Class-XII Session - 2022-23

Subject - Mathematics (041) Sample Question Paper - 28 With Solution

Ch. Chapter Name Decision A per visions and Functions and Fu			M			Δ	Z	F		
Relations and Functions inverse Trigonometry Functions Marks MC 2.4 NC 3 NC 3 LA Case-Study Inverse Trigonometry Functions 40.2.4 C.2.4 C.2.4 C.2.1 C.3.2 C.3.3 Matrices 10 C.2.4 C.2.1 C.2.1 C.3.3 C.3.3 Determinants Continuity and Differentiability C.2.5 C.2.2 C.3.3 C.3.4 C.3.3 Applications of Integrals 35 C.1.3,11 C.2.2 C.2.6,27 C.3.4 C.3.6 Integrals Applications of Integrals C.1.3,11 C.2.5 C.2.6,27 C.3.6 C.3.6 Applications of Integrals C.1.6,14 C.2.5,24 C.3.6 C.3.6 C.3.6 Vector Algebra 1 C.1.7,12 C.3.6 C.3.6 C.3.6 C.3.6 Innear Programming 5 C.18,15 C.3.6 C.3.0 C.3.6 C.3.6 Probability 8 C.6 C.3.1 C.3.6 C.3.6 C.3.6 Probability 8 C.6 <th>= :</th> <th></th> <th>Per Unit</th> <th>Sectio (1 Mai</th> <th>n-A rk)</th> <th>Section-B (2 Marks)</th> <th>Section-C (3 Marks)</th> <th>Section-D (5 Marks)</th> <th>Section-E (4 Marks)</th> <th>Total</th>	= :		Per Unit	Sectio (1 Mai	n-A rk)	Section-B (2 Marks)	Section-C (3 Marks)	Section-D (5 Marks)	Section-E (4 Marks)	Total
Relations and Functions 8 Q.2.4	o i		Marks	MCQ	AVR	VSA	SA	4	Case-Study	
Inverse Trigonometry 8 Q.2,4	-	Relations and Functions			Q.19	NG		0.32		9
Matrices 10 Q.1,3 Q.20 Q.21 Q.33 C.33 Continuity and Differentiability Applications of Integrals Q.10 Q.22 Q.34 Q.36 Applications of Integrals 35 Q.13,11 Q.23 Q.26,27 Q.34 Q.36 Integrals Q.16,14 Q.25,24 Q.28 Q.36 P. Q.37 Vector Algebra 14 Q.16,14 Q.25,24 Q.39 Q.35 Q.37 Three Dimensional Geometry 2 Q.16,14 Q.25,24 Q.39 Q.35 Linear Programming 5 Q.18,15 Q.36 Q.36 Q.35 Probability 8 Q.6 Q.30 Q.30 Q.38 Total Marks 18(18) 2(2) 10(3) Q.39 Q.39	2600	Inverse Trigonometry Functions	80	0.2,4						2
Determinants 0 Q21 Q.33 Continuity and Differentiability Q.7.5 Q.22 Q.34 Q.36 Differentiability Applications of Integrals 35 Q.13,11 Q.23 Q.26,27 Q.36 Applications of Integrals Q.16,14 Q.25,24 Q.28 Q.37 Differential Equations of Integrals Q.16,14 Q.25,24 Q.35 Differential Equations of Integrals Q.16,14 Q.25,24 Q.39 Three Dimensional Geometry Q.16,14 Q.25,24 Q.35 Three Dimensional Geometry Q.18,15 Q.30 Q.35 Probability 8 Q.6 Q.31 Q.36 Total Marks 18(18) 2(2) 10(5) 12(3)	2240	Matrices	ţ	0.1,3	0.20		23			m
Continuity and Differentiability Q.7.5 Q.22 Q.34 Q.36 Applications of Integrals 35 Q.13,11 Q.23 Q.26,27 Q.36 Applications of Integrals Q.16,14 Q.25,24 Q.28 Q.37 Vector Algebra 14 Q.17,12 Q.30 Q.35 Three Dimensional Geometry Q.18,15 Q.31 Q.31 Probability 8 Q.6 Q.31 Total Marks 18(18) 2(2) 10(5) Total Marks 18(18) 2(2) 10(5)	404.04	Determinants	2			0.21		0.33		7
Applications of Derivatives Derivatives Q.10 Q.23 Q.26,27 Q.34 Q.36 Integrals Q.9,8 Q.26,27 Q.28 Q.36 Applications of Integrals Q.16,14 Q.25,24 Q.38 Differential Equations Q.16,14 Q.25,24 Q.37 Vector Algebra 14 Q.17,12 Q.39 Q.35 Unrear Programming 5 Q.18,15 Q.30 Q.36 Probability 8 Q.6 Q.31 Q.38 Total Marks 18(18) 2(2) 10(5) 18(6) 20(4) 12(3)	1000	Continuity and Differentiability		0.7,5		0.22				4
Integrals 35 Q.13,11 Q.23 Q.26,27 Co.28 Applications of Integrals Q.16,14 Q.25,24 Co.28 Co.37 Vector Algebra 14 Q.17,12 Co.29 Co.37 Three Dimensional Geometry Co.18,15 Co.30 Co.36 Linear Programming 5 Q.18,15 Co.30 Co.38 Probability 8 Q.6 Co.31 Co.38 Total Marks 18(18) 2(2) 10(5) 18(6) 20(4) 12(3)	- Cale Co	Applications of Derivatives		Q.10				0.34	0.36	9
Applications of Integrals Q.9,8 Q.25,24 Q.29 Q.37 Vector Algebra 14 Q.17,12 Q.17,12 Q.35 Q.35 Three Dimensional Geometry 5 Q.18,15 Q.30 Q.30 Probability 8 Q.6 Q.31 Q.31 Total Marks 18(18) 2(2) 10(5) 18(6) 20(4) 12(3)	26000	Integrals	35	Q.13,11		0.23	0.26,27			10
Differential Equations Q.16,14 Q.25,24 Q.37 Vector Algebra 14 Q.17,12 Q.39 Q.37 Three Dimensional Geometry 5 Q.18,15 Q.30 Q.35 Probability 8 Q.6 Q.31 Q.38 Total Marks 18(18) 2(2) 10(5) 18(6) 20(4) 12(3)	22211	Applications of Integrals		0.9,8			0.28			NO.
Vector Algebra 14 Q.17,12 Q.35 Q.35 Three Dimensional Geometry 5 Q.18,15 Q.30 Q.30 Linear Programming 5 Q.18,15 Q.30 Q.30 Probability 8 Q.6 Q.31 Q.38 Total Marks 18(18) 2(2) 10(5) 18(6) 20(4) 12(3)		Differential Equations		Q.16,14		Q.25,24				9
Three Dimensional Geometry 14 a.17,12 a.18,15 Q.35 Q.35 Linear Programming 5 a.18,15 a.30 a.30 a.38 Probability 8 a.66 a.31 a.38 Total Marks 18(18) 2(2) 10(5) 18(6) 20(4) 12(3) 12(3)	0	Vector Algebra	3				0.29		0.37	7
Linear Programming 5 Q.18,15 Q.30 Probability 8 Q.6 Q.31 Q.38 Total Marks (Total Questions) 18(18) 2(2) 10(5) 18(6) 20(4) 12(3)		Three Dimensional Geometry	4	Q.17,12				0.35		7
Probability 8 Q.6 Q.31 Q.38 Total Marks (Total Questions) 18(18) 2(2) 10(5) 18(6) 20(4) 12(3)	N	Linear Programming	5	Q.18,15			0.30			52
18(18) 2(2) 10(5) 18(6) 20(4) 12(3)	60	Probability	8	0.6			Q.31		Q.38	80
		Total Marks (Total Questions)		18(18)	2(2)	10(5)	18(6)	20(4)	12(3)	80(38)

Time: 3 Hours Max. Marks: 80

General Instructions

This Question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal 1. choices in some questions.

- 2 Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- Section C has 6 Short Answer (SA)-type questions of 3 marks each. 4.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub 6. parts.

SECTION-A (Multiple Choice Questions)

Each question carries 1 mark.

1. If
$$A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{bmatrix}$, then AB is equal to

(a) B

(b) A

(c) O

- 2. If $6 \sin^{-1}(x^2 6x + 8.5) = \pi$, then x is equal to

(c) 3

(d) I (d) 8

- 3. If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$, then A + A' = I, then the value of α is

(c) n

- 4. If $\tan^{-1}k \tan^{-1}\sqrt{3} = \tan^{-1}\frac{1}{\sqrt{3}}$, then k =
 - (a) 1

(c) ∞

- (d) 5
- 5. Let $f(x) = \begin{cases} 3x 4, & 0 \le x \le 2 \\ 2x + \ell, & 2 < x \le 9 \end{cases}$. If f is continuous at x = 2, then what is the value of ℓ ?

- (d) 1
- 6. If $P(B) = \frac{3}{5}$, $P(A|B) = \frac{1}{2}$ and $P(A \cup B) = \frac{4}{5}$, then $P(A \cup B)' + P(A' \cup B) = \frac{4}{5}$
 - (a) $\frac{1}{5}$
- (b) $\frac{4}{5}$
- (c) $\frac{1}{2}$
- (d) 1

- 7. If $f(x) = \sqrt{1 + \cos^2(x^2)}$, then the value of $f'(\frac{\sqrt{\pi}}{2})$ is
 - (a) $\frac{\sqrt{\pi}}{1}$

- A point on the parabola $y^2 = 18x$ at which the ordinate increases at twice the rate of the abscissa is
 - (a) $\left(\frac{9}{8}, \frac{9}{2}\right)$
- (b) (2, -4) (c) $(\frac{-9}{8}, \frac{9}{2})$
- (d) (2,4)
- The area bounded by the curve $y = \sin^{-1}x$ and the line x = 0, $|y| = \frac{\pi}{2}$ is
 - (a) 1

(d) 2π

	5 3 4	5 3 4		
	(a) $\frac{x^3}{5} + \frac{x^3}{3} + \frac{x^4}{2}$	(b) $\frac{x^3}{5} + \frac{x^3}{3} + \frac{x^4}{2} + c$	(c) $5x^5 + 3x^5 + 8x^4$	(d) $5x^5 + 3x^3 + 8x^4 + c$
12.	The projections of a vector	or on the three coordinate axis	are 6, -3, 2 respectively. The dire	ction cosines of the vector are
	(a) $\frac{6}{5}, \frac{-3}{5}, \frac{2}{5}$	(b) $\frac{6}{7}, \frac{-3}{7}, \frac{2}{7}$	(c) $\frac{-6}{7}, \frac{-3}{7}, \frac{2}{7}$	(d) 6, -3, 2
13.	$If \int \frac{3x+4}{x^3-2x-4} dx = \log $	$ x-2 +k\log f(x)+c$, then		
	(a) $f(x) = x^2 + 2x + 2 $	(b) $f(x) = x^2 + 2x + 2$	(c) $k = -\frac{1}{2}$	(d) All of these
14.	The family of curves y =	ea sin x, where a is an arbitrar	ry constant, is represented by the	differential equation
	(a) $\log y = \tan x \frac{dy}{dx}$	(b) $y \log y = \tan x \frac{dy}{dx}$	(c) $y \log y = \sin x \frac{dy}{dx}$	(d) $\log y = \cos x \frac{dy}{dx}$
15.	L.P.P is a process of find (a) Maximum value of (c) Optimum value of	objective function	(b) Minimum value of o (d) None of these	objective function
16.	The solution of $\frac{dv}{dt} + \frac{k}{m}$	v = -g is		
	(a) $v = ce^{-\frac{k}{m}t} - \frac{mg}{k}$	(b) $v = c - \frac{mg}{k} e^{-\frac{k}{m}t}$	(c) $ve^{-\frac{k}{m}t} = c - \frac{mg}{k}$	(d) $ve^{\frac{k}{m}t} = c - \frac{mg}{k}$
17.	The distance between th	e lines given by		
	$\vec{r} = \hat{i} + \hat{j} + \lambda (\hat{i} - 2\hat{j} + 3\hat{k})$	and $\vec{r} = (2\hat{i} - 3\hat{k}) + \mu(\hat{i} - 2\hat{j} +$	3k̂) is	
	(a) $\sqrt{\frac{59}{14}}$	(b) $\sqrt{\frac{59}{7}}$	(c) $\sqrt{\frac{118}{7}}$	(d) $\frac{\sqrt{59}}{7}$
18.	The solution set of constra	aints x + 2y ≥ 11, 3x + 4y ≤ 30	$0, 2x + 5y \le 30 \text{ and } x \ge 0, y \ge 0$	0 , includes the point
	(a) (2,3)	(b) (3, 2)	(c) (3,4)	(d) (4,3)
			SON BASED QUESTIONS)	
	ne following questions, a s ne following choices.	tatement of Assertion (A) is fo	ollowed by a statement of Reason	(R). Choose the correct answer out
(a)	Both A and R are true a	nd R is the correct explanation	on of A.	
(b)	Both A and R are true b	ut R is not the correct explan	ation of A.	
(c)	A is true but R is false.			
(d)	A is false but R is true.			
19.	Assertion: The relation	d y we define the relation R su R is an equivalence relation. an equivalence relation if it is:	such that $xRy \Leftrightarrow x^2 + y^2 = 1$ reflexive, transitive and symmetric	z.
20.		dimensions of a matrix contains of expressing 32 as a produc	ning 32 elements is 6, et of two positive integers is 6,	

(c) (-∞, 2)

(d) (-∞,2]∪(2,∞)

10. Find the intervals in which the function f given by $f(x) = x^2 - 4x + 6$ is strictly increasing:

(b) (2,∞)

(a) $(-\infty,2)\cup(2,\infty)$

11. Evaluate: $\int (x^2+x)^2 dx$

SECTION-B

This section comprises of very short answer type-questions (VSA) of 2 marks each.

21. If
$$A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$, Find $(AB)^{-1}$,

OR

Two schools A and B decided to award prizes to their students for the three values Truth, Patriotism and Non-violence. School A decided to award a total of ₹ 11000 for the three values to 5, 4 and 3 students respectively, while school B decided to award ₹ 10700 for the three values to 4, 3 and 5 students respectively. If all the three prizes together amount to ₹ 2700, then

- (i) Represent the above situation by a matrix equation and form linear equations using matrix multiplication.
- (ii) Is it possible to solve the system of equations so obtained using matrices ?

22. Find
$$\frac{dy}{dx}$$
, if $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$.

OR

Find
$$\frac{dy}{dx}$$
, if $\sin(x+y) + \sin(xy) = \sin^2 x$.

- 23. Evaluate: $\int \frac{e^{6 \log x} e^{5 \log x}}{e^{4 \log x} e^{3 \log x}} dx$
- 24. Find the order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{1/3} + x^{1/4} = 0$
- 25. Solve: $(x + y)^2 \frac{dy}{dx} = a^2$

SECTION-C

This section comprises of short answer type questions (SA) of 3 marks each.

- 26. Evaluate $\int_{-1}^{2} |x^3 x| dx$.
- 27. Evaluate $\int \frac{x^2+1}{(x-1)^2(x+3)} dx$
- 28. Find the area of the region bounded by the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$.
- 29. Find a vector $\frac{\pi}{a}$ of magnitude $5\sqrt{2}$, making an angle of $\frac{\pi}{4}$ with x-axis, $\frac{\pi}{2}$ with y-axis and an acute angle θ with z-axis.

OF

If a, b and c are three vectors such that each one is perpendicular to the vector obtained by sum of the other two and

$$\begin{vmatrix} \overrightarrow{a} \\ \overrightarrow{a} \end{vmatrix} = 3$$
, $\begin{vmatrix} \overrightarrow{b} \\ \overrightarrow{b} \end{vmatrix} = 4$, and $\begin{vmatrix} \overrightarrow{c} \\ \overrightarrow{c} \end{vmatrix} = 5$, then prove that $\begin{vmatrix} \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \\ \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \end{vmatrix} = 5\sqrt{2}$.

30. Find number of point at which the maximum value of z = 2x + 5y subject to the constraints 2x + 5y ≤ 10, x+2y≥1,x-y≤4,x≥y≥0.

OR

Maximize Z = 3x + 5y, subject to $x + 4y \le 24$, $3x + y \le 21$, x + y, ≤ 9 , $x \ge 0$, $y \ge 0$. Then find maximum value.

31. A and B throw a die alternatively till one of them gets a number greater than four and wins the game. If A starts the game, what is the probability of B winning?

OR

A die is thrown three times. Events A and B are defined as below:

A: 5 on the first and 6 on the second throw.

B: 3 or 4 on the third throw.

Find the probability of B. given that A has already occurred.

SECTION-D

This section comprises of long answer-type questions (LA) of 5 marks each.

32. Show that the relation R defined in the set A of all triangles as R = {(T₁, T₂): T₁ is similar to T₂}, is equivalence relation. Consider three right angle triangles T₁ with sides 3, 4, 5, T₂ with sides 5, 12, 13 and T₃ with sides 6, 8, 10. Which triangles among T₁, T₂ and T₃ are related?

OR

Show that the function $f: R \to R$ defined by $f(x) = \frac{1}{x}$ is one-one onto, where R is the set of all non-zero real numbers. Is the

result true, if the domain R is replaced by N with co-domain being same as R?

33. Using matrices, solve the following system of equations

$$x - y + 2z = 7$$

$$3x + 4y - 5z = -5$$

$$2x - y + 3z = 12$$

- 34. Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.
- 35. Find the values of p so that the lines $\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2}$ and $\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$ are at right angles.

OR

Find the shortest distance between the lines whose vector equations are

$$\vec{t} = (1-t)\hat{i} + (t-2)\hat{i} + (3-2t)\hat{k}$$
 and

$$\vec{r} = (s+1)\hat{i} + (2s-1)\hat{j} - (2s+1)\hat{k}$$

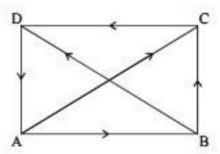
SECTION-E

This section comprises of 3 case study/passage - based questions of 4 marks each with two sub-parts. First two case study questions have three sub-parts (i), (ii), (iii) of marks 1, 1, 2 respectively. The third case study question has two sub-parts of 2 marks each.

Case - Study 1: Read the following passage and answer the questions given below.

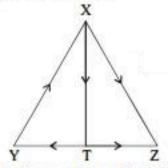
A manufacturer designs a cylindrical tin can for milk company to store milk. The tin can is made to hold 3 litres of milk.

- (i) If r cm be the radius and h cm be the height of the cylindrical tin can, then find the surface area in term of r.
- (ii) Find the radius that will minimize the cost of the material to manufacture the tin can.
- (iii) Find the height that will minimize the cost of the material to manufacture the tin can.


OF

If the cost of material used to manufacture the tin can is ₹ 100/m² then find minimum cost.

37. Case - Study 2: Read the following passage and answer the questions given below.


If two vectors are represented by the two sides of a triangle taken in order, then their sum is represented by the third side of the triangle taken in opposite order and this is known as triangle law of vector addition.

- (i) If \vec{p} , \vec{q} , \vec{r} are the vectors represented by the sides of a triangle taken in order, then $\vec{q} + \vec{r} =$
- (ii) If ABCD is a parallelogram and AC and BD are its diagonals, then $\overline{AC} + \overline{BD} =$
- (iii) If ABCD is a quadrilateral whose diagonals are \overrightarrow{AC} and \overrightarrow{BD} , then $\overrightarrow{BA} + \overrightarrow{CD} =$

OR

If T is the mid point of side YZ of ΔXYZ , then $\overline{XY} + \overline{XZ} =$

38. Case - Study 3: Read the following passage and answer the questions given below.

In a play zone, students is playing game. A bag contain 12 blue balls, 8 red balls, 10 yellow balls and 5 green balls. If a student draws two balls one after the other without replacement.

- (i) What is the probability that the one ball is blue and one ball is green?
- (ii) What is the probability that both the balls are red?

Solutions

SAMPLE PAPER-8

1. (c)
$$AB = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix} \begin{bmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{bmatrix}$$

$$AB = \begin{bmatrix} abc - abc & b^{2}c - b^{2}c & bc^{2} - bc^{2} \\ -a^{2}c + a^{2}c & -abc + abc & -ac + ac \\ a^{2}b - a^{2}b & ab^{2} - ab^{2} & abc - abc \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = O$$

2. (b) We have, $6 \sin^{-1}(x^2 - 6x + 8.5) = \pi$

$$\Rightarrow \sin^{-1}(x^2 - 6x + 8.5) = \frac{\pi}{6}$$

$$\Rightarrow x^2 - 6x + 8.5 = \sin \frac{\pi}{6} = \frac{1}{2}$$

$$\Rightarrow x^2 - 6x + 8.5 - 0.5 = 0 \Rightarrow x^2 - 6x + 8 = 0$$

$$\Rightarrow$$
 $(x-4)(x-2)=0 \Rightarrow x=4 \text{ or } x=2$

3. (b)
$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$
, $A' = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$

$$A + A' = \begin{bmatrix} \cos \alpha + \cos \alpha & -\sin \alpha + \sin \alpha \\ \sin \alpha - \sin \alpha & \cos \alpha + \cos \alpha \end{bmatrix}$$

$$=\begin{bmatrix} 2\cos\alpha & 0 \\ 0 & 2\cos\alpha \end{bmatrix} = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{(given)}$$

$$\Rightarrow$$
 2 cos $\alpha = 1$, \Rightarrow cos $\alpha = \frac{1}{2}$ \therefore $\alpha = \frac{\pi}{3}$.

4. (c) Given that,
$$\tan^{-1} k - \tan^{-1} \sqrt{3} = \tan^{-1} \left(\frac{1}{\sqrt{3}} \right)$$

$$\tan^{-1} k = \frac{\pi}{3} + \frac{\pi}{6} = \frac{\pi}{2}$$

5. (c) Given function is:
$$f(x) = \begin{cases} 3x-4, & 0 \le x \le 2 \\ 2x+\ell, & 2 < x \le 9 \end{cases}$$

and also given that f(x) is continuous at x = 2For a function to be continuous at a point LHL = RHL = Value of a function at that point.

$$f(2)=2 \Rightarrow RHL: \lim_{x\to 2} (2x+\ell)=3(2)-4$$

$$\Rightarrow \lim_{h \to 0} \left\{ 2(2+h) + \ell \right\} = 6 - 4 \Rightarrow 4 + \ell = 2 \Rightarrow \ell = -2$$

6. (d)
$$P(B) = \frac{3}{5}$$
, $P(A|B) = \frac{1}{2}$ and $P(A \cup B) = \frac{4}{5}$

$$P(A \cap B) = P(A \mid B)P(B) = \frac{1}{2} \cdot \frac{3}{5} = \frac{3}{10}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A) = \frac{4}{5} - \frac{3}{10} = \frac{1}{2}$$
. $P(A') = 1 - P(A) = \frac{1}{2}$

We know, $P(A \cap B) + P(A' \cap B) = P(B)$

[as A OB and A'OB are mutually exclusive events]

$$\Rightarrow \frac{3}{10} + P(A' \cap B) = \frac{3}{5} \Rightarrow P(A' \cap B) = \frac{3}{5} - \frac{3}{10} = \frac{3}{10}$$

Now, $P(A' \cup B) = P(A') + P(B) - P(A' \cap B)$

$$=\frac{1}{2}+\frac{3}{5}-\frac{3}{10}=\frac{5+6-3}{10}=\frac{4}{5}$$

$$P((A \cup B)') = 1 - P(A \cup B) = 1 - \frac{4}{5} = \frac{1}{5}$$

$$P((A \cup B)') + P(A' \cup B) = \frac{1}{5} + \frac{4}{5} = 1$$

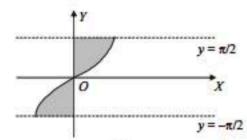
7. **(b)** We have,
$$f(x) = \sqrt{1 + \cos^2(x^2)}$$
 ...(i)

On differentiating (i) w.r.t.x, we get

$$f'(x) = \frac{-2\sin x^2 \cos x^2}{\sqrt{1+\cos^2 x^2}}(x)$$

$$\Rightarrow f'(x) = \frac{-\sin 2x^2}{\sqrt{1 + \cos^2 x^2}}(x) \qquad ...(ii)$$

Put,
$$x = \frac{\sqrt{\pi}}{2}$$
 in (ii), we get


$$f'\left(\frac{\sqrt{\pi}}{2}\right) = -\frac{\sqrt{\pi}}{2} \cdot \frac{\sin 2\left(\frac{\pi}{4}\right)}{\sqrt{1 + \frac{1}{2}}} = -\frac{\sqrt{\pi}}{2} \cdot \frac{\sin \frac{\pi}{2}}{\sqrt{\frac{3}{2}}} = -\sqrt{\frac{\pi}{6}}$$

8. (a)
$$y^2 = 18x \Rightarrow 2y \frac{dy}{dx} = 18 \Rightarrow \frac{dy}{dx} = \frac{9}{y}$$

Given
$$\frac{dy}{dx} = 2 \Rightarrow \frac{9}{y} = 2 \Rightarrow y = \frac{9}{2}$$

Putting in
$$y^2 = 18x \Rightarrow x = \frac{9}{8}$$
 : Req. point is $\left(\frac{9}{8}, \frac{9}{2}\right)$

(b) The required area is shown by shaded portion in the figure.

The req. area is $A = \int_{-\pi/2}^{\pi/2} |\sin y| \, dy = 2 \int_{0}^{\pi/2} \sin y \, dy = 2$

 $\Rightarrow f(x)$ is strictly increasing in $(2, \infty)$

11. (a)
$$\int (x^4 + x^2 + 2x^3) dn = \frac{x^5}{5} + \frac{x^3}{3} + \frac{x^4}{2} + c$$
.

(b) Let P (x₁, y₁, z₁) and Q (x₂, y₂, z₂) be the initial and final points of the vector whose projections on the three coordinate axes are 6, -3, 2 then

$$x_2 - x_1$$
, = 6; $y_2 - y_1 = -3$; $z_2 - z_1 = 2$

So that direction ratios of \overrightarrow{PQ} are 6, -3, 2

 \therefore Direction cosines of \overrightarrow{PQ} are

$$\frac{6}{\sqrt{6^2 + (-3)^2 + 2^2}}, \frac{-3}{\sqrt{6^2 + (-3)^2 + 2^2}},$$

$$\frac{2}{\sqrt{6^2 + (-3)^2 + 2^2}} = \frac{6}{7}, \frac{-3}{7}, \frac{2}{7}$$

13. (d)
$$\frac{3x+4}{x^3-2x-4} = \frac{3x+4}{(x-2)(x^2+2x+2)}$$
$$= \frac{A}{x-2} + \frac{Bx+C}{x^2+2x+2}$$

$$\Rightarrow$$
 3x+4=A(x²+2x+2)+(Bx+C)(x-2)

$$2A-2C=4$$

$$\int \frac{3x+4}{x^3-2x-4} dx = \int \frac{dx}{x-2} - \frac{1}{2} \int \frac{2x+2}{x^2+2x+2} dx$$
$$= \log_e |x-2| - \frac{1}{2} \log |x^2+2x+2| + C$$

$$\Rightarrow k = -\frac{1}{2} \text{ and } f(x) = |x^2 + 2x + 2|$$

14. (b)
$$y = e^{a \sin x} \implies \log y = a \sin x \log e$$

$$\Rightarrow \frac{1}{y} \frac{dy}{dx} = a \cos x \implies \frac{dy}{dx} = y \left(\frac{\log y}{\sin x}\right) \cos x$$

$$\Rightarrow \frac{dy}{dx} = \frac{y \log y}{\tan x} \implies \tan x \frac{dy}{dx} = y \log y$$

15. (c)

16. (a)
$$\frac{dv}{dt} + \frac{k}{m}v = -g \Rightarrow \frac{dv}{dt} = -\frac{k}{m}\left(v + \frac{mg}{k}\right)$$

$$\Rightarrow \frac{dv}{v + mg/k} = -\frac{k}{m}dt \Rightarrow \log\left(v + \frac{mg}{k}\right) = -\frac{k}{m}t + \log C$$

$$\Rightarrow v + \frac{mg}{k} = Ce^{-kt/m} \Rightarrow v = Ce^{-kt/m} - \frac{mg}{k}$$

17. (b) The given lines are parallel and

$$\vec{a}_1 = \hat{i} + \hat{j}, \vec{a}_2 = 2\hat{i} - 3\hat{k}$$

$$\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$$

Now,
$$\vec{a}_2 - \vec{a}_1 = (2\hat{i} - 3\hat{k}) - (\hat{i} + \hat{j}) = \hat{i} - \hat{j} - 3\hat{k}$$

$$\vec{b} \times (\vec{a}_2 - \vec{a}_1) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 3 \\ 1 & -1 & -3 \end{vmatrix}$$
$$= \hat{i}(6+3) - \hat{j}(-3-3) + \hat{k}(-1+2)$$
$$= 9\hat{i} + 6\hat{j} + \hat{k}$$

$$|\vec{b}| = \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14}$$

Distance,
$$\mathbf{d} = \left| \frac{\vec{\mathbf{b}} \times (\vec{\mathbf{a}}_2 - \vec{\mathbf{a}}_1)}{|\vec{\mathbf{b}}|} \right| = \left| \frac{9\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + \hat{\mathbf{k}}}{\sqrt{14}} \right|$$

= $\frac{1}{\sqrt{14}} \sqrt{(9)^2 + (6)^2 + (1)^2} = \sqrt{\frac{59}{7}}$

- (c) Obviously, solution set of constraints included the point (3, 4).
- (d) Clearly the relation is not reflexive, neither transitive it is only symmetric.
- 20. (c) 32 = 25

Number of ways of expressing 32 as product of two positive

integers =
$$\frac{5+1}{2}$$
 = 3.

Possible dimensions of a matrix are

$$\{1 \times 32, 32 \times 1, 2 \times 16, 16 \times 2, 4 \times 8, 8 \times 4\} = 6$$

⇒ Assertion is true and Reason is false

21.
$$|B| = \begin{vmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{vmatrix} = 1 \neq 0$$

 $\therefore B^{-1} = \text{exists},$

$$B^{-1} = \frac{1}{|B|} (adj B) = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$$
Now $(AB)^{-1} = B^{-1}A^{-1}$ [1 Mark]
$$A^{-1} = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix} \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 9 & -3 & 5 \\ -2 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
 [1 Mark]

(i) Let the award prize for Truth be ₹x, Patriotism be ₹y and Non-violence be ₹ z.

$$5x+4y+3z=11000$$

 $4x+3y+5z=10700$

The system of equations can be written as AX = B.

$$A = \begin{bmatrix} 5 & 4 & 3 \\ 4 & 3 & 5 \\ 1 & 1 & 1 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 11000 \\ 10700 \\ 2700 \end{bmatrix}$$

[1/2 Mark]

Consider ax² + 2hxy + by² + 2gx + 2fy + c = 0
 Differentiating w.r.t. x, both sides, we get

$$2ax + 2h\left(x\frac{dy}{dx} + y\right) + 2by\frac{dy}{dx} + 2g + 2f\frac{dy}{dx} + 0 = 0$$

[1 Mark]

[1 Mark]

[1 Mark]

$$\Rightarrow ax + hx \frac{dy}{dx} + hy + by \frac{dy}{dx} + g + f \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} (hx + by + f) = -(ax + hy + g)$$

$$\Rightarrow \frac{dy}{dx} = \frac{-(ax + hy + g)}{hx + by + f}$$

Consider $\sin (x + y) + \sin (xy) = \sin^2 x$. Differentiating, w.r.t. x, we get

$$\cos(x+y)$$
. $\left\{1+\frac{dy}{dx}\right\}+\cos(xy)$. $\left\{x\frac{dy}{dx}+y\right\}$

 $\Rightarrow \cos(x+y) + \cos(x+y)$

$$\frac{dy}{dx} + x\cos(xy) \cdot \frac{dy}{dx} + y\cos(xy) = \sin 2x$$

$$\Rightarrow \frac{dy}{dx} \{ \cos(x+y) + x \cos(xy) \}$$

$$\Rightarrow \frac{dy}{dx} = \frac{\sin 2x - \cos(x+y) - y \cos(xy)}{\cos(x+y) + x \cos(xy)}.$$
 [1 Mark]

23. Let
$$I = \int \frac{e^{6\log x} - e^{5\log x}}{e^{4\log x} - e^{3\log x}} dx$$

$$= \int \frac{e^{\log x^6} - e^{\log x^5}}{e^{\log x^4} - e^{\log x^3}} dx = \int \frac{x^6 - x^5}{x^4 - x^3} dx$$
 [1 Mark]

$$= \int \frac{x^2(x^4 - x^3)}{x^4 - x^3} dx = \int x^2 dx = \frac{x^3}{3} + C$$
 [1 Mark]

$$Again \frac{d^2y}{dx^2} + x^{1/4} = -\left(\frac{dy}{dx}\right)^{1/3}$$

$$\Rightarrow \left(\frac{d^2y}{dx^2} + x^{1/4}\right)^3 = -\frac{dy}{dx}$$
 [1 Mark]

which shows that degree of the differential equation is 3.

[1 Mark]

25. Let x + y = v. Then,

$$1 + \frac{dy}{dx} = \frac{dv}{dx} \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1$$

Putting x + y = v and $\frac{dy}{dx} = \frac{dv}{dx} - 1$ the given differential equation, we get

$$v^2 \left(\frac{dv}{dx} - 1 \right) = a^2 \implies v^2 \frac{dv}{dx} = a^2 + v^2$$

$$(dx^{-1})^{-1} \Rightarrow (dx^{-1})^{-1}$$

$$\Rightarrow v^{2}dv = (a^{2} + v^{2})dx$$
[1 Mark]

$$\Rightarrow \frac{v^2}{v^2 + a^2} dv = dx \text{ [By separating the variables]}$$

$$\Rightarrow \left(1 - \frac{a^2}{v^2 + a^2}\right) dv = dx$$

$$\Rightarrow \int 1.dv - a^2 \int \frac{1}{v^2 + a^2} dv = \int dx + C$$

[On integration]

$$\Rightarrow v - a \tan^{-1} \left(\frac{v}{a} \right) = x + C$$

$$\Rightarrow (x+y)-a \tan^{-1}\left(\frac{x+y}{a}\right) = x+C$$
 [1 Mark]

26. Let
$$I = \int_{-1}^{2} |x^3 - x| dx$$

$$f(x) = x^3 - x$$

$$\Rightarrow$$
 f(x) = x(x-1)(x+1)

The signs 8 of f(x) for the different values are as follows:

f(x) > 0 for all $x \in (-1, 0) \cup (1, 2)$

f(x) < 0 for all $x \in (0, 1)$

Therefore,

$$\begin{vmatrix} x^{3} - x \end{vmatrix} = \begin{cases} x^{3} - x, x \in (-1,0) \cup (1,2) \\ -(x^{3} - x), x \in (0,1) \end{cases}$$

$$\therefore I = \int_{-1}^{2} |x^{3} - x| dx$$

$$= \int_{-1}^{0} |x^{3} - x| dx + \int_{0}^{1} |x^{3} - x| dx + \int_{1}^{2} |x^{3} - x| dx$$

$$= \int_{-1}^{0} (x^{3} - x) dx - \int_{0}^{1} (x^{3} - x) dx + \int_{1}^{2} (x^{3} - x) dx \qquad [1 \text{ Mark}]$$

$$= \left[\frac{x^{4}}{4} - \frac{x^{2}}{2} \right]_{-1}^{0} - \left[\frac{x^{4}}{4} - \frac{x^{2}}{2} \right]_{0}^{1} + \left[\frac{x^{4}}{4} - \frac{x^{2}}{2} \right]_{1}^{2}$$

$$= -\left(\frac{1}{4} - \frac{1}{2} \right) - \left(\frac{1}{4} - \frac{1}{2} \right) + \left(\frac{16}{4} - \frac{4}{2} \right) - \left(\frac{1}{4} - \frac{1}{2} \right)$$

$$= \frac{3}{4} + (4 - 2) = \frac{11}{4} \qquad [1 \text{ Mark}]$$

27. Let
$$I = \int \frac{x^2 + 1}{(x - 1)^2 (x + 3)} dx$$

Let
$$\frac{x^2+1}{(x-1)^2(x+3)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+3}$$
...(i)[½ Mark]

$$\Rightarrow \frac{x^2+1}{(x-1)^2(x+3)}$$

$$=\frac{A(x-1)(x+3)+B(x+3)+C(x-1)^2}{(x-1)^2+(x+3)}$$

$$x^2 + 1 = A(x-1)(x+3) + B(x+3) + C(x-1)^2$$

 $\Rightarrow x^2 + 1 = A(x^2 + 2x - 3) + B(x+3) + C(x^2 + 1 - 2x)$
 $\Rightarrow x^2 + 1 = (A+C)x^2 + 2A + B - 2C)x + (-3A + 3B + C)$

Comparing coefficients of x^2 , x and constant on both sides, we get

Multiply Eq. (iii) by '3' and subtracting it from Eq. (iv), we get

$$-3A + 3B + C = 1$$

$$6A \pm 3B \mp 6C = 0$$

$$-9A + 7C = 1$$
...(v)

Multiply Eq. (ii) by '7' and subtracting it from Eq. (v), we get

$$-9A + 7C = 1$$

 $-7A + 7C = 7$
 $-16A = -6$

..
$$A = \frac{6}{16} = \frac{3}{8}$$

Put $A = \frac{3}{8}$ in Eq. (ii), we get
$$\frac{3}{8} + C = 1$$

$$\Rightarrow C = 1 - \frac{3}{8} = \frac{5}{8}$$
Put $A = \frac{3}{8}$ and $C = \frac{5}{4} = 0$ in Eq. (iii), we get
$$\frac{3}{4} + B - \frac{5}{4} = 0$$

$$\Rightarrow B - \frac{2}{8} = 0$$

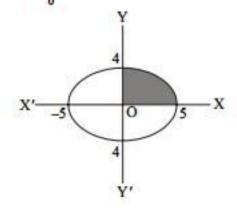
$$\Rightarrow B - \frac{2}{4} = 0$$

$$\Rightarrow B = \frac{2}{4} = \frac{1}{2}$$

$$A = \frac{3}{8}, B = \frac{1}{2} \text{ and } C = \frac{5}{8}$$
 [1 Mark]

: Eq. (i) becomes

$$\frac{x^2+1}{(x-1)^2(x+3)} = \frac{3/8}{x-1} + \frac{1/2}{(x-1)^2} + \frac{5/8}{x+3}$$


Integrating both sides, we get

$$\int \frac{x^2 + 1}{(x - 1)^2 (x + 3)} dx = \frac{3}{8} \int \frac{dx}{x - 1} + \frac{1}{2}$$

$$\int \frac{dx}{(x - 1)^2} + \frac{5}{8} \int \frac{dx}{x + 3}$$

$$= \frac{3}{8} \log|x - 1| + \frac{1}{2} \left(\frac{-1}{x - 1}\right) + \frac{5}{8} \log|x + 3| + C$$
Hence, $I = \frac{3}{8} \log|x - 1| - \frac{1}{2(x - 1)} + \frac{5}{8} \log|x + 3| + C$
[1½ Marks]

28. Area =
$$4 \times \frac{4}{5} \int_{0}^{5} \sqrt{25 - x^2} dx$$

$$= \frac{16}{5} \left[\frac{x}{2} \sqrt{25 - x^2} + \frac{25}{2} \cdot \sin^{-1} \frac{x}{5} \right]_0^5$$

$$= \frac{16}{5} \left[0 + \frac{25}{2} \left(\frac{\pi}{2} \right) - 0 - 0 \right]$$

$$= \frac{16}{5} \times \frac{25\pi}{4} = 20\pi \text{ sq. units}$$
 [1 Mark]

29. We have $|\bar{a}| = 5\sqrt{2}$

$$\alpha = \frac{\pi}{4}$$
, $\beta = \frac{\pi}{2}$, $\gamma = \theta < \frac{\pi}{2}$

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$
$$\cos^2 \frac{\pi}{4} + \cos^2 \frac{\pi}{4} + \cos \theta = 1$$

$$\frac{1}{2} + \cos^2 \theta = 1$$

$$\Rightarrow \cos^2 \theta = \frac{1}{2} \Rightarrow \cos \theta = \pm \left(\frac{1}{\sqrt{2}}\right)$$

$$\Rightarrow \theta = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) \text{ or } \theta = \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$$

$$\Rightarrow \theta = \frac{\pi}{4}, \theta = \frac{3\pi}{4}$$

For
$$\theta = \gamma = \frac{\pi}{4}$$
 [1 Mark]

Now,
$$\bar{a} = |\bar{a}| \left\{ \cos \alpha \hat{i} + \cos \beta \hat{j} + \cos \gamma \hat{k} \right\}$$

$$=5\sqrt{2}\left\{\cos\frac{\pi}{4}\hat{i}+\cos\frac{\pi}{2}\hat{j}+\cos\frac{\pi}{4}\hat{k}\right\}$$

$$= 5\sqrt{2} \left\{ \frac{1}{\sqrt{2}} \hat{i} + 0 \hat{j} + \frac{1}{\sqrt{2}} \hat{k} \right\}$$

$$\sqrt{2}$$

$$\bar{a} = 5\hat{i} + 5\hat{k}$$
 [1 Mark]

For
$$\theta = \frac{3\pi}{4}$$

$$\vec{a} = |\vec{a}| \left\{ \cos \frac{\pi}{4} \hat{i} + \cos \frac{\pi}{2} \hat{j} + \cos \frac{3\pi}{4} \hat{k} \right\}$$

$$\bar{a} = 5\sqrt{2} \left\{ \frac{1}{\sqrt{2}} \hat{i} + 0 \hat{j} - \frac{1}{\sqrt{2}} \hat{k} \right\}$$

$$\bar{a} = 5\hat{i} - 5\hat{k}$$

.. The required vector is

$$\bar{a} = 5\hat{i} + 5\hat{k}$$
 or $\bar{a} = 5\hat{i} - 5\hat{k}$ [1 Mark]

Here, we have

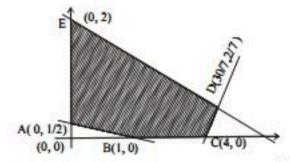
$$\begin{vmatrix} \overrightarrow{a} \\ a \end{vmatrix} = 3$$
, $\begin{vmatrix} \overrightarrow{b} \\ b \end{vmatrix} = 4$ and $\begin{vmatrix} \overrightarrow{c} \\ c \end{vmatrix} = 5$

Now, a, b, c each one is perpendicular to the vector obtained by sum of the other two.

$$\Rightarrow \overrightarrow{a} \cdot \left(\overrightarrow{b} + \overrightarrow{c} \right) = 0, \ \overrightarrow{b} \cdot \left(\overrightarrow{c} + \overrightarrow{a} \right) = 0 \text{ and } \overrightarrow{c} \cdot \left(\overrightarrow{a} + \overrightarrow{b} \right) = 0$$
[1 Mark]

Consider
$$\begin{vmatrix} \rightarrow & \rightarrow & \rightarrow \\ a + b + c \end{vmatrix}^2 = \begin{pmatrix} \rightarrow & \rightarrow & \rightarrow \\ a + b + c \end{pmatrix} \cdot \begin{pmatrix} \rightarrow & \rightarrow & \rightarrow \\ a + b + c \end{pmatrix}$$

$$= \begin{vmatrix} \rightarrow & \rightarrow & \rightarrow \\ a \cdot a + a \cdot \begin{pmatrix} \rightarrow & \rightarrow \\ b + c \end{pmatrix} + \begin{vmatrix} \rightarrow & \rightarrow & \rightarrow \\ b \cdot b + b \cdot \begin{pmatrix} \rightarrow & \rightarrow \\ c + a \end{pmatrix}$$


$$+ \begin{vmatrix} \rightarrow & \rightarrow & \rightarrow \\ c \cdot c + c \cdot \begin{pmatrix} \rightarrow & \rightarrow \\ a + b \end{pmatrix}$$

$$= \left| \overrightarrow{a} \right|^{2} + 0 + \left| \overrightarrow{b} \right|^{2} + 0 + \left| \overrightarrow{c} \right|^{2} + 0 = 9 + 16 + 25 = 50$$
[1 Mark]
$$\Rightarrow \left| \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right| = \sqrt{50} = 5\sqrt{2}$$

Hence,
$$\begin{vmatrix} \rightarrow & \rightarrow & \rightarrow \\ a + b + c \end{vmatrix} = 5\sqrt{2}$$

We find that the feasible region is on the same side of the line 2x + 5y = 10 as the origin, on the same side of the line x - y = 4 as the origin and on the opposite side of the line x + 2y = 1 from the origin. Moreover, the lines meet the coordinate axes at (5, 0), (0, 2), (1, 0), (0, 1/2) and (4, 0). The

lines
$$x - y = 4$$
 and $2x + 5y = 10$ intersect at $\left(\frac{30}{7}, \frac{2}{7}\right)$.

[2 Marks]

The values of the objective function at the vertices of the pentagon are:

(i)
$$Z=0+\frac{5}{2}=\frac{5}{2}$$

(ii)
$$Z=2+0=2$$

(iii)
$$Z = 8 + 0 = 8$$

(iv)
$$Z = \frac{60}{7} + \frac{10}{7} = 10$$

(v)
$$Z=0+10=10$$

The maximum value 10 occurs at the points $D\left(\frac{30}{7}, \frac{2}{7}\right)$ and E(0, 2). Since D and E are adjacent vertices, the objective function has the same maximum value 10 at all the points on the line DE. [1 Mark]

Let
$$\ell_1: x + 4y = 24$$
; $\ell_2: 3x + y = 21$;

 $\ell_3: x + y = 9; \ell_4: x = 0 \text{ and } \ell_5: y = 0$

On solving these equations we will get points as O(0, 0), A(7, 0), B(6, 3), C(4, 5), D(0, 6)

Now maximize Z = 3x + 5y

$$Z$$
 at $O(0, 0) = 3(0) + 5(0) = 0$

$$Z$$
 at $A(7, 0) = 3(7) + 5(0) = 21$

Z at
$$B(6,3)=3(6)+5(3)=33$$

$$Z$$
 at $C(4,5)=3(4)+5(5)=37$

Z at
$$D(0, 6) = 3(0) + 5(6) = 30$$
 [2 Marks]

Thus, Z is maximized at C(4, 5) and its maximum value is 37. [1 Mark]

 Let S denote the success, i.e. getting a number greater than four and F denote the failure,i.e. getting a number less than four.

$$P(S) = \frac{2}{6} = \frac{1}{3}, P(F) = 1 - \frac{1}{3} = \frac{2}{3}$$
 [1/2 Mark]

Now, B gets the second throw, if A fails in the first throw.

∴ P(B wins in the second throw) = P(FS) = P(F)P(S)

$$= \frac{2}{3} \times \frac{1}{3}$$
 [½ Mark]

Similarly, P(B wins in the fourth throw) = P(FFFS)

$$= P(F)P(F)P(F)P(S) = \left(\frac{2}{3}\right)^3 \times \frac{1}{3}$$
 [½ Mark]

P(B wins in the sixth throw) = P(FFFFFS)

= P(F)P(F)P(F)P(F)P(F)P(S) =
$$\left(\frac{2}{3}\right)^5 \times \frac{1}{3}$$
 and so on.

Hence. [1/2 Mark]

P(B wins) =
$$\frac{2}{3} \times \frac{1}{3} + \left(\frac{2}{3}\right)^3 \times \frac{1}{3} + \left(\frac{2}{3}\right)^3 \times \frac{1}{3} + \dots$$

= $\frac{2}{3} \times \frac{1}{3} \times \left[1 + \left(\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^4 + \dots\right]$
= $\frac{2}{3} \times \frac{1}{3} \times \left(\frac{1}{1 - \frac{2}{3}}\right)$ [: $a + ar + ar^2 + \dots = \frac{a}{1 - r}$]

$$=\frac{2}{3}$$

Thus, the probability that B wins is $\frac{2}{3}$. [1 Mark]

OR

A is an event getting 5 on the first throw and 6 on the second throw

Then

 $A = \{(5,6,1)(5,6,2)(5,6,3)(5,6,4)(5,6,5),(5,6,6)\}[1 \text{ Mark}]$ Also B is an event of getting 3 or 4 on the third throw.

$$A \cap B = \{(5.6,3),(5,6,4)\}$$
 [1 Mark]

Required probability,
$$P(B|A) = \frac{n(A \cap B)}{n(A)} = \frac{2}{6} = \frac{1}{3}$$

Thus, the probability of B, given that A has already

occurred is
$$\frac{1}{3}$$
. [1 Mark]

- 32. (i) In a set of triangles R = {(T₁, T₂): T₁ is similar T₂}
 - (a) Since A triangle T is similar to itself. Therefore
 (T, T) ∈ R for all T ∈ A.
 Since R is reflexive. [1 Mark]
 - (b) If triangle T₁ is similar to triangle T₂ then T₂ is similar triangle T₁
 ∴ R is symmetric. [1 Mark]
 - (c) Let T₁ is similar to triangle T₂ and T₂ to T₃ then triangle T₁ is similar to triangle T₃, ∴ R is transitive. Hence, R is an equivalence relation. [1 Mark]
 - (ii) Two triangles are similar if their sides are proportional now sides 3, 4, 5 of triangle T₁ are proportional to the sides 6, 8, 10 of triangle T₃.
 ∴ T₁ is related to T₃. [2 Marks]

(a) We observe the following properties of f:

(i)
$$f(x) = \frac{1}{x}$$
, if $f(x_1) = f(x_2)$

$$\Rightarrow \frac{1}{x_1} = \frac{1}{x_2} \Rightarrow x_1 = x_2$$

Each $x \in R$ has a unique image in codomain \Rightarrow f is one-one. [2 Marks]

(ii) For each y belonging codomain then

$$y = \frac{1}{x}$$
 or $x = \frac{1}{y}$ there is a unique pre-image of y.
 \Rightarrow f is onto. [2 Marks]

(b) When domain R is replaced by N. codomain remaining the same, then f: N → R If f(x₁) = f(x₂)

$$\Rightarrow \frac{1}{n_1} = \frac{1}{n_2} \Rightarrow n_1 = n_2 \text{ where } n_1, n_2 \in \mathbb{N}$$

⇒ f is one-one.

But for every real number belonging to codomain may not have a pre-image in N.

e.g.
$$\frac{1}{2}$$
, $\frac{3}{2}$, N : f is not onto. [1 Mark]

33. Given equations are

$$x - y + 2z = 7$$

 $3x + 4y - 5z = -5$
 $2x - y + 3z = 12$

Let A =
$$\begin{bmatrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{bmatrix}$$
, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix}$

According to matrix, we have $X = A^{-1} B$ [1 Mark] where, $A^{-1} = \frac{\text{adj } A}{1 A I}$

and adj A =
$$\begin{vmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{vmatrix}^{T}$$

$$\therefore \text{ adj A} = \begin{bmatrix} 7 & 19 & -11 \\ 1 & -1 & -1 \\ -3 & 11 & 7 \end{bmatrix}^{T} = \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix}$$

Now, [2 Marks

$$|A| = 1 (12 - 5) + 1 (9 + 10) + 2 (-3 - 8)$$

$$|A| = 1(7) + 1(19) + 2(-11) = 7 + 19 - 22 = 4$$

$$\therefore A^{-1} = \frac{1}{4} \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix}$$
 [1 Mark]

$$\therefore X = \frac{1}{4} \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix} \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 49 - 5 - 36 \\ -133 + 5 + 132 \\ -77 + 5 + 84 \end{bmatrix}$$

$$= \begin{bmatrix} 8 \\ 4 \\ 12 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

$$x = 2, y = 1, z = 3$$
 [1 Mark]

 Let the length and breadth of the rectangle inscribed in a circle of radius a be x and y respectively.

circle of radius a be x and y respectively.

$$\therefore x^2 + y^2 = (2a)^2 \implies x^2 + y^2 = 4a^2 \qquad ...(i)$$

$$\Rightarrow P(x) = 2 \left[x + \sqrt{4a^2 - x^2} \right]$$

∴ P'(x) = 2
$$\left[1 - \frac{x}{\sqrt{4a^2 - x^2}}\right]$$
 ...(ii)[1 Mark]

and
$$P''(x) = \frac{-8a^2}{(4a^2 - x^2)^{3/2}}$$
 ...(iii)

For P(x) to be minimum P'(x) = 0 and P"(x) < 0

$$\therefore \text{ from (i), P'(x) = 0} \Rightarrow 4a^2 - x^2 = x^2 \Rightarrow x = a\sqrt{2} [1 \text{ Mark}]$$

from (iii)
$$P''(x) = \frac{-8a^2}{(2a^2)^{3/2}} \Rightarrow P(x)$$
 is maximum at $x = a\sqrt{2}$

from (i)
$$y = \sqrt{2}a = x$$
; Thus, $x = y$ [2 Marks]

Hence rectangle becomes square hence found.

 The given equation are not in the standard form. The equation of the given lines

$$\frac{x-1}{-3} = \frac{y-2}{2p/7} = \frac{z-3}{2} \qquad ...(i)$$
and
$$\frac{x-1}{3p/-7} = \frac{y-5}{1} = \frac{z-6}{-5} \qquad ...(ii)$$
 [2 Marks]

The direction ratios of the given lines are -3, $\frac{2P}{7}$,

$$2 \text{ and } \frac{-3P}{7}, 1, -5.$$
 [1 Mark]

The lines are perpendicualr to each other

∴
$$(-3)\left(\frac{-3P}{7}\right) + \left(\frac{2P}{7}\right)(1) + 2(-5) = 0 \Rightarrow P = \frac{70}{11}[2 \text{ Marks}]$$

The given equation

$$\vec{r} = \hat{i} - 2\hat{j} + 3\hat{k} + t(-\hat{i} + \hat{j} - 2\hat{k})$$
 ...(i)

$$\vec{r} = \hat{i} - \hat{j} - \hat{k} + s (-\hat{i} + 2\hat{j} - 2\hat{k})$$
 ...(ii)

$$\vec{a}_1 = \hat{i} - 2\hat{j} + 3\hat{k}, \ \vec{b}_1 = -\hat{i} + \hat{j} - 2\hat{k} \ \text{and}$$

$$\bar{a}_1 = \hat{i} - \hat{j} - \hat{k}, \quad \bar{b}_2 = \hat{i} + 2\hat{j} - 2\hat{k}$$
 [2 Marks]

Now,
$$\bar{a}_2 - \bar{a}_1 = \hat{j} - 4\hat{k}$$
 [1 Mark]

$$\vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & -2 \\ 1 & 2 & -2 \end{vmatrix} = 2\hat{i} - 4\hat{j} - 3\hat{k}$$
 [1 Mark]

$$|\vec{b}_1 \times \vec{b}_2| = \sqrt{4 + 16 + 9} = \sqrt{29}$$
 and

$$(\bar{a}_2 - \bar{a}_1) \cdot (\bar{b}_1 \times \bar{b}_2) = (\hat{j} - 4\hat{k}) \cdot (2\hat{i} - 4\hat{j} - 3\hat{k}) = -4 + 12 = 8$$

$$d = \frac{\left| (\overline{a}_2 - \overline{a}_1) \cdot (\overline{b}_1 \times \overline{b}_2) \right|}{\left| \overline{b}_1 \times \overline{b}_2 \right|} = \frac{8}{\sqrt{29}} = \frac{8}{\sqrt{29}}. \quad [1 \text{ Mark}]$$

(i) Volume: πr²h = 3 lit = 3000 cm³

∴
$$h = \frac{3000}{-r^2}$$

Surface area $s(r) = 2\pi r^2 + 2\pi rh = 2\pi r^2 + \frac{6000}{r}$

(ii)
$$s'(r) = 4\pi r - \frac{6000}{r^2} = 0 \Rightarrow r = \left(\frac{1500}{\pi}\right)^{1/3}$$

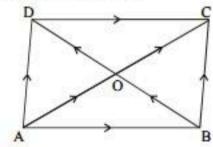
 $s''(r)\left(r = \left(\frac{1500}{\pi}\right)^{1/3}\right) = 4\pi + \frac{12000 \times \pi}{1500} > 0$

$$\therefore \text{ Surface area is minimum when } r = \left(\frac{1500}{\pi}\right)^{1/3}.$$

(iii) :
$$r = \left(\frac{1500}{\pi}\right)^{1/3} \Rightarrow \pi = \frac{1500}{r^3}$$

Now
$$h = \frac{3000}{\pi r^2} = \frac{3000 \times r^3}{1500r^2} = 2r = 2\left(\frac{1500}{\pi}\right)^{1/3}$$
 [2 Marks]

OR


Minimum surface area =
$$\frac{2\pi r^3 + 6000}{r}$$
 = 1153.84 cm³

Minimum cost = 1153.84× 1/100 =₹11.538. [2 Marks]

[1 Mark]

(ii)
$$\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{BC} - \overrightarrow{DC}$$

= $\overrightarrow{AB} + 2\overrightarrow{BC} - \overrightarrow{AB} = 2\overrightarrow{BC}$.

[1 Mark]

(iii) In ΔABC

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

$$\overline{BC} = \overline{AC} + \overline{BA}$$

...(i)

In ABCD

$$\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD}$$

...(ii)

Adding (i) and (ii)

$$\overrightarrow{BC} + \overrightarrow{BD} = \overrightarrow{AC} + \overrightarrow{BA} + \overrightarrow{BC} + \overrightarrow{CD}$$

$$\overline{BD} - \overline{AC} = \overline{BA} + \overline{CD}$$

$$\Rightarrow \overline{BA} + \overline{CD} = \overline{BD} + \overline{CA}.$$

[2 Marks]

OR

$$\overline{XY} + \overline{XZ} = (\overline{XT} + \overline{TY}) + (\overline{XT} + \overline{TZ})$$

$$=2\overline{X}\overline{T}+\overline{T}\overline{Y}+\overline{T}\overline{Z}=2\overline{X}\overline{T}.$$

[2 Marks]

Let B, R, Y, G denotes the blue, red yellow, green balls
 Total = 35 balls

$$= P(B).P(G/B) + P(G).P(B/G)$$

$$=\frac{12}{35}\times\frac{5}{34}+\frac{5}{35}\times\frac{12}{34}=\frac{12}{119}$$

[2 Marks]

(ii) $P(R \cap R) = P(R).P(R/R)$

$$=\frac{8}{35}\times\frac{7}{34}=\frac{4}{85}$$

[2 Marks]