LOCUS

SYNOPSIS

- The locus is the set of those points which satisfy a given condition or a well defined property.
- The locus of a point which is equidistant from two fixed points A and B is the perpendicular bisector of the line segment AB.
- Given A and B are two fixed points. The locus of a point P such that the area of Δ PAB is a constant is a pair of lines parallel to AB.
- The locus of a point which is at a constant distance from a fixed point is a circle
- If the join of two fixed points A,B subtends a right angle at P, then the locus of P is a circle on AB as diameter.
- A,B are two fixed points and PA + PB = k then
 - If k > AB, locus of P is an ellipse
 - If k =AB, locus of P is line segment AB
 - If k < AB, locus of P does not exist
- A,B are two fixed points and |PA - PB| = k, then
 - If k >AB, Locus of P does not exist
 - If k = AB, Locus of P is line through A and B except line segment AB
 - If k < AB, Locus of P is a hyperbola
- The locus of the point which moves equidistance from a fixed point and fixed st. line is a parabola.
- A and B are fixed points. P is the point moves

such that $\frac{PA}{PB} = k(k \neq 1)$ then locus of the P is a circle.

LEVEL - I

1. The locus of the point which is at a distance 5 unit from (-2, 3) is

1) $x^{2}-y^{2}+4x-6y+12=0$ 2) $x^{2}+y^{2}+4x-6y-12=0$ 3) $x^{2}-y^{2}+4x-6y-12=0$ 4) $x^{2}+y^{2}+4x-6y+12=0$

The equation of the locus of the points equidistant from the points A(-2,3) and

B(6, -5) is

2.

- 1) x+y=3 2) x-y=3
- 3) 2x+y=3 4) 2x-y=3
- 3. The locus of the point which is at a distance 5 unit from x-axis is
 - 1) $y^2+25=0$ 2) $y^2-25=0$ 3) y+25=04) y-25=0
- 4. The locus of the point, for which the sum of the squares of distances from the coordinate axes is 25 is
 - 1) $x^2+y^2=25$ 2) $x^2+y^2=19$
 - 3) $x^2+y^2=32$ 4) $x^2+y^2=29$
- 5. If the distance of P from the origin is twice the distance from (1, 2) the equation to the locus of P is
 - 1) $3(x^2+y^2)-8x-16y+20=0$
 - 2) $3(x^2+y^2)-8x+16y-20=0$
 - 3) $x^2+y^2+8x+16y+20=0$
 - 4) $x^2+y^2-8x-16y-20=0$
- 6. The equation to the locus of a point P for which the distance from P to (-4, 0) is double the distance from P to x-axis is
 - 1) $x^2 + 3y^2 + 8x + 16 = 0$
 - 2) $x^2 + 3y^2 8x + 16 = 0$
 - 3) $x^2 3y^2 + 8x 16 = 0$
 - 4) $x^2 3y^2 + 8x + 16 = 0$

	· · · · · ·		
	3) $3x^2 - y^2 = 0$ 4) $x^2 - 2y^2 = 0$		4) x
	1) $2x^2 - y^2 = 0$ 2) $x^2 - 3y^2 = 0$		3) 2
13.	The locus of a point whose distance form the y-axis is half its distance from the origin is		2) x
	3) $x^2 - y^2 = 0$ 4) $x^2 + y^2 = 0$		1) x
	1) x-y=0 2) $x+y = 0$	20.	such
12.	moves equidistant form the coordinate axes is	20	If A
12	5) $y = 2x$ The equation of the locus of the point which		3) p
	1) $y^2 = 4x^2$ 2) $4y^2 = x^2$ 3) $x = 2x$ 4) $x = 2$		2) a
	the y-axis is		1) a
11.	distance from the x-axis is twice that of from		poir
11	5) $x^2 + y^2 = 2a^2$ The equation of the locus of the point where	19.	Let
	1) $x^2 - y^2 = a^2$ (2) $a(x^2 + y^2) = 0$ 2) $a^2 + a^2 - 2a^2$ (1) $a^2 + a^2 - 2a^2$		3) 4
	of the point C if $\angle A \ C \ B = 90^{\circ}$ is		1) 5
10.	If A(a, O), B (-a, O) are two points. The locus		then
	4) $x^2 + y^2 + 6x - 5 = 0$	18.	If A
	3) $x^2 + y^2 - 6x - 5 = 0$		4) 1
	2) $x^2 + y^2 - 6x + 5 = 0$		3) 1
	1) $x^2 + y^2 + 6x + 5 = 0$		2)16
	$PA^{2}+PB^{2}=10$. Where A(2,0) and B(4,0) is		1)16
9.	The locus of the point P such that		to PA ·
	4) $3x^2 + 3y^2 - 20x + 38y + 87 = 0$	17.	A(2
	3) $5x^2 + 5y^2 - 5x + y + 14 = 0$		3) 3
	2) $5x^2 + 5y^2 - 34x + 120y + 29 = 0$		1) 3
	1) $5x^2 + 5y^2 - 12x - 86y + 17 = 0$		and
8.	If the distance from P to the points (5, -4), (7, 6) are in the ratio 2 : 3, then the locus of P is	16.	3) 9 If A
	4) $3x^2 + y^2 - 10y - 25 = 0$		1) 9
	3) $3x^2 - y^2 + 10y - 25 = 0$	15.	A(0 whi
	2) $3x^2 - y^2 + 10y + 25 = 0$		3) x
	1) $3x^2 + y^2 + 10y - 25 = 0$		1) x
	distance from P to y-axis is		x-ax is
7.	The equation to the locus of a point P for which the distance from P to $(0, 5)$ is double the	14.	The

- 4. The locus of a point whose distance from the x-axis is one-third of its distance from the origin is
 - 1) $x^2 = 8y^2$ 3) $x^2 = 9y^2$ A(0,4), B(0,-4) are two points. The locus of P which moves such that |PA-PB| =6 is
 - 1) $9x^2 7y^2 + 63 = 0$ 2) $9x^2 + 7y^2 63 = 0$ 3) $9x^2 + 7y^2 + 63 = 0$ 4) $9x^2 - 7y^2 - 63 = 0$
- 16. If A = (4, 0), B = (-4, 0) are any two points and |PA - PB| = 4. The locus of P is
 - 1) $3x^2 + y^2 = 12$ 2) $3x^2 - y^2 = 12$ 3) $3x^2 - 3y^2 = 9$ 4) $3x^2 + y^2 = 8$
- 17. A(2,3), B(2,-3) are two points. The equation to the locus of P such that PA + PB=8 is
 1)16x²+7y²-64x-48=0
 2)16x²+7y²-64x+48=0
 3) 16x²-7y²+64x-48=0
 4) 16x²-7y²+64x+48=0
 18. If A = (-6, 0), B = (6, 0) and |AP PB| = 8
 - then the locus of P is (0, 0) and |A| = 1 |B| = 0
 - 1) $5x^2-4y^2+80=0$ 2) $4x^2-5y^2+80=0$
 - 3) $4x^2-5y^2=80$ 4) $5x^2-4y^2=80$
- 19. Let A=(1,0), B=(-1,0),C=(2,0) the locus of a point P such that PB²+PC²=2PA² is
 - 1) a straight line parallel to x-axis
 - 2) a straight line parallel to y-axis
 - 3) pair of straight line
 - 4) combined equation of coordiante axes
- 20. If A(a,0), B(-a,0) then the locus of the point P such that $PA^2+PB^2=2c^2$ is :
 - 1) $x^{2}+y^{2}+a^{2}-c^{2}=0$ 2) $x^{2}+y^{2}+a^{2}+c^{2}=0$
 - 3) $2x^2+y^2+3a^2-c^2=0$

4)
$$x^2+y^2+a^2+2c^2=0$$

21. If P = (1,0), Q = (-1,0) and R = (2,0) then the locus of the point S such that $SQ^2 + SR^2 = 2SP^2$ is a

- 1) A straight line parallel to x-axis
- 2) Circle with centre (0,0)
- 3) Circle through (0,0)
- 4) A straight line parallel to y-axis
- 22. The locus of the point equidistant from the points (a+b, a-b) and (a-b, a+b) is

1)
$$bx - ay = 0$$

2) $bx + ay = 0$
3) $ax - by = 0$
4) $x - y = 0$

23. If A(0,4), B(6,0) and O be the origin. A point P moves such that $\triangle POA = 2\triangle POB$. The locus of P is

1)
$$x^2+9y^2=0$$
 2) $9x^2+y^2=0$

3)
$$x^2 - 9y^2 = 0$$
 4) $9x^2 - y^2 = 0$

24. The locus of a point which is colliner with the points (3, 4) and (-4, 3) is

1) 2x+3y-12=02) 2x+3y+12=03) 2x+3y+12=04) x-7y+25=0

25. The ends of hypotenuse of a right angled triangle are (a, 0), (-a, 0) then the locus of third vertex is :

1) $x^2-y^2=a^2$ 3) $x^2+y^2+a^2=0$ 2) $x^2+y^2+a^2=0$ 4) $x^2-y^2+a^2=0$

- 26. The locus of the point (a $\sec\theta + b \tan\theta$, a $\tan\theta + b \sec\theta$) is
 - 1) $x^{2} + y^{2} = a^{2} + b^{2}$ 2) $(x^{2} + y^{2}) = a^{2} - b^{2}$ 3) $x^{2} - y^{2} = a^{2} + b^{2}$ 4) $x^{2} - y^{2} = a^{2} - b^{2}$
- 27. Locus of centroid of the triangle whose vertices are (a cos t, a sin t), (b sin t,-bcost) and (1, 0) where t is parameter is
 - 1) $(3x-1)^2 + (3y)^2 = a^2-b^2$ 2) $(3x-1)^2 + (3y)^2 = a^2+b^2$ 3) $(3x+1)^2 + (3y)^2 = a^2+b^2$ 4) $(3x+1)^2 + (3y)^2 = a^2-b^2$

28. The locus of the point $x = a + b \sec\theta$, $y = b + a \tan\theta$ is

1)
$$(x-a)^2 + (y-b)^2 = (ab)^2$$

2)
$$\left(\frac{x-a}{b^2}\right)^2 + \left(\frac{y-b}{a}\right)^2 = 2(ab)^2$$

3)
$$\left(\frac{x-a}{b}\right)^2 - \left(\frac{y-b}{a}\right)^2 = 1$$

4)
$$(y-b)^2 = 4ab (x-a)$$

29. The locus of the point $x = a(\cos\theta + \sin\theta)$, $y = b(\cos\theta - \sin\theta)$ is

1)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

2) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2$
3) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1/2$
4) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

30. If t is parameter, A = (aSec t, bTan t) and B = (-aTan t, bSec t), O = (0, 0) then the locus of the centroid of ΔOAB is

1)
$$9xy = ab$$
 2) $xy = 9ab$

3)
$$x^2-9y^2 = a^2-b^2$$
 4) $x^2-y^2 = \frac{1}{9}(a^2-b^2)$

31. If $A = (aCos\theta, b Sin\theta)$, $B = (-aSin\theta, bCos\theta)$, O is the origin θ is a parameter, then the locus

of the centroid of
$$\triangle AOB$$
 is $\frac{x^2}{a^2} + \frac{y^2}{b^2} =$

32. The equation of locus of a point which moves so that the sum of the square of its distance from the coordinate axes is 15 is

1)
$$x^{2}+15y^{2}=1$$

2) $x^{2}+y^{2}+15=0$
3) $15(x^{2}+y^{2})=1$
4) $x^{2}+y^{2}=15$

33. The locus of P such that $\triangle PAB=12$ sq units where A(2,3) and B(-4,5) is

1)
$$x^{2} - 6xy + 9x^{2} + 66y - 23 = 0$$

2) $x^{2} + 9y^{2} + 6xy - 22x - 66y - 23 = 0$
3) $x^{2} + 9y^{2} - 6xy - 22x - 66y - 23 = 0$
4) $x^{2} - 6xy - 9y^{2} - 22x - 66y + 23 = 0$

A(2,3), B(-3,4) are two points. If a point P 34. 41. moves such that the area of $\triangle PAB$ is 8.5 sq.units then the locus of P is 1) $x^{2}+10xy+25y^{2}-34x-170y=0$ 2) $x^{2}+10xy-25y^{2}-34x-170y=0$ 3) $x^{2}-10xy+25y^{2}-34x+170y=0$ 4) $x^{2}-10xy-25y^{2}+34x-170y=0$ 35. A straight line segment AB of length 'a' moves with its ends on the axes. The locus of the point P which divides the segment in the ratio 1:2 is 1) $9x^2+4y^2 = a^2$ 2) $9(x^2+4y^2)=4a^2$ 3) $9(x^2+4y^2)=8a^2$ 4) $9x^2+9y^2=4a^2$ 36. The ends of a rod of length 'r' move on two mutually perpendicular lines. The locus of the point on the rod which divides it in the ratio 1 : 1 is 1) $4x^2+4y^2 = r^2$ 2) $x^2+y^2=r^2$ 3) $4x^2+4y^2=3r^2$ 4) $2(x^2+y^2)=r^2$ 37. The ends of a rod of length 'l' move on two 1. positive coordinate axes. The locus of the point on the rod which divides it in the ratio 1:3 is 1) $9x^2+36y^2 = 4l^2$ 2) $9x^2+36y^2=16l^2$ 3) $16x^2+144y^2=9l^2$ 4) $4x^2+36y^2=9l^2$ 38. A line segment of 2 units is sliding with its ends on two perpendicular lines. Then the locus of the middle point is 1) x+2y+1=0 2) $x^2+y^2=1$ 3) $y^2 = 4ax$ 4) $x^2 = 4ay$ 2. The variable line $\frac{x}{a} + \frac{y}{b} = 1$ is such that 39. a+b=10. The locus of the mid-point of the portion of the line intercepted between the axes is 3. 1) x + y = 10 2) 10x + 5y = 13) x + y = 5 4) 5x + 10y = 1The equation $\sqrt{(x-2)^2 + y^2} + \sqrt{(x+2)^2 + y^2} \ll 4$ 40. represents 2) A parabola 1) circle 3) Line segment 4) Ellipse

A (5,3), B = (3,-2), C (2,-1) are three points. If P moves such that area of Quadrilateral PABC is10 sq. units , locus of Pis
1) (4x-3y)(4x+3y)=100
2) 16x²-9y²-24xy-80=0

3) $9x^2 - 16y^2 - 6y + 2x = 0$

4) (4x - 3y-38)(4x-3y+2)=0

KEY

1)2	2) 2	3)2	4)1	5)1
6)4	7)3	8)2	9)2	10)4
11)1	12)3	13)3	14)1	15)4
16)2	17)1	18)4	19)2	20)1
21)4	22)4	23)3	24)4	25)2
26)4	27)2	28)3	29)2	30)1
31)1	32)4	33)2	34)1	35)2
36)1	37)3	38)2	39)3	40)3
41)4				

LEVEL - II

1. P is a point on the circle of radius 2 units with its centre at the origin. If Q is a point dividing the line segment joining P and (-1,1) in the ratio 3:2 then the locus of Q is

1) 25
$$(x^2 + y^2) + 30x - 30y = 0$$

2) $x^2 + y^2 + 30x - 30y + 2 = 0$
3) 25 $(x^2 + y^2) + 30y + 2 = 0$
4) 25 $(x^2 + y^2) + 30x - 30y + 2 = 0$

The base of a triangle lies along x = a and is of length a. The area of triangle is a^2 . The locus of vertex is

1)
$$(x+a)(x-3a) = 0$$

2) $(x-a)(x+3a)=0$
3) $(x+a)(x+3a) = 0$
4) $(x+2a)(x-a)=0$

- 3. If the sum of the distances of a point from two perpendicular lines in a plane is a constant, then its locus is
 - 1) a square
 - 2) a circle
 - 3) a straight line
 - 4) two intersecting lines

JR. MATHEMATICS

4. A = (2, 5), B = (4, -11) and the locus of C is 9x + 7y + 4 = 0 then the locus of the centroid of $\triangle ABC$ is

1) 27x+21y-8=02) 3x+4y-2=03) 24x+22y-6=04) 5x+3y-7=0

- 5. A = (1, -1) locus of B is $x^2+y^2=16$. If P divides AB in the ratio 3:2 then locus of P is
 - 1) $(x-2)^2 + (y-3)^2 = 4$

2)
$$(x+1)^2 + (y-2)^2 = 4$$

3)
$$(x-3)^2 + (y-2)^2 = 4$$

4)
$$(5x-2)^2 + (5y+2)^2 = 144$$

6. P and Q are two variable points on the axes of x and y respectively such that |OP| + |OQ|=a, then the locus of foot of perpendicular from origin on PQ is
1) (x - y) (x² + y²) = axy

2)
$$(x + y) (x^{2} + y^{2}) = axy$$

3) $(x + y) (x^{2} + y^{2}) = a (x - y)$
4) $(x + y) (x^{2} - y^{2}) = axy$

7. The locus of foot of the perpendicular drawn from a fixed point (a, b) to the variable line

y = mx, m being variable is

1) x²+y²-ax+by=0
 2) x+y-(a+b)=0
 3) x²+y²-ax-by=0
 4) xy-bx-ay+ab=0

- 8. A variable line $\frac{x}{a} + \frac{y}{b} = 1$ moves in such a manner so that the length of the perpendicular from origin on the line is constant and equal to p. If the line meets x-axis and y-axis at A and B respectively then the locus of the point of intersection of lines through A and B and perpendicular to axes is 1) $x^2+y^2=p^2$ 2) x+y=p3) $x^2+y^2 = p^2x^2y^2$ 4) $p^2(x^2+y^2)=x^2y^2$
- 9. The locus of point of intersection of the lines

$$y + mx = \sqrt{a^2m^2 + b^2}$$
 and $my-x = \sqrt{a^2 + b^2m^2}$ is

1)
$$x^2+y^2 = \frac{1}{a^2} + \frac{1}{b^2}$$
 2) $x^2+y^2 = a^2+b^2$

3)
$$x^2 - y^2 = a^2 - b^2$$
 4) $\frac{1}{x^2} + \frac{1}{y^2} = a^2 - b^2$

10. A point P moves such that the sum of the squares of its distances from the three vertices of a triangle ABC is a constant. The locus of the point P is a circle whose centre is _____ of Δ ABC.

1) circumcentre	2) orthocentre
3) Incentre	4) centroid

11. If p, x_1 , x_2 , x_3 and q, y_1 , y_2 , y_3 from two infinite AP's with common difference a and b respectively then the locus of P (α , β) where

$$\alpha = \frac{x_1 + x_2 \dots + x_n}{n}, \ \beta = \frac{y_1 + y_2 \dots + y_n}{n}$$

1) a(x-p) = b(y-1) 2) p(x-a)=q(y-b)
3) p(x-p) = b|x-q| 4)b(x-p)=a(y-q)

- 12. The algebraic sum of the perpendicular distances from the points A (2,0), B(0,2) and C(1,1) to a variable line be zero, then all such lines
 - 1) Are parallel
 - 2) Passes through a fixed point(0,0)
 - 3) From a square
 - 4) passes through the centroid of Δ ABC.
- 13. From a point P perpendiculars PM, PN are drawn to x and y axes respectively. If MN passes through fixed point (a,b), locus of P is

1)
$$xy=ax+by$$
 2) $xy=ab$

3)
$$xy = bx+ay$$
 4) $x+y=xy$

KEY

1)4	2)1	3)1	4)1	5)4
6)2	7)3	8)4	9)2	10)4
11)4	12)4	13)3		

LEVEL NEW PATTERN	- III QUESTIONS	$(\cot \theta + \cos \theta, \cot \theta - \cos \theta)$ is $(x^2 - y^2)^2 = 16xy$ Which of the above are true			
1. Let A,B be two fixed p	points. If $PA + PB = K$	1) Only I 2) Only II			
then observe the following lists		3) I & II 4) neither I nor II			
LIST - I A) K=AB, Locus of P is B) K>AB, Locus of P is C) K <ab, is<br="" locus="" of="" p="">A B C 1) 2 3 1 A B C 3) 2 1 3 2 Let $P(x_1,y_1)$be any pool observe the following I LIST - I</ab,>	LIST-II 1) A Hyperbola 2) A line segment 3) An Ellipse 4) Empty set A B C 2) 2 3 4 A B C 4) 2 4 1 int on the locus then ists LIST - II P O	 5 Statement I: A(0,0), B(cos α, sin α), C(sin α, cos α) are vertices of a triangle then the locus of the centroid of triangle is 9x²+9y²= 4 Statement II: The locus of the point (a cos θ, b sin θ) is x²/a² + y²/b² = 1 Which of the above statement is correct: Only I Only I Only II Both I and II None 6. Assertion (A): The equation to the locus of points which are equidistant from the points (-3,2), (0,4) is 6x+4y-3=0			
A) The distance fromP to x-axisB) The distance from	1) 0 2) y ₁	Reason (R) : The locus of points which are equidistant to A,B is perpendicular bisector of AB			
P to y-axis	2 $\sqrt{2}$	1) A true, R true and R is correct explanation of A			
C) The distance from	$\int \sqrt{x_1^2 + y_1^2}$				
P to origin is	4) x ₁	2) A true, R true but R is not correct explana- tion A			
		3) A true, R false			
1) 4 2 1 A B C 3) 4 2 3 3 The equation to the loc from the points (-2,3)	2) 2 4 3 A B C 4) 2 4 1 us of points equidistant (6,-5) is $ax+by+c=0$	4) A false, R true KEY 1) 2 2) 2 3) 2 4) 3 5) 2 6) 1			
 a, b, c b, c, a Statement I : The local distance from the x-ax from the y-axis is y² = Statement II : The 	2) c, b, a 4) a, c, b as of the point, whose is is twice its distance $4x^{2}$ e locus of the point	PREVIOUS EAMCET QUESTIONSEAMCET 20051. If a point P moves such that the distance from the point A (1,1) and the line $x + y + 2 = 0$ are equal then the locus of P1) a straightline2) a parabola3) pair of st. lines4) ellipse			

EA	EAMCET 2002		EAMCET 1994					
2.	The Locus of the p	oint $(\tan \theta + \sin \theta, \tan \theta -$	11. Locus represented by $x = a (\cosh \theta + \sinh \theta)$			$\theta + \sinh \theta$),		
	$\sin \theta$)			$y = b (\cosh \theta - \sinh \theta)$ is				
	1) $((r^2 v)^{2/3} + (rv^2))^{2/3}$	$2^{2/3} = 1$		1) Hyp	erbola		2) Parabo	la
	$= \int \left(\begin{pmatrix} x & y \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} xy \end{pmatrix} \right)$	-1		3) Ellip	ose		4) Straigh	t line
	2. $x^2 - y^2 = xy$		EAN	MCET 1	993			
	3) $x^2 - y^2 = 12xy$	4) $(x^2 - y^2)^2 = 16xy$	12.	The gra	aph repre	esented	by x=sin ²	t, y = $2\cos t$
EA.	MCET 2001			1S 1) Dama	1 1.		2) D = =================================	. f
3.	The curve with pa $(\cos t + \sin t), y = 4 (c$	equations $x=3$ sost-sint) is		1) Para 3) part	of sine g	graph	 Portion Part of 	of parabola Hyperbola
	1) Ellipse	2) Parabola	EAN	MCET 1	990			
	3) Hyperbola	4) Circle	13.	A and	B are fix	ed point	ts. If PA-I	PB is a con-
4.	The equation $16x^{2+}$ represents	$-y^2 + 8xy - 74x - 78y + 212 = 0$		stant, 1 1) Para	ocus of F ibola	1 5	2) Ellipse	
	1) circle	2) parabola		3) Hyp	erbola		4) Circle	
	3) Ellipse	4) Hyperbola	EAN	MCET 1	989			
EA	MCET 2000	, <u> </u>	14.	Locus	of P suc	h that 🛽	PAB = 1	l2sq. Units,
5.	A variable circle pas	ses through the fixed point		where	A = (2,3)), B =	(-4,5) is	
	(2,0) and touches y-	axis. Then locus of centre		1) $x^{2}+6$	$xy+9y^2-2$	22x-66y	-23=0	
	of circle	\sim \cdot 1		2) X^{2+3}	3xy+4x =	= 0		
	1) A parabola	2) A circle		5) $X^{2}+3$	$xy+y^2-x$	-2y = 0		
	3) An ellipse	4) A hyperbola	4) $x^2+y^2+2x+4y=0$					
6.	The curve represent and $y = 5$ (cot t - S	ed by $x = 2$ (Cost t+ sin t) Sin t) is	AIEEE2003			vith vertices		
	1) Circle	2) Parabola	(acost, asint), (bsint, - bcost) and (1,0) w			(1,0) where		
	3) Ellipse	4) Hyperbola		't' is pa	rameter	is	,	
7.	A straight line of ler	19 units slides with its	its 1) $(3x-1)^2+(3y)^2=a^2+b^2$					
	ends A, B always on	x and y axes respectively.	2) $(3x+1)^2+(3y)^2=a^2+b^2$					
	Locus of centroid o	f ΔOAB is		3) (3x-	$(1)^{2}-(3y)$	$^{2} = a^{2} + b^{2}$	2	
	1) $x^2+y^2 = 3$	2) $x^2+y^2 = 9$	1.6	4) $(3x - 1)$	$(-1)^2 - (3y)$	$a^{2} = a^{2} - b$	2	
	3) $x^2+y^2=1$	4) $x^2+y^2=8$	16. If the equation of locus of the point equidistant from the points (a, b) and (a, b) is			t equidistant		
EA	MCET 1999		(a -a) \mathbf{x} +(b -b) \mathbf{x} +c=0 then c =			15		
8.	The locus of the poi axis is twice its dist	nt whose distance from x ance from y axis is		$(a_1 a_2)^2$ 1) a_1^2 -	$a_{2}^{2} + b_{1}^{2} - a_{2}^{2} + b_{1}^{2} - b_{1$	b^2_2		
	1) $y^2 = 4x^2$	2) $4y^2 = x^2$		1	2 1	2		
	3) $y = 3x$	4) $4x+y = 0$		2) $\frac{1}{2}$	$a_1^2 + a_2^2 -$	$+b_{1}^{2}+b_{2}^{2}$)	
EA	MCET 1998	-		ے 	-			
9.	A(-9,0) B = $(-1,0)$ are a point such that	are two points. If P (x,y) 3PB = PA then locus of P	3) $\sqrt{a_1^2 + b_1^2 - a_2^2 - b_2^2}$					
	is $1)x^2 y^2 = 0$	2) $x^2 y^2 - 0$	4) $\frac{1}{2}(a_2^2+b_2^2-a_1^2-b_1^2)$					
	1)x -y -y 3) $x^2+y^2 = 9$	2) $x - y = -9$ 4) $x^2 + y^2 = 3$		2		KEV		
EA	FAMCET 1997					17171		
10.	$a \neq 0; A = (a,0) B = 0$	(-a,0) locus of P such that		1)2	2)4	3)1	4)2	5)1
	$PA^{2} - PB^{2} = 4a^{2}$ is			6)3	7) 2	8)1	9)3	10)1
	1) A straight line	2) A circle		11)1 16)4	12)1	13)5	14)1	13)1
	3) An ellipse	4) A parabola						

JR. MATHEMATICS