
Chapter 5

Trees

 Tree

 2-Tree

 Binary tree

 Properties of binary trees

 Complete binary tree

 Full binary tree

 Binary tree representation

 Linked representation

 Binary search tree

 Binary tree traversing methods

 AVL tree

 Binary heap

 Max-heap

 Min-heap

 Expression tree

LEARNING OBJECTIVES

tree
Tree is non-linear data structure designated at a special node called
root and elements are arranged in levels without containing cycles.

(or)

The tree is

 1. Rooted at one vertex
 2. Contains no cycles
 3. There is a sequence of edges from any vertex to any other
 4. Any number of elements may connect to any node (including

root)
 5. A unique path traverses from root to any node of tree
 6. Tree stores data in hierarchical manner
 7. The elements are arranged in layers

Example:

A

B

E

C

F

D

 • Root node is A.
 • A’s children are B, C and D.
 • E, F and D are leaves.
 • Nodes B, C are called as intermediate nodes.
 • A is parent of B, C and D.

 • B is parent of E and C is parent of F.
 • Number of children of a node is called degree of node.

2-tree
A tree in which every node contains either 0 or 2 children.

Binary tree
It is a special type of tree where each node of tree contains either
0 or 1 or 2 children.

(or)

Binary Tree is either empty, or it consists of a root with two binary
trees called left-sub tree and right sub-tree of root (left or right or
both the sub trees may be empty).

Properties of binary tree
 • Binary tree partitioned into three parts.
 • First subset contains root of tree.
 • Second subset is called left subtree.
 • Another subset is called right subtree.
 • Each subtree is a binary tree.
 • Degree of any node is 0/1/2.
 • The maximum number of nodes in a tree with height ‘h’ is

2h+1 -1.
 • The maximum number of nodes at level ‘i’ is 2i-1.
 • For any non-empty binary tree, the number of terminal nodes

with n2, nodes of degree 2 is N0 = n2 + 1
 • The maximum number of nodes in a tree with depth d is 2d - 1.

Chapter 5  •  Trees | 3. 61

Types of binary tree

Complete binary tree It is a binary tree, in which at every
level, except possibly the last, is completely filled and all
nodes at the last level are as left as possible.

Example:

Level Height Depth

1 3 1

2 2 2

3 1 3

4 0 4

1

2

4

8 9

5

10I

D

H

B

E

F

J

C

G

3

76

A

For the given tree:

 • Having 4 levels
 • Height of the tree is 3
 • Depth of the tree is 4
 • The numbers at each node represents level order index.
 • The level order Index, are assigned to nodes in the fol-

lowing manner
 • Root of the tree is ‘1’
 • For a node ‘x’, the LOI is (2 * LOI (parent)), if ‘x’ is left

child of its parent.
 • For a node ‘y’, the LOI (2 * LOI (Parent) +1), if ‘y’ is

right child of its parent.
Now complete binary tree can be defined as a binary tree,
which contains a sequence of numbers to its nodes as LOI’s
without any break in sequence.

Full binary tree It is a binary tree, for which all leaf nodes
are at same level and all intermediate nodes contains exactly
2 children.
(or)
A tree with depth ‘K’ contains exactly 2K – 1 nodes.

Strictly binary tree A binary tree in which every node con-
tains exactly 0 or 2 children.

Skewed binary tree A binary tree in which elements are
added only in one direction.

Example:

A A

B

C

D

B

C

D

Left-skewed Right-skewed

Application
 • A binary tree is useful data structure when two way deci-

sions must be made at each point of process.

Binary tree representation
The binary trees can be represented in two ways.
 • Array
 • Linked list

Array representation The elements of a binary tree are
placed in an array using the level order index of each
element.

i

2i + 1 2i + 2

When LOI of Root is 0:

Example 1:

1

3

8

4

7 H I

E

F

C

G

65

2
D

0
A

B

0 1 2 3 4 5 6 7 8

A B C D E F G H I

Example 2:

0

1
B

5
12

2
C

E

D

A

0 1 2 3 4 5 6 7 8 9 10 11 12

A B C D E

Linked representation Each node contains one data field
and two link fields. Fist link point to the left child and
another point to the right child.

In absence of any child, corresponding link field con-
tains NULL.

Example:

A

B

B C

C

A

3.62 | Unit 3  •  Programming and Data Structures

Trade-off ’s between array and linked,
representations
 • Array representation is somewhat simpler. It must ensure

elements are placed in array at proper position.
 • Linked representation requires pointer to its left and right

child.
 • Array representation saves memory for almost complete

binary trees.
 • Linked representation allocates the number and nodes

equal to the number of elements in tree.
 • Array representation does not work efficiently for skewed

binary trees.
 • Array representation limits the size of binary tree to the

array size.
 • In linked representation, tree can be extended by adding

an element dynamically and can be shrinked by deleting
an element dynamically.

Binary search tree
It is a special type of binary tree that satisfies the following
properties.

 • All the elements of left sub tree of root are smaller than
root.

 • All the elements of right sub tree of root are greater than
root.

 • The above two properties satisfy for each subtree.
Example:

6

3 9

8 1141

Figure 1 A data structure to encode binary search tree

The binary search tree node contains three fields, data field,
left child, right child. Left child is a pointer which points
to the predecessor of the node and right child is a pointer
which points to the successor of the node.

A data structure to encode binary search tree is

Left child Data Right child

The declaration is
Struct node
{
Struct node * left child;
Int data;
Struct node * Right child;
};

Insertion If a value to be inserted is smaller than the root,
value, it must go in the left subtree, if larger it must go in
the right subtree. This reasoning applies recursively until we

reach a node where the required subtree does not exist and
that is where we place the new value.

Example: It must go in 6’s left subtree, 3’s left subtree, 1’s
right subtree, 1 has no right subtree, so we make a singleton
with 2 and it becomes 1’s right subtree.

6

3 9

11841

2

Deletion:

 1. If a leaf node has to be deleted, just delete it and the
rest of the tree is exactly as it was, so it is still a BST.

 2. Suppose the node we are deleting has only one sub
tree

 Example, In the following tree, ‘3’ has only one
sub-tree

6

3

1

0 2

8 11

9

To delete a node with 1 subtree, we just ‘link past’ the node,
i.e., connect the parent of the node directly to the node’s
only subtree. This always works, whether the one subtree is
on the left or on the right. Deleting 3 gives us.

6

1

0 2

8 11

9

 3. Deletion of node which has 2 subtrees
 Example: Delete 6.

X

3

1

0 2

8 11

9

Choose value ‘X’

 1. Everything in the left subtree must be smaller than X.
 2. Everything in the right subtree must be bigger than X.

Chapter 5  •  Trees | 3. 63

We must choose X to be the largest value in the left subtree.
In our example, 3 is the largest value in the left subtree. So
we replace root node 6 with 3.

3

1

0 2

8 11

9

Note: We could do the same thing with the right subtree.
Just use the smallest value in the right subtree.

Notes:

 • The largest element in left subtree is the right most
element.

 • The smallest element in right subtree is the left most
element.

Binary tree traversing methods
The binary tree contains 3 parts:

V – root
L – Left subtree
R – Right subtree

Pre-order: (V, L, R)

 • Visit root of the tree first
 • Traverse the left - subtree in pre-order
 • Traverse the right - subtree in preorder

In-order: (L, V, R)
 • Traverse the left – subtree in in-order
 • Visit Root of the tree
 • Traverse right - sub tree in in-order

Post-order: (L, R, V)
 • Traverse the left subtree in post-order.
 • Traverse the Right - subtree in post-order
 • Visit root of the tree

Example 1:

A

B C

D

F

E G H

I J

Pre-order: A B D F E C G I H J
In-order: F D B E A G I C H J
Post-order: F D E B I G J H C A
Pre-order, In-order and post-order uniquely identify the tree.

Example 2:

6
3

1

2
4

8 11

9

Pre-order: 6 3 1 2 4 9 8 11
In-order: 1 2 3 4 6 8 9 11
Post-order: 2 1 4 3 8 11 9 6

Points to remember

 • Pre-order traversal contains root element as first element
in traverse list.

 • Post-order traversal contains root element as last in tra-
versal list.

 • For BST, in-order traversal is a sorted list.
 • A unique binary tree can constructed if either pre-order or

post-order traversal list provided with In order traversal
list.

 • If either pre-order or post-order only given then BST can-
not be constructed.

Applications

 1. Binary trees can represent arithmetic expressions.
 • An infix expression will have a parent operator and

two children operands.
Consider the expression ((3 + (7 * 2)) -1)
Each parenthesised expression becomes a tree.
Each operand is a leaf, each operator is an internal node.

*

−

+ 1

3

7 2

 2. To evaluate the expression tree:
 Take any two leaves
 Apply the parents operator to them
 Replace the operator with the value of the sub

expression.

*
*

+ 3

2 4

6 3
18

3.64 | Unit 3  •  Programming and Data Structures

 3. Binary trees in a famous file compression algorithm
Huffman coding tree
 • Each character is stored in a leaf
 • The code is found by following the path 0 go left, 1

go right.
 • a is 01
 • e is 1

0

0 1
‘e’

‘t ’ ‘a’

1

AVL Tree
An AVL tree is a self-balancing binary search tree, in which
the heights of the two child subtrees of any node differ by
atmost one.

Insertions and deletions may require the tree to be rebal-
anced by one or more tree rotations.
 • The balance factor of a node is the height of its left subtree

minus the height of its right subtree (sometimes opposite)
and a node with balance factor—1, 0 or -1 is considered
balanced. A node with any other balance factor is consid-
ered unbalanced and requires rebalancing the tree.

 • The balance factor is either stored directly at each node or
computed from the heights of the subtrees.

Insert operations
Step I: Insert a node into the AVL tree as it is inserted in a

BST.
Step II: Examine the search path to see if there is a pivot

node.

Three cases may arise
Case I: There is no pivot node. No adjustment required.
Case II: The pivot node exists and the subtree of the pivot

node to which the new node is added has smaller
height. No adjustment required.

Case III: The pivot node exists and the subtree to which
the new node is added has the larger height,
Adjustment required.

Example: The numbers at each node represents balance
factor.

Example 1: Example 2:

0

0 0

20

10 30

AVL tree

−1

+10
10 30

25

20

AVL tree

Example 3:

40

20

2510

45

5

0

0

+2

+1

+1

0

Not an AVL tree
Example 3 is not an AVL tree, because the balance factor of
root node is +2.
AVL tree becomes height in-balanced tree in following
cases:

 1. Left-Left case: An insertion in left subtree of left child
of pivot node.

Example:

A

G

P

B

0

1

1

0

Insert ‘X’ as left to node ‘P’. Here ‘G’ is pivot node.

A

G

P

X

B

0

+2

+2

+1

0

Solution:
To make the tree as balanced tree, perform Left–Left
Rotation as follows:

A

G

P

X

B

A

G

P

X

B

0

0

+1

0

0

In left–left rotation
 • Intermediate node ‘P’ becomes root of subtree.
 • Root of subtree ‘G’ (pivot) becomes right subtree.
 • New node ‘X’ remains same as left child of ‘P’.

Left–Right Case

An insertion of left subtree of right child of pivot node.

A

G

P

B

0

1

1

0

Chapter 5  •  Trees | 3. 65

Example 1: Insert ‘X’ as right child of ‘P’.

A

G

P

B

X

0

+2

+2

−1

0R

L

Is not an AVL tree. Height in-balance at node ‘G’.

Solution:
Perform Left–Right Rotation, to balance the height of tree.

A

G

P

B

X

R

L A

X

P

B
0

G

0

+1

0

0

In Left–Right rotation:

 • New node ‘X’ becomes root of subtree.
 • Root of subtree ‘G’ (pivot) becomes right child of ‘X’.
 • Intermediate node ‘P’ becomes left child of new node.

Right–Right case

An insertion of right subtree of right child of pivot node.

Example:

A

G

P

B
0

−1

−10

Insert ‘X’ as right child of ‘P’

A

G

P

X

B

0

−2

−2

−1

0

R

R

Is not an AVL tree, because of height in-balance at node ‘G’.

Solution:
To make the tree as balanced tree, perform the right–right
rotation as follows:

A

G

P

B

X
0

−2

−2

−1

0 0

0

A

P

X

B

−1

0

G

0

⇒

In Right–Right rotation:

 • Intermediate node ‘P’ becomes root of subtree.
 • Root of subtree ‘G’ (pivot) becomes left child of ‘P’.
 • New node ‘X’ remains as right child to ‘P’.

Right–Left case
An insertion of right subtree of left child of pivot node.

A

G

P

B
0

−1

−10

Insert ‘X’ as left child of ‘P’

A

G

P

B
+1

−2

−20

X 0

Is not AVL tree, because height in-balance at node ‘G’.

Solution:
To make the above tree as balanced, perform Right–Left
rotation as follows:

A

G

P

B

X
0
L

R

−2

−2

+1

0 0

0

A

X

P

B

−1

0

G

0

⇒

In Right–Left Rotation:

 • New node ‘X’ becomes root of subtree.
 • Root of subtree ‘G’ (pivot) becomes left child of ‘X’.
 • Intermediate node ‘P’ becomes right of ‘X’.

Note: Left–Right and Right–Left rotation are also called as
double rotations.

3.66 | Unit 3  •  Programming and Data Structures

Binary Heap
A binary heap is a heap data structure created using a binary
tree. It can be seen as a binary tree with two additional
constraints.

The shape property: The tree is a complete binary tree;
that is, all levels of the tree, except possibly the last one
(deepest) level of the tree is not complete, the nodes of that
level are filled, from left to right.

Max-Heap
A heap in which each node is greater than or equal to its
children is called max-heap. Max-Heap generally used for
heap sort.

Min-Heap
A heap in which, each node is smaller than or equal to its
children is called Min-Heap. Min-heap generally used to
implement priority queue.
Note: By default heap represent Max-Heap:

11

5

43

8

Insert 15:

11

5

1543

8

Is not satisfying heap property. So Heapify

11

5

843

15

15

5

843

11

⇒⇒

Delete 5: Deletion of a node from heap is always deletes a
leaf node.

So interchange the value of last leaf node with node 5.

15

8

543

11

Now delete node ‘5’

15

8

43

11

Is satisfying heap property.

Delete 15:
Interchange 4 and 15

4

8

153

11

Now delete Node ‘15’

4

8

3

11

Is not satisfying heap property. So heapify

11

8

3

4

Note: Insertion or deletion operation on a heap may require
heapify process.

Expression Tree
The expressions can also represented by using a binary tree
called expression tree.

Expression tree contains:
 • Operators as intermediate nodes.
 • Operands as leaf nodes (or) childs to operator nodes.
 • The operator at lowest level will be having highest

priority.

Example: A + B * C

+

*A

B C

Traversing:

Pre-order: + A * B C

In-order: A + B * C

Post-order: A B C * +

Note: In-order traversal of expression tree generates In-fix
expression. Similarly pre-order and post-order generates
prefix and postfix, respectively.

Chapter 5  •  Trees | 3. 67

exercises

Practice Problems 1
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.

 1. A binary tree T has n leaf nodes. The number of nodes
of degree two in T is ____.

 (A) n (B) n - 1
 (C) log n (D) n + 1

 2. How many numbers of binary tree can be created with
3 nodes which when traversed in post-order gives the
sequence C, B, A?

 (A) 3 (B) 5
 (C) 8 (D) 15

 3. A binary search tree contains the values 3, 6, 10, 22,
25, 30, 60, 75. The tree is traversed in pre-order and the
values are printed out. Which of the following sequence
is a valid output?

 (A) 25 6 3 10 22 60 30 75
 (B) 25 6 10 3 22 75 30 60
 (C) 25 6 75 60 30 3 10 22
 (D) 75 30 60 22 10 3 6 25

 4. Figure shows a balanced tree. How many nodes will
become unbalanced when a node is inserted as a child
of the node ‘g’?

a

b

d
f

e

c

g

 (A) 7 (B) 2
 (C) 3 (D) 8

 5. A full binary tree with n non-leaf nodes contains
 (A) 2n nodes (B) log

2
 n node

 (C) n + 1 nodes (D) 2n + 1 nodes

 6. Which of the following list of nodes corresponds to a
post order traversal of the binary tree shown below?

A

B

D E F

C

G

JIH

 (A) A B C D E F G H I J (B) J I H G F E D C B A
 (C) D H E B I F J G C A (D) D E H F I G J B C A

 7. Which of the following sequence of array elements
forms as heap?

 (A) {23, 17, 14, 6, 13, 10, 1, 12, 7, 5}
 (B) {23, 17, 14, 6, 13, 10, 1, 5, 7, 12}
 (C) {23, 17, 14, 7, 13, 10, 1, 5, 6, 12}
 (D) {23, 17, 14, 7, 13, 10, 1, 12, 5, 6}

 8. What is the maximum height of any AVL tree with 7
nodes? Assume that the height of a tree with a single
node is 0.

 (A) 2 (B) 3
 (C) 4 (D) 5

 9. A binary search tree is generated by inserting in order
the following integers:

 55, 15, 65, 5, 25, 59, 90, 2, 7, 35, 60, 23.

 The number of nodes in the left subtree and right sub-
tree of the root respectively are

 (A) 8, 3 (B) 7, 4
 (C) 3, 8 (D) 4, 7

 10. In a complete binary tree of n nodes, how far are the
most distant two nodes? Assume each in the path
counts as 1.

 (A) about log
2
 n (B) about 2log

2
 n

 (C) about 3log
2
 n (D) about 4log

2
 (n)

 11. A complete binary tree of level 5 has how many nodes?
 (A) 20 (B) 63
 (C) 30 (D) 73

Common data for questions 12 and 13: A 3-ary max-heap
is like a binary max-heap, but instead of 2 children, nodes
have 3 children. A 3-ary heap can be represented by an array
as follows:

The root is stored in the first location, a[0], nodes in the
next level from left to right is stored from a[1] to a[3] and
so on. An item x can be inserted into a 3-ary heap containing
n items by placing x in the location a[n] and pushing it up
the tree to satisfy the heap property.
 12. Which one of the following is a valid sequence of ele-

ments in an array representing 3-ary max-heap?
 (A) 1, 3, 5, 6, 8, 9 (B) 9, 6, 3, 1, 8 , 5
 (C) 9, 3, 6, 8, 5, 1 (D) 9, 5, 6, 8, 3, 1

 13. Suppose the elements 7, 2, 10 and 4 are inserted, in that
order, into the valid 3-ary max-heap found in the above
question. Which one of the following is the sequence of
items in the array representing the resultant heap?

 (A) 10, 7, 9, 8, 3, 1, 5, 2, 6, 4
 (B) 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
 (C) 10, 9, 4, 5, 7, 6, 8, 2, 1, 3
 (D) 10, 8, 6, 9, 7, 2, 3, 4, 1, 5

 14. Consider the nested representation of binary trees : (X
Y Z) indicated Y and Z are the left and right subtrees
respectively, of node X(Y and Z may be null (or) further
nested) which of the following represents a valid binary
tree?

3.68 | Unit 3  •  Programming and Data Structures

 (A) (1 2 (4 5 6 7)) (B) (1(2 3 4)5 6)7
 (C) (1(2 3 4) (5 6 7)) (D) (1(2 3 NULL)(4 5))

 15. A scheme for storing binary trees in an array X is as
follows:

 Indexing of X starts at 1 instead of 0. The root is stored
at X[1]. For a node stored at X[i], the left child, if any,

is stored in X[2i] and the right child, if any, in X[2i +
1]. To store any binary tree on ‘n’ vertices the minimum
size of X should be

 (A) 2n (B) n
 (C) 3n (D) n2

Practice Problems 2
Directions for questions 1 to 15: Select the correct alternative
from the given choices.

 1. A binary search tree contains the values 1, 2, 3, 4, 5,
6, 7, 8. The tree is traversed in pre-order and the val-
ues are printed out. Which of the following is a valid
output?

 (A) 53124786 (B) 53126487
 (C) 53241678 (D) 53124768

 2. A binary search tree is generated by inserting in order
the following integers : 50, 15, 62, 5, 20, 58, 91, 3, 8,
37, 60, 24. The number of nodes in the left subtree and
right subtree of the root respectively are:

 (A) (4, 7) (B) (7, 4)
 (C) (8, 3) (D) (3, 8)

 3. A full binary tree (with root at level 0) of height h has a
total number of nodes equal to:

 (A) 2h (B) 2h+1 – 1
 (C) 2h – 1 (D) 2h – 1

 4. The number of null pointers of a binary tree of n nodes
is :

 (A) n + 1 (B) n(n + 1)
 (C) n2 (D) 2n

 5. Which of the following is false?
 (A) A tree with n nodes has (n – 1) edges.
 (B) A labeled rooted binary tree can be uniquely con-

structed, given its post-order, in-order traversal results.
 (C) The complete binary tree with n internal nodes has

(n + 1) leaves.
 (D) The maximum number of nodes in a binary tree of

height h is (2h+1 – 1).

 6. The maximum number of nodes in a binary tree at level
i is

 (A) 2i (B) 2i – 1
 (C) 2i + 1 (D) log

2
 i + 1

 7. The number of leaf nodes in a rooted tree of n nodes,
with each node having 0 or 3 children is

 (A)
n

3
 (B)

()n−1

3

 (C)
()n−1

2
 (D)

()2 1

3

n+

 8. A complete n-ary tree is one in which every node has 0
or n children. If x is the number of internal nodes of a
complete n-ary tree, the number of leaves in it is given by

 (A) x(n - 1) + 1
 (B) xn + 1
 (C) xn - 1
 (D) x(n + 1) - 1

Common data for questions 9 and 10:

 9. Insert the keys into a binary search tree in the order
specified 15, 32, 20, 9, 3, 25, 12, 1. Which one of the
following is the binary search tree after insertion of all
elements?

 (A) 15

9

3

1

12
20

25

32

 (B) 15

12

9

3

1

20 25

32

 (C) 15

3 20

12
25

323

1

 (D) 15

1 25

9
32

12

3

20 32

Chapter 5  •  Trees | 3. 69

 10. Which of the following is the binary tree after deleting
15?

 (A)

1 12

3 32

25

20

9

 (B)

3 12

9
32

1

25

20

 (C)

3 12

9 25

25

32

20

 (D)

3 12

9 25

1

32

20

For questions 11, 12 and 13 below, use this figure

A

B C

D
E F

G H I

 11. What is the post-order expression?
 (A) ABDGCEJHIF (B) GDBHIEFCA
 (C) DGBAHEICF (D) ABHIEFCDG
 12. What is the pre-order expression?
 (A) ABDGCEHIF (B) ABHIEFCDG
 (C) DGBAHEIFCF (D) GDBHIEFCA
 13. What is the in-order expression?
 (A) ABDGCEHIF (B) GDBHIEFCA
 (C) DGBAHEICF (D) ABHIEFCDG

14. In a 3-ary tree every internal node has exactly 3 chil-
dren. The number of leaf nodes in such a tree with 6
internal nodes will be

 (A) 13 (B) 12 (C) 11 (D) 10

 15. Minimum number of swaps needed to convert the array
 89, 19, 14, 40, 17, 12, 10, 2, 5, 7, 11, 6, 9, 70 into a max

heap
 (A) 2 (B) 3 (C) 1 (D) 0

previous years’ Questions

 1. In a binary tree with n nodes, every node has an odd
number of descendants. Every node is considered to
be its own descendant. What is the number of nodes
in the tree that have exactly one child? [2010]

 (A) 0 (B) 1
 (C) (n − 1)/2 (D) n – 1

 2. The following C function takes a singly-linked list as
input argument. It modifies the list by moving the last
element to the front of the list and returns the modi-
fied list. Some part of the code is left blank.
typedef struct node {

int value;

struct node *next;

} Node;

Node *move_to_front(Node *head) {

Node *p, *q;

 if ((head = = NULL || (head->next = =
NULL)) return head;

q = NULL; p = head;
while (p-> next !=NULL) {
 q = p;
 p = p->next;
}

return head;

}

 Choose the correct alternative to replace the blank
line. [2010]

 (A) q = NULL; p->next = head; head = p;
 (B) q->next = NULL; head = p; p->next =

head;
 (C) head = p; p->next = q; q->next = NULL;
 (D) q->next = NULL; p->next = head; head

= p;

 3. Consider two binary operators ‘↑’ and ‘↓’ with the

3.70 | Unit 3  •  Programming and Data Structures

precedence of operator ↓ being lower than that of the
operator ↑. Operator ↑ is right associative while opera-
tor ↓ is left associative. Which one of the following rep-
resents the parse tree for expression (7 ↓ 3 ↑ 4 ↑ 3 ↓ 2)?

 [2011]

 (A)

7

3

4

3 2

↓

↓

↓

↓

 (B)

7

3

4 3

2

↓

↓

↓

↓

 (C)

7

3

43

2

↓

↓

↓

↓

 (D)

7

3

4

3

2

↓

↓

↓

↓

 4. The height of a tree is defined as the number of edges
on the longest path in the tree. The function shown in
the pseudocode below is invoked as “height(root)” to
compute the height of a binary tree rooted at the tree
pointer “root”.

 int height(treeptr n)

 {if (n = = NULL) return –1;

	 	if	(n	→	left	==NULL)

	 	if	(n	→	right	== NULL) return 0;

 else return B1 ; //Box 1

 else {h1 =	height	(n	→	left);

	 	if	(n	→	right= = NULL) return (1 + h1);

 else {h2 =	height	(n	→	right);

 return B2 ; //Box 2

 }

 }

 }

 The appropriate expressions for the two boxes B
1
 and

B
2
 are [2012]

 (A) B
1
: (1 + height (n → right))

 B
2
: (1 + max (h

1
, h

2
))

 (B) B
1
: (height (n → right))

 B
2
: (1+ max(h

1
, h

2
))

 (C) B
1
: height (n → right)

 B
2
: max(h

1
, h

2
)

 (D) B
1
: (1 + height (n → right))

 B
2
: max(h

1
, h

2
)

 5. Consider the expression tree shown. Each leaf repre-
sents a numerical value, which can either be 0 or 1.
Over all possible choices of the values at the leaves,
the maximum possible value of expression repre-
sented by the tree is ––––––––. [2014]

+

− +

++ −−

0/1 0/1 0/10/10/10/10/10/1

 6. Consider the pseudocode given below. The function
Dosomething() takes as argument a pointer to the root
of an arbitrary tree represented by the leftMostChild-
rightSibling representation. Each node of the tree is of
type treenode. [2014]

 type def struct treeNode* treeptr;
 struct treeNode
 {
 treeptr leftMostChild, rightSibling;

 };

 int Dosomething (treeptr tree)

Chapter 5  •  Trees | 3. 71

 {

 int value = 0;
 if (tree ! = NULL){
 if (tree – > leftMostChild = = NULL)
 value = 1;
 else

 value = Dosomething (tree – > leftMostChild);
 value = value +Dosomething (tree - > right

Sibling);

 }

 return (value);

 }

 When the pointer to the root of a tree is passed as the
argument to DoSomething, the value returned by the
function corresponds to the

 (A) Number of internal nodes in the tree
 (B) Height of the tree
 (C) Number of nodes without a right sibling in the tree
 (D) Number of leaf nodes in the tree

 7. The height of a tree is the length of the longest root-
to-leaf path in it. The maximum and minimum num-
ber of nodes in a binary tree of height 5 are

 [2015]

 (A) 63 and 6, respectively

 (B) 64 and 5, respectively

 (C) 32 and 6, respectively

 (D) 31 and 5, respectively

 8. Which of the following is/are correct inorder traversal
sequence(s) of binary search tree(s)? [2015]

 I. 3, 5, 7, 8, 15, 19, 25
 II. 5, 8, 9, 12, 10, 15, 25
 III. 2, 7, 10, 8, 14, 16, 20
 IV. 4, 6, 7, 9, 18, 20, 25
 (A) I and IV only (B) II and III only
 (C) II and IV only (D) II only

 9. Consider a max heap, represented by the array: 40,
30, 20, 10, 15, 16, 17, 8, 4 [2015]

Array Index 1 2 3 4 5 6 7 8 9

Value 40 30 20 10 15 16 17 8 4

 Now consider that a value 35 is inserted into this
heap. After insertion, the new heap is

 (A) 40, 30, 20, 10, 15, 16, 17, 8, 4, 35
 (B) 40, 35, 20, 10, 30, 16, 17, 8, 4, 15
 (C) 40, 30, 20, 10, 35, 16, 17, 8, 4, 15
 (D) 40, 35, 20, 10, 15, 16, 17, 8, 4, 30

 10. A binary tree T has 20 leaves. The number of nodes in
T having two children is ______ [2015]

 11. Consider a binary tree T that has 200 leaf nodes.
Then, the number of nodes in T that have exactly two
children are ______. [2015]

 12. While inserting the elements 71, 65, 84, 69, 67, 83
in an empty binary search tree (BST) in the sequence
shown, the element in the lowest level is [2015]

 (A) 65 (B) 67
 (C) 69 (D) 83

 13. Consider the following New–order strategy for tra-
versing a binary tree: [2016]

 • Visit the root;

 • Visit the right subtree using New – order;

 • Visit the left subtree using New – order;
 The New – order traversal of the expression tree cor-

responding to the reverse polish expression

 3 4 * 5 – 2 ∧ 6 7 * 1 + – is given by:
 (A) + – 1 6 7 * 2 ∧ 5 – 3 4 *

 (B) – + 1 * 6 7 ∧ 2 – 5 * 3 4
 (C) – + 1 * 7 6 ∧ 2 – 5 * 4 3
 (D) 1 7 6 * + 2 5 4 3 * – ∧ –

 14. Let T be a binary search tree with 15 nodes. The mini-
mum and maximum possible heights of T are: [2017]

 Note: The height of a tree with a single node is 0.

 (A) 4 and 15 respectively
 (B) 3 and 14 respectively
 (C) 4 and 14 respectively
 (D) 3 and 15 respectively

 15. The pre-order traversal of a binary search tree is given
by 12,8,6,2,7,9,10,16,15,19,17,20. Then the post-
order traversal of this tree is: [2017]

 (A) 2, 6, 7, 8, 9, 10, 12, 15, 16, 17, 19, 20
 (B) 2, 7, 6, 10, 9, 8, 15, 17, 20, 19, 16, 12
 (C) 7, 2, 6, 8, 9,10, 20, 17, 19, 15, 16, 12
 (D) 7, 6, 2, 10, 9, 8, 15, 16, 17, 20, 19, 12

 16. The postorder traversal of a binary tree is 8, 9, 6, 7, 4,
5, 2, 3, 1. The inorder traversal of the same tree is 8, 6,
9, 4, 7, 2, 5, 1, 3. The height of a tree is the length of
the longest path from the root to any leaf. The height
of the binary tree above is ______. [2018]

 17. The number of possible min-heaps containing each
value from {1, 2, 3, 4, 5, 6, 7} exactly once is ______.
 [2018]

3.72 | Unit 3  •  Programming and Data Structures

answer Keys

exercises

Practice Problems 1
 1. B 2. B 3. A 4. C 5. D 6. C 7. C 8. B 9. B 10. B
 11. B 12. D 13. A 14. C 15. A

Practice Problems 2
 1. D 2. B 3. B 4. A 5. C 6. B 7. D 8. A 9. A 10. B
 11. B 12. A 13. C 14. A 15. B

Previous Years’ Questions
 1. A 2. D 3. B 4. A 5. 6 6. D 7. A 8. A 9. B 10. 19
 11. 199 12. B 13. C 14. B 15. B 16. 4 17. 80

	Unit 3: Programming and Data Structures
	PART A: Programming and Data Structures
	Chapter 5: Trees
	Tree
	2-Tree
	Binary Tree
	Binary Heap
	Exercises
	Previous Years’ Questions
	Answer Keys

