or more substances combine to form a	
	combination or	single product.	
	synthesis		
		1) Combination of two elements:	
		$2Fe_{(s)}$ + $S_{(s)}$ \rightarrow $FeS_{(s)}$	
		Iron Sulphur Iron sulphide	
		2) Combination of an element and a compound: $2CO_{(g)} + O_{2(g)} \xrightarrow{heat} 2CO_{2(g)}$	
		3) Combination of two or more compounds: $PbO_{2(s)} + SO_{2(s)} \rightarrow PbSO_{4(s)}$ Lead dioxide Sulphur dioxide Lead sulphate	

2. Decomposition reaction	A chemical reaction in which a single compound splits into two or more simple substances. $2HgO_{(s)} \rightarrow 2Hg_{(s)} + O_2\uparrow$ Mercuric oxide Mercury Oxygen Decomposition occurs by application of heat or light or by the passage of electric current. Electrolysis of acidulated water: On passing electric current through acidulated water, water produces two volumes of hydrogen gas and one volume of oxygen gas.
	$2H_2O_{(I)} \xrightarrow{\text{Electric Current}} 2H_{2(g)} + O_{2(g)}$
	Thermal decomposition: A decomposition reaction brought about by heat. 2 KClO ₃ $\xrightarrow{\text{Heat}}$ 2KCl + 3O ₂
	 In a decomposition reaction: 1) A compound can break up into two or more elements. (a) 2HgO_(s) <u>A</u> 2Hg_(l) + O_{2(g)} (b) 2H₂O_(l) <u>electric</u> 2H_{2(g)} + O_{2(g)} 2) A compound can break up to form both elements and compounds. 2 KNO₃ <u>Heat</u> 2KNO₂ + 3O₂ 3) A compound can break up to form two or more new compounds. CaCO_{3(s)} <u>heat</u> CaO_(s) + CO_{2(g)}

(i) Metal hydroxide

(ii)

Metal carbonates

4. Displacement	A reaction in which the more reactive element displaces the less reactive			
reaction	element from its compound.			
	Zinc displaces copper in copper sulphat	Zinc displaces copper in copper sulphate to form zinc sulphate.		
	Activity (reactivity)	of elements		
	Metals	Non metals		
	Potassium K Most active metal			
	Sodium Na	Fluorine F Most active		
	Calcium Ca	Chlorine Cl		
	Magnesium Mg	Bromine Br		
	Aluminium AI	Iodine I 🖌 Least active		
	Zinc Zn 😴			
	Iron Fe	Note : The more reactive		
	Lead Pb	elements displaces the		
	(Hydrogen) (H)	less reactive element from		
	Copper Cu	its solt solution		
	Mercury Hg	its sait solution		
	Silver Ag			
	Gold Au			
	Platinum Pt V Least active (reacti	ve) metal		
		· · · · · · · · · · · · · · · · · · ·		
5. Double displacement	A reaction in which ions of the reactants exchange places to form two new compounds.			
6. Double	A type of chemical change in which two	compounds in a solution react to		
decomposition	form two new compounds by the mutual	exchange of radicals.		
	reaction.	pitation reaction and neutralisation		
	Precipitation reaction			
	The insoluble solid formed during a doul	ble displacement reaction is called a		
	precipitate.			
	$ Na_2SO_{4(aq)} + BaCl_2 \rightarrow $	$BaSO_{4(s)} + 2NaCI_{(aq)}$		

	Neutralisation reaction	
The reaction between an acid and a base to form a salt and water is cal neutralisation reaction.		
	$NaOH_{(aq)}$ + $HCI_{(aq)}$ \rightarrow $NaCI_{(aq)}$ + $H_2O_{(I)}$	
	 Uses of neutralisation reaction in everyday life: a) Venom of honey bee contains formic acid. When someone is stung by a bee, formic acid enters the skin and produces pain which can be relieved by rubbing the spot with slaked lime or baking soda both of which are bases. b) Acidity is caused by excess secretion of HCI by stomach glands. It can be relieved by taking milk of magnesia or sodium hydrogen carbonate, both of which are bases. On the other hand, deficiency of HCI is covered up by taking any suitable acid in the dilute form. 	
	Hydrolysis	
	It is the process in which a salt and water react to form an acidic or a basic solution.	
	 Hydrolysis of a salt formed by the reaction of a strong base and a weak acid forms a basic solution which turns red litmus blue. Hydrolysis of a salt formed by the reaction of a strong acid and a weak base forms an acidic solution which turns blue litmus red. 	

Energy Changes in Chemical Reactions

Each substance has a fixed amount of stored energy, which is in the form of potential energy. This energy is called its chemical energy.

The formation of gas bubbles in a liquid during a reaction is called effervescence.

Exothermic change

A chemical change which takes place with the release of heat energy is called an exothermic change.

 $C + O_2 \rightarrow CO_2 + Heat$

Endothermic change

A chemical change which takes place with the absorption of heat energy is called an endothermic change.

 $C + 2S + Heat \rightarrow CS_2$

Photochemical reaction

A chemical reaction which proceeds with the absorption of light energy.

 $6CO_2 + 6H_2O \xrightarrow{Sunlight} C_6H_{12}O_2$

Electrochemical reaction

A chemical reaction which proceeds with the absorption of electric energy.

 $2\text{KCI} \xrightarrow{\text{Electric Current}} \text{K}^{+} + \text{CI}^{-}$