- 1. If A and B are any two square matrices of the same order, then
 - a. adj(AB) = adj(A) adj (B)
 - b. $(AB)^t = B^t A^t$
 - c. AB = O
 - d. $(AB)^t = A^t B^t$

2. A square matrix A = $[a_{ij}]_{nxn}$ is called an upper triangular if $a_{ij} = 0$ for

- a. none of these
- b. i is less than j
- c. i = j
- d. i is greater than j

3. If A = $\begin{bmatrix} 0 & 2 & 3 \\ -2 & 0 & -7 \\ -3 & 7 & 0 \end{bmatrix}$, then, which of the following is true:

- a. None of these
- b. A = -A'
- c. A = -A
- d. A = A'
- 4. If the system of equations x + 4ay + az = 0, x + 3by + bz = 0 and x + 2 cy +cz = 0 have a non-zero solution,then a, b, c are in
 - a. G.P.
 - b. A.P.
 - c. none of these
 - d. H.P.
- 5. For what value of λ the following system of equations does not have a solution x + y + z = 6, 4x + λ y λ z = 0, 3x + 2y 4z = 5 ?
 - a. 1
 - b. -3
 - c. 0
 - d. 3

- 6. Matrix multiplication is _____ over addition.
- 7. If A and B are symmetric matrices, then AB BA is a _____ matrix.
- 8. If A and B are square matrices of the same order, then (AB)' = _____.
- 9. If a matrix has 8 elements, what are the possible orders it can have.?

10. If
$$\begin{bmatrix} 4 & 3b \\ 8 & -6 \end{bmatrix} = \begin{bmatrix} 4 & b+2 \\ 8 & a-8b \end{bmatrix}$$
, then write the value of a - 2b.

11. Solve the following matrix equation for x.

$$egin{bmatrix} x & 1 \end{bmatrix} egin{bmatrix} 1 & 0 \ -2 & 0 \end{bmatrix} = O$$

12. Using elementary transformation, find the inverse of the matrix:

$$\begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

13. If $A = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}$ Find A + A'.

14. Using elementary transformation, find the inverse of the matrices: $\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$.

15. If A is a square matrix such that $A^2 = A$, then prove that $(I + A)^3 - 7A$ is equal to I.

16. If $A = \begin{bmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{bmatrix}$, $B = \begin{bmatrix} \cos^2 \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin^2 \beta \end{bmatrix}$, then show that AB is a zero matrix if α and β differ by an odd multiple of $\frac{\pi}{2}$.

- 17. $A=egin{bmatrix} 0&1\0&0\end{bmatrix}$,Show that $(aI+bA)^n=a^nI+na^{n-1}bA$, where I is the identify matrix of order 2 and $n\in N$.
- 18. For a matrix $A = egin{bmatrix} 1 & 5 \ 6 & 7 \end{bmatrix}$, verify that:
 - i. (A + A') is a symmetric matrix.
 - ii. (A A') is a skew symmetric matrix.

CBSE Test Paper 05 Chapter 3 Matrices

Solution

- 1. b. $(AB)^{t} = B^{t}A^{t}$, **Explanation:** By the property of transpose, (AB)' = B'A'
- 2. d. i is greater than j

Explanation: Upper Triangular matrix is given by : $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix}$. Here, $a_{ij} = 0$, if i is greater than j.and $a_{ij} \neq 0$, if i is less than j.

- 3. b. A = A', **Explanation:** The given matrix is a skew symmetric matrix.,therefore , A = - A'
- 4. d. H.P., **Explanation:** For a non trivial solution: $\begin{vmatrix} 1 & 4a & a \\ 1 & 3b & b \\ 1 & 2c & c \end{vmatrix} = 0$

$$\Rightarrow egin{array}{c|c|c|c|c|c|c|c|} 1 & 4a & a \ 0 & 3b - 4a & b - a \ 0 & 2c - 4a & c - a \ \end{array} = 0 \ \Rightarrow bc + ab - 2ac = 0 \ \Rightarrow rac{2}{b} = rac{1}{a} + rac{1}{c}.$$

Therefore , a , b, c are in H.P.

5. d. 3, **Explanation:** The given system of equations does not have solution if

1	1	1		0	0	1	
4	λ	$-\lambda$	$=0\Rightarrow$	$4+\lambda$	2λ	$-\lambda$	= 0
3	2	-4		7	6	4	

- 6. distributive
- 7. skew-symmetric
- 8. B'A'
- 9. $1 \times 8, 8 \times 1, 4 \times 2, 2 \times 4$

10. According to the question, We are given that, $\begin{bmatrix} 4 & 3b \\ 8 & -6 \end{bmatrix} = \begin{bmatrix} 4 & b+2 \\ 8 & a-8b \end{bmatrix}$

Equating the corresponding elements,

3b = b + 2(i) -6 = a - 8b...(ii)

On solving the Eqs. (i) and (ii), we get, a = 2 and b = 1. Now, a - 2b = 2 - 2(1) = 2 - 2 = 011. According to the question, $\begin{bmatrix} x & 1 \end{bmatrix} \begin{vmatrix} 1 & 0 \\ -2 & 0 \end{vmatrix} = 0$ Using matrix multiplication, $\Rightarrow \begin{bmatrix} x-2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$ Equating the corresponding elements, $\Rightarrow x - 2 = 0$ \Rightarrow x = 2 12. Let $A = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$ Since A = IA $\Rightarrow \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$ Applying $R_1 o R_1 + R_2$ $\Rightarrow \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} A$ Applying $R_2 \rightarrow R_2 + R_1$, $\Rightarrow egin{bmatrix} 1 & -1 \ 0 & 1 \end{bmatrix} = egin{bmatrix} 1 & 1 \ 1 & 2 \end{bmatrix} A$ Applying $R_1
ightarrow R_1 + R_2$, $\Rightarrow egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = egin{bmatrix} 2 & 3 \ 1 & 2 \end{bmatrix} A$ $\therefore A^{-1} = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ 13. $A + A' = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 6 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 11 \\ 11 & 14 \end{bmatrix}$ 14. Let $A = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$ Since A = IA $\Rightarrow \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$ Applying $R_2 o R_2 - 2R_1$, $\Rightarrow egin{bmatrix} 2 & 3 \ 1 & 1 \end{bmatrix} = egin{bmatrix} 1 & 0 \ -2 & 1 \end{bmatrix} A$ Applying $R_1 \leftrightarrow R_2$

$$\Rightarrow \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} A$$
Applying $R_2 \rightarrow R_2 - 2R_1$,
$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 5 & -2 \end{bmatrix} A$$
Applying $R_1 \rightarrow R_1 - R_2$,
$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix} A [R_1 \rightarrow R_1 - R_2]$$

$$\therefore A^{-1} = \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix} A [R_1 \rightarrow R_1 - R_2]$$
15. $(1 + A)^3 - 7A = 1^3 + A^3 + 31A (1 + A) - 7A$

$$= 1 + A^3 + 31^2 A + 31A^2 - 7A$$

$$= 1 + A^3 + 3A + 3A^2 - 7A$$

$$= 1 + A^3 + 3A + 3A - 7A (since A^2 = A)$$

$$= 1 + A^3 - A$$

$$= 1 + A - A[A^2 = A]$$

$$= 1 + A^2 - A$$

$$= 1 + A - A[A^2 = A]$$

$$= 1$$
16. $A = \begin{bmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{bmatrix}, B = \begin{bmatrix} \cos^2 \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin^2 \beta \end{bmatrix}$

$$AB = \begin{bmatrix} \cos^2 \alpha \cos^2 \beta + \cos \alpha \cos \beta \sin \alpha & \sin \beta & \cos^2 \alpha \cos \beta \sin \beta + \sin^2 \alpha \sin^2 \beta \\ \cos \alpha \cos^2 \beta \sin \alpha + \sin^2 \alpha \cos \beta \sin \beta & \cos \alpha \sin \alpha \cos \beta \sin \beta + \sin^2 \alpha \sin^2 \beta \end{bmatrix}$$

$$AB = \begin{bmatrix} \cos \alpha \cos \beta \cos (\alpha - \beta) & \cos \alpha \sin \beta \cos (\alpha - \beta) \\ \cos \alpha \sin \beta \cos (\alpha - \beta) & \sin \alpha \sin \beta \cos (\alpha - \beta) \end{bmatrix}$$

$$AB = 0 \text{ if } \cos(\alpha - \beta) = 0$$

$$\Rightarrow \alpha - \beta = (2n + 1)\frac{\pi}{2}$$

$$\alpha - \beta \text{ is the odd multiple of } \frac{\pi}{2}$$
17. When n = 1
(a1 + bA = a1 + bA
L.H.S = R.H.S

The result is true for n = 1.
When n = k
(aI + bA)^K = a^KI + Ka^{K-1}bA.....; (i)
Assume that the result is true for n = k
When n = k + 1
(aI + bA)^{k+1} = (aI + bA). (aI + bA)^k
= (aI + bA). (a^kI + ka^{k-1}bA) [From (i)]
= a^{k+1}I + ka^kbA + a^kbA + ka^{k-1} b²A²
$$\begin{bmatrix} \because II = I \\ IA = A = AI \end{bmatrix}$$

= a^{k+1}I + (k+1) a^kbA $[\because A^2 = 0]$
Hence result is true for n = k+1, when ever it is true for n = k

Hence ,by the principle of mathematical induction the result is true for all n in N.

18. i. Given:
$$A = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}$$

Let $B = A + A' = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}^{'} = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 6 \\ 5 & 7 \end{bmatrix}$
 $= \begin{bmatrix} 1+1 & 5+6 \\ 6+5 & 7+7 \end{bmatrix} = \begin{bmatrix} 2 & 11 \\ 11 & 14 \end{bmatrix}$
 $\therefore B' = \begin{bmatrix} 2 & 11 \\ 11 & 14 \end{bmatrix} = \begin{bmatrix} 2 & 11 \\ 11 & 14 \end{bmatrix} = B$
 $\therefore B = A + A'$ is a symmetric matrix.
ii. Given: $\begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}$
Let $B = A - A' = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix} - \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}^{'} = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix} - \begin{bmatrix} 1 & 6 \\ 5 & 7 \end{bmatrix}$
 $= \begin{bmatrix} 1-1 & 5-6 \\ 6-5 & 7-7 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$
 $\therefore B' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^{'} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \\ 1 & 0 \end{bmatrix} = -B$
 $\therefore B = A - A'$ is a skew-symmetric matrix.