
Chapter 4

One-Dimensional Problems

4.1 Introduction

After presenting the formalism of quantum mechanics in the previous two chapters, we are now

well equipped to apply it to the study of physical problems. Here we apply the Schrödinger

equation to one-dimensional problems. These problems are interesting since there exist many
physical phenomena whose motion is one-dimensional. The application of the Schrödinger

equation to one-dimensional problems enables us to compare the predictions of classical and
quantum mechanics in a simple setting. In addition to being simple to solve, one-dimensional

problems will be used to illustrate some nonclassical effects.

The Schrödinger equation describing the dynamics of a microscopic particle of mass m in
a one-dimensional time-independent potential V x is given by

h2

2m

d2 x

dx2
V x x E x (4.1)

where E is the total energy of the particle. The solutions of this equation yield the allowed
energy eigenvalues En and the corresponding wave functions n x . To solve this partial dif-
ferential equation, we need to specify the potential V x as well as the boundary conditions;

the boundary conditions can be obtained from the physical requirements of the system.

We have seen in the previous chapter that the solutions of the Schrödinger equation for

time-independent potentials are stationary,

x t x e i Et h (4.2)

for the probability density does not depend on time. Recall that the state x has the physical
dimensions of 1 L, where L is a length. Hence, the physical dimension of x 2 is 1 L:

x 2 1 L .
We begin by examining some general properties of one-dimensional motion and discussing

the symmetry character of the solutions. Then, in the rest of the chapter, we apply the Schrödinger

equation to various one-dimensional potentials: the free particle, the potential step, the finite

and infinite potential wells, and the harmonic oscillator. We conclude by showing how to solve

the Schrödinger equation numerically.
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4.2 Properties of One-Dimensional Motion

To study the dynamic properties of a single particle moving in a one-dimensional potential, let

us consider a potential V x that is general enough to allow for the illustration of all the desired
features. One such potential is displayed in Figure 4.1; it is finite at x , V V1
and V V2 with V1 smaller than V2, and it has a minimum, Vmin . In particular, we want
to study the conditions under which discrete and continuous spectra occur. As the character of

the states is completely determined by the size of the system’s energy, we will be considering

separately the cases where the energy is smaller and larger than the potential.

4.2.1 Discrete Spectrum (Bound States)

Bound states occur whenever the particle cannot move to infinity. That is, the particle is con-
fined or bound at all energies to move within a finite and limited region of space which is
delimited by two classical turning points. The Schrödinger equation in this region admits only

solutions that are discrete. The infinite square well potential and the harmonic oscillator are
typical examples that display bound states.

In the potential of Figure 4.1, the motion of the particle is bounded between the classical

turning points x1 and x2 when the particle’s energy lies between Vmin and V1:

Vmin E V1 (4.3)

The states corresponding to this energy range are called bound states. They are defined as states
whose wave functions are finite (or zero) at x ; usually the bound states have energies

smaller than the potential E V . For the bound states to exist, the potential V x must have

at least one minimum which is lower than V1 (i.e., Vmin V1). The energy spectra of bound
states are discrete. We need to use the boundary conditions1 to find the wave function and the

energy.

Let us now list two theorems that are important to the study of bound states.

1Since the Schrödinger equation is a second-order differential equation, only two boundary conditions are required
to solve it.
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Theorem 4.1 In a one-dimensional problem the energy levels of a bound state system are dis-
crete and not degenerate.

Theorem 4.2 The wave function n x of a one-dimensional bound state system has n nodes
(i.e., n x vanishes n times) if n 0 corresponds to the ground state and n 1 nodes if
n 1 corresponds to the ground state.

4.2.2 Continuous Spectrum (Unbound States)

Unbound states occur in those cases where the motion of the system is not confined; a typical

example is the free particle. For the potential displayed in Figure 4.1 there are two energy
ranges where the particle’s motion is infinite: V1 E V2 and E V2.

Case V1 E V2

In this case the particle’s motion is infinite only towards x ; that is, the particle

can move between x x3 and x , x3 being a classical turning point. The
energy spectrum is continuous and none of the energy eigenvalues is degenerate. The

nondegeneracy can be shown to result as follows. Since the Schrödinger equation (4.1)

is a second-order differential equation, it has, for this case, two linearly independent

solutions, but only one is physically acceptable. The solution is oscillatory for x x3
and rapidly decaying for x x3 so that it is finite (zero) at x , since divergent

solutions are unphysical.

Case E V2

The energy spectrum is continuous and the particle’s motion is infinite in both directions

of x (i.e., towards x ). All the energy levels of this spectrum are doubly degen-

erate. To see this, note that the general solution to (4.1) is a linear combination of two

independent oscillatory solutions, one moving to the left and the other to the right. In the

previous nondegenerate case only one solution is retained, since the other one diverges

as x and it has to be rejected.

In contrast to bound states, unbound states cannot be normalized and we cannot use boundary

conditions.

4.2.3 Mixed Spectrum

Potentials that confine the particle for only some energies give rise to mixed spectra; the motion

of the particle for such potentials is confined for some energy values only. For instance, for

the potential displayed in Figure 4.1, if the energy of the particle is between Vmin E V1,
the motion of the particle is confined (bound) and its spectrum is discrete, but if E V2, the
particle’s motion is unbound and its spectrum is continuous (if V1 E V2, the motion is
unbound only along the x direction). Other typical examples where mixed spectra are

encountered are the finite square well potential and the Coulomb or molecular potential.
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4.2.4 Symmetric Potentials and Parity

Most of the potentials that are encountered at the microscopic level are symmetric (or even)

with respect to space inversion, V x V x . This symmetry introduces considerable sim-
plifications in the calculations.

When V x is even, the corresponding Hamiltonian, H x h2 2m d2 dx2 V x , is
also even. We saw in Chapter 2 that even operators commute with the parity operator; hence

they can have a common eigenbasis.

Let us consider the following two cases pertaining to degenerate and nondegenerate spectra

of this Hamiltonian:

Nondegenerate spectrum

First we consider the particular case where the eigenvalues of the Hamiltonian corre-

sponding to this symmetric potential are not degenerate. According to Theorem 4.1,

this Hamiltonian describes bound states. We saw in Chapter 2 that a nondegenerate,

even operator has the same eigenstates as the parity operator. Since the eigenstates of

the parity operator have definite parity, the bound eigenstates of a particle moving in a
one-dimensional symmetric potential have definite parity; they are either even or odd:

V x V x x x (4.4)

Degenerate spectrum

If the spectrum of the Hamiltonian corresponding to a symmetric potential is degenerate,

the eigenstates are expressed only in terms of even and odd states. That is, the eigenstates

do not have definite parity.

Summary: The various properties of the one-dimensional motion discussed in this section can

be summarized as follows:

The energy spectrum of a bound state system is discrete and nondegenerate.

The bound state wave function n x has: (a) n nodes if n 0 corresponds to the ground

state and (b) n 1 nodes if n 1 corresponds to the ground state.

The bound state eigenfunctions in an even potential have definite parity.

The eigenfunctions of a degenerate spectrum in an even potential do not have definite

parity.

4.3 The Free Particle: Continuous States

This is the simplest one-dimensional problem; it corresponds to V x 0 for any value of x .
In this case the Schrödinger equation is given by

h2

2m

d2 x

dx2
E x

d2

dx2
k2 x 0 (4.5)

where k2 2mE h2, k being the wave number. The most general solution to (4.5) is a combi-
nation of two linearly independent plane waves x eikx and x e ikx :

k x A eikx A e ikx (4.6)
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where A and A are two arbitrary constants. The complete wave function is thus given by the

stationary state

k x t A ei kx t A e i kx t A ei kx hk2t 2m A e i kx hk2t 2m (4.7)

since E h hk2 2m. The first term, x t A ei kx t , represents a wave

traveling to the right, while the second term, x t A e i kx t , represents a wave

traveling to the left. The intensities of these waves are given by A 2 and A 2, respectively.

We should note that the waves x t and x t are associated, respectively, with a free
particle traveling to the right and to the left with well-defined momenta and energy: p hk,
E h2k2 2m. We will comment on the physical implications of this in a moment. Since there
are no boundary conditions, there are no restrictions on k or on E ; all values yield solutions to
the equation.

The free particle problem is simple to solve mathematically, yet it presents a number of

physical subtleties. Let us discuss briefly three of these subtleties. First, the probability densi-

ties corresponding to either solutions

P x t x t 2 A 2 (4.8)

are constant, for they depend neither on x nor on t . This is due to the complete loss of informa-
tion about the position and time for a state with definite values of momentum, p hk, and
energy, E h2k2 2m. This is a consequence of Heisenberg’s uncertainty principle: when
the momentum and energy of a particle are known exactly, p 0 and E 0, there must be

total uncertainty about its position and time: x and t . The second subtlety

pertains to an apparent discrepancy between the speed of the wave and the speed of the particle

it is supposed to represent. The speed of the plane waves x t is given by

a e
k

E

hk

h2k2 2m

hk

hk

2m
(4.9)

On the other hand, the classical speed of the particle2 is given by

classical
p

m

hk

m
2 a e (4.10)

This means that the particle travels twice as fast as the wave that represents it! Third, the wave

function is not normalizable:

x t x t dx A 2 dx (4.11)

The solutions x t are thus unphysical; physical wave functions must be square integrable.
The problem can be traced to this: a free particle cannot have sharply defined momenta and

energy.

In view of the three subtleties outlined above, the solutions of the Schrödinger equation

(4.5) that are physically acceptable cannot be plane waves. Instead, we can construct physical

2The classical speed can be associated with the flux (or current density) which, as shown in Chapter 3, is J

ih 1
2m x x

hk
m

p
m , where use was made of A 1.
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solutions by means of a linear superposition of plane waves. The answer is provided by wave
packets, which we have seen in Chapter 1:

x t
1

2
k ei kx t dk (4.12)

where k , the amplitude of the wave packet, is given by the Fourier transform of x 0 as

k
1

2
x 0 e ikxdx (4.13)

The wave packet solution cures and avoids all the subtleties raised above. First, the momentum,

the position and the energy of the particle are no longer known exactly; only probabilistic

outcomes are possible. Second, as shown in Chapter 1, the wave packet (4.12) and the particle

travel with the same speed g p m, called the group speed or the speed of the whole packet.
Third, the wave packet (4.12) is normalizable.

To summarize, a free particle cannot be represented by a single (monochromatic) plane

wave; it has to be represented by a wave packet. The physical solutions of the Schrödinger

equation are thus given by wave packets, not by stationary solutions.

4.4 The Potential Step

Another simple problem consists of a particle that is free everywhere, but beyond a particular

point, say x 0, the potential increases sharply (i.e., it becomes repulsive or attractive). A

potential of this type is called a potential step (see Figure 4.2):

V x
0 x 0

V0 x 0
(4.14)

In this problem we try to analyze the dynamics of a flux of particles (all having the same mass

m and moving with the same velocity) moving from left to the right. We are going to consider
two cases, depending on whether the energy of the particles is larger or smaller than V0.

(a) Case E V0
The particles are free for x 0 and feel a repulsive potential V0 that starts at x 0 and stays

flat (constant) for x 0. Let us analyze the dynamics of this flux of particles classically and

then quantum mechanically.

Classically, the particles approach the potential step or barrier from the left with a constant

momentum 2mE . As the particles enter the region x 0, where the potential now is V V0,
they slow down to a momentum 2m E V0 ; they will then conserve this momentum as they
travel to the right. Since the particles have sufficient energy to penetrate into the region x 0,

there will be total transmission: all the particles will emerge to the right with a smaller kinetic
energy E V0. This is then a simple scattering problem in one dimension.
Quantum mechanically, the dynamics of the particle is regulated by the Schrödinger equa-

tion, which is given in these two regions by

d2

dx2
k21 1 x 0 x 0 (4.15)
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Figure 4.2 Potential step and propagation directions of the incident, reflected, and transmitted

waves, plus their probability densities x 2 when E V0 and E V0.

d2

dx2
k22 2 x 0 x 0 (4.16)

where k21 2mE h2 and k22 2m E V0 h2. The most general solutions to these two
equations are plane waves:

1 x Aeik1x Be ik1x x 0 (4.17)

2 x Ceik2x De ik2x x 0 (4.18)

where Aeik1x and Ceik2x represent waves moving in the positive x-direction, but Be ik1x and

De ik2x correspond to waves moving in the negative x-direction. We are interested in the case
where the particles are initially incident on the potential step from the left: they can be reflected

or transmitted at x 0. Since no wave is reflected from the region x 0 to the left, the constant

D must vanish. Since we are dealing with stationary states, the complete wave function is thus
given by

x t 1 x e i t Aei k1x t Be i k1x t x 0

2 x e i t Cei k2x t x 0
(4.19)

where A exp[i k1x t ], B exp[ i k1x t ], and C exp[i k2x t ] represent the incident,
the reflected, and the transmitted waves, respectively; they travel to the right, the left, and the
right (Figure 4.2). Note that the probability density x 2 shown in the lower left plot of

Figure 4.2 is a straight line for x 0, since 2 x
2 C exp i k2x t 2 C 2.

Let us now evaluate the reflection and transmission coefficients, R and T , as defined by

R
reflected current density

incident current density

Jre f lected
Jincident

T
Jtransmitted
Jincident

(4.20)
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R represents the ratio of the reflected to the incident beams and T the ratio of the transmitted to
the incident beams. To calculate R and T , we need to find Jincident , Jre f lected , and Jtransmitted .
Since the incident wave is i x Aeik1x , the incident current density (or incident flux) is
given by

Jincident
ih

2m
i x

d i x

dx i x
d i x

dx

hk1
m

A 2 (4.21)

Similarly, since the reflected and transmitted waves are r x Be ik1x and t x Ceik2x ,
we can verify that the reflected and transmitted fluxes are

Jre f lected
hk1
m

B 2 Jtransmitted
hk2
m
C 2 (4.22)

A combination of (4.20) to (4.22) yields

R
B 2

A 2
T

k2
k1

C 2

A 2
(4.23)

Thus, the calculation of R and T is reduced to determining the constants B and C . For this,
we need to use the boundary conditions of the wave function at x 0. Since both the wave

function and its first derivative are continuous at x 0,

1 0 2 0
d 1 0

dx

d 2 0

dx
(4.24)

equations (4.17) and (4.18) yield

A B C k1 A B k2C (4.25)

hence

B
k1 k2
k1 k2

A C
2k1

k1 k2
A (4.26)

As for the constant A, it can be determined from the normalization condition of the wave func-
tion, but we don’t need it here, since R and T are expressed in terms of ratios. A combination
of (4.23) with (4.26) leads to

R
k1 k2 2

k1 k2 2
1 K 2

1 K 2
T

4k1k2
k1 k2 2

4K

1 K 2
(4.27)

where K k2 k1 1 V0 E . The sum of R and T is equal to 1, as it should be.
In contrast to classical mechanics, which states that none of the particles get reflected,

equation (4.27) shows that the quantum mechanical reflection coefficient R is not zero: there
are particles that get reflected in spite of their energies being higher than the step V0. This effect
must be attributed to the wavelike behavior of the particles.
From (4.27) we see that as E gets smaller and smaller, T also gets smaller and smaller so

that when E V0 the transmission coefficient T becomes zero and R 1. On the other hand,

when E V0, we have K 1 V0 E 1; hence R 0 and T 1. This is expected

since, when the incident particles have very high energies, the potential step is so weak that it

produces no noticeable effect on their motion.

Remark: physical meaning of the boundary conditions

Throughout this chapter, we will encounter at numerous times the use of the boundary condi-

tions of the wave function and its first derivative as in Eq (4.24). What is the underlying physics

behind these continuity conditions? We can make two observations:
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Since the probability density x 2 of finding the particle in any small region varies

continuously from one point to another, the wave function x must, therefore, be a

continuous function of x ; thus, as shown in (4.24), we must have 1 0 2 0 .

Since the linear momentum of the particle, P x ihd x dx , must be a continu-
ous function of x as the particle moves from left to right, the first derivative of the wave
function, d x dx , must also be a continuous function of x , notably at x 0. Hence,

as shown in (4.24), we must have d 1 0 dx d 2 0 dx .

(b) Case E V0
Classically, the particles arriving at the potential step from the left (with momenta p 2mE)
will come to a stop at x 0 and then all will bounce back to the left with the magnitudes of

their momenta unchanged. None of the particles will make it into the right side of the barrier

x 0; there is total reflection of the particles. So the motion of the particles is reversed by the

potential barrier.

Quantummechanically, the picture will be somewhat different. In this case, the Schrödinger

equation and the wave function in the region x 0 are given by (4.15) and (4.17), respectively.

But for x 0 the Schrödinger equation is given by

d2

dx2
k2
2

2 x 0 x 0 (4.28)

where k2
2

2m V0 E h2. This equation’s solution is

2 x Ce k2x Dek2x x 0 (4.29)

Since the wave function must be finite everywhere, and since the term ek2x diverges when
x , the constant D has to be zero. Thus, the complete wave function is

x t
Aei k1x t Be i k1x t x 0

Ce k2xe i t x 0
(4.30)

Let us now evaluate, as we did in the previous case, the reflected and the transmitted

coefficients. First we should note that the transmitted coefficient, which corresponds to the

transmitted wave function t x Ce k2x , is zero since t x is a purely real function
( t x t x ) and therefore

Jtransmitted
h

2im
t x

d t x

dx
t x

d t x

dx
0 (4.31)

Hence, the reflected coefficient R must be equal to 1. We can obtain this result by applying the
continuity conditions at x 0 for (4.17) and (4.29):

B
k1 ik2
k1 ik2

A C
2k1

k1 ik2
A (4.32)

Thus, the reflected coefficient is given by

R
B 2

A 2
k21 k 22
k21 k 22

1 (4.33)
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We therefore have total reflection, as in the classical case.

There is, however, a difference with the classical case: while none of the particles can be

found classically in the region x 0, quantum mechanically there is a nonzero probability that
the wave function penetrates this classically forbidden region. To see this, note that the relative
probability density

P x t x
2 C 2e 2k2x

4k21 A
2

k21 k 22
e 2k2x (4.34)

is appreciable near x 0 and falls exponentially to small values as x becomes large; the
behavior of the probability density is shown in Figure 4.2.

4.5 The Potential Barrier and Well

Consider a beam of particles of mass m that are sent from the left on a potential barrier

V x
0 x 0

V0 0 x a
0 x a

(4.35)

This potential, which is repulsive, supports no bound states (Figure 4.3). We are dealing here,

as in the case of the potential step, with a one-dimensional scattering problem.
Again, let us consider the following two cases which correspond to the particle energies

being respectively larger and smaller than the potential barrier.

4.5.1 The Case E V0

Classically, the particles that approach the barrier from the left at constant momentum, p1
2mE , as they enter the region 0 x a will slow down to a momentum p2 2m E V0 .

They will maintain the momentum p2 until they reach the point x a. Then, as soon as they
pass beyond the point x a, they will accelerate to a momentum p3 2mE and maintain
this value in the entire region x a. Since the particles have enough energy to cross the bar-
rier, none of the particles will be reflected back; all the particles will emerge on the right side

of x a: total transmission.
It is easy to infer the quantum mechanical study from the treatment of the potential step

presented in the previous section. We need only to mention that the wave function will display

an oscillatory pattern in all three regions; its amplitude reduces every time the particle enters a

new region (see Figure 4.3):

x
1 x Aeik1x Be ik1x x 0

2 x Ceik2x De ik2x 0 x a

3 x Eeik1x x a
(4.36)

where k1 2mE h2 and k2 2m E V0 h2. The constants B, C , D, and E can be
obtained in terms of A from the boundary conditions: x and d dx must be continuous at
x 0 and x a, respectively:
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1 0 2 0
d 1 0

dx

d 2 0

dx
(4.37)

2 a 3 a
d 2 a

dx

d 3 a

dx
(4.38)

These equations yield

A B C D ik1 A B ik2 C D (4.39)

Ceik2a De ik2a Eeik1a ik2 Ceik2a De ik2a ik1Ee
ik1a (4.40)

Solving for E , we obtain

E 4k1k2Ae
ik1a[ k1 k2

2 e ik2a k1 k2
2 eik2a] 1

4k1k2Ae
ik1a 4k1k2 cos k2a 2i k21 k22 sin k2a

1
(4.41)

The transmission coefficient is thus given by

T
k1 E 2

k1 A 2
1

1

4

k21 k22
k1k2

2

sin2 k2a

1

1
V 20

4E E V0
sin2 a 2mV0 h2 E V0 1

1

(4.42)
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4 1 sin2 1
, and

for a potential well, TW
4 1
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.

because

k21 k22
k1k2

2
V 20

E E V0
(4.43)

Using the notation a 2mV0 h2 and E V0, we can rewrite T as

T 1
1

4 1
sin2 1

1

(4.44)

Similarly, we can show that

R
sin2 1

4 1 sin2 1
1

4 1

sin2 1

1

(4.45)

Special cases

If E V0, and hence 1, the transmission coefficient T becomes asymptotically
equal to unity, T 1, and R 0. So, at very high energies and weak potential barrier,

the particles would not feel the effect of the barrier; we have total transmission.

We also have total transmission when sin 1 0 or 1 n . As shown

in Figure 4.4, the total transmission, T n 1, occurs whenever n En V0
n2 2h2 2ma2V0 1 or whenever the incident energy of the particle is En V0
n2 2h2 2ma2 with n 1, 2, 3, . The maxima of the transmission coefficient coin-

cide with the energy eigenvalues of the infinite square well potential; these are known as

resonances. This resonance phenomenon, which does not occur in classical physics, re-

sults from a constructive interference between the incident and the reflected waves. This

phenomenon is observed experimentally in a number of cases such as when scattering

low-energy (E 0 1 eV) electrons off noble atoms (known as the Ramsauer–Townsend
effect, a consequence of symmetry of noble atoms) and neutrons off nuclei.
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In the limit 1 we have sin 1 1, hence (4.44) and (4.45) become

T 1
ma2V0

2h2

1

R 1
2h2

ma2V0

1

(4.46)

The potential well (V0 0)

The transmission coefficient (4.44) was derived for the case where V0 0, i.e., for a barrier
potential. Following the same procedure that led to (4.44), we can show that the transmission
coefficient for a finite potential well, V0 0, is given by

TW 1
1

4 1
sin2 1

1

(4.47)

where E V0 and a 2m V0 h2. Notice that there is total transmission whenever

sin 1 0 or 1 n . As shown in Figure 4.4, the total transmission, TW n

1, occurs whenever n En V0 n2 2h2 2ma2V0 1 or whenever the incident energy

of the particle is En n2 2h2 2ma2 V0 with n 1 2 3 . We will study in more

detail the symmetric potential well in Section 4.7.

4.5.2 The Case E V0: Tunneling

Classically, we would expect total reflection: every particle that arrives at the barrier (x 0)

will be reflected back; no particle can penetrate the barrier, where it would have a negative

kinetic energy.

We are now going to show that the quantummechanical predictions differ sharply from their

classical counterparts, for the wave function is not zero beyond the barrier. The solutions of the

Schrödinger equation in the three regions yield expressions that are similar to (4.36) except that

2 x Ceik2x De ik2x should be replaced with 2 x Cek2x De k2x :

x
1 x Aeik1x Be ik1x x 0

2 x Cek2x De k2x 0 x a

3 x Eeik1x x a
(4.48)

where k21 2mE h2 and k22 2m V0 E h2. The behavior of the probability density
corresponding to this wave function is expected, as displayed in Figure 4.3, to be oscillatory in

the regions x 0 and x a, and exponentially decaying for 0 x a.
To find the reflection and transmission coefficients,

R
B 2

A 2
T

E 2

A 2
(4.49)

we need only to calculate B and E in terms of A. The continuity conditions of the wave function
and its derivative at x 0 and x a yield

A B C D (4.50)

ik1 A B k2 C D (4.51)

Cek2a De k2a Eeik1a (4.52)

k2 Cek2a De k2a ik1Ee
ik1a (4.53)
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The last two equations lead to the following expressions for C and D:

C
E

2
1 i

k1
k2

e ik1 k2 a D
E

2
1 i

k1
k2

e ik1 k2 a (4.54)

Inserting these two expressions into the two equations (4.50) and (4.51) and dividing by A, we
can show that these two equations reduce, respectively, to

1
B

A

E

A
eik1a cosh k2a i

k1
k2
sinh k2a (4.55)

1
B

A

E

A
eik1a cosh k2a i

k2
k1
sinh k2a (4.56)

Solving these two equations for B A and E A, we obtain

B

A
i
k21 k22
k1k2

sinh k2a 2 cosh k2a i
k22 k21
k1k2

sinh k2a

1

(4.57)

E

A
2e ik1a 2 cosh k2a i

k22 k21
k1k2

sinh k2a

1

(4.58)

Thus, the coefficients R and T become

R
k21 k22
k1k2

2

sinh2 k2a 4 cosh2 k2a
k22 k21
k1k2

2

sinh2 k2a

1

(4.59)

T
E 2

A 2
4 4 cosh2 k2a

k22 k21
k1k2

2

sinh2 k2a

1

(4.60)

We can rewrite R in terms of T as

R
1

4
T

k21 k22
k1k2

2

sinh2 k2a (4.61)

Since cosh2 k2a 1 sinh2 k2a we can reduce (4.60) to

T 1
1

4

k21 k22
k1k2

2

sinh2 k2a

1

(4.62)

Note that T is finite. This means that the probability for the transmission of the particles into the
region x a is not zero (in classical physics, however, the particle can in no way make it into
the x 0 region). This is a purely quantum mechanical effect which is due to the wave aspect
of microscopic objects; it is known as the tunneling effect: quantum mechanical objects can
tunnel through classically impenetrable barriers. This barrier penetration effect has important
applications in various branches of modern physics ranging from particle and nuclear physics
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to semiconductor devices. For instance, radioactive decays and charge transport in electronic

devices are typical examples of the tunneling effect.

Now since

k21 k22
k1k2

2
V0

E V0 E

2 V 20
E V0 E

(4.63)

we can rewrite (4.61) and (4.62) as follows:

R
1

4

V 20 T

E V0 E
sinh2

a

h
2m V0 E (4.64)

T 1
1

4

V 20
E V0 E

sinh2
a

h
2m V0 E

1

(4.65)

or

R
T

4 1
sinh2 1 (4.66)

T 1
1

4 1
sinh2 1

1

(4.67)

where a 2mV0 h2 and E V0.

Special cases

If E V0, hence 1 or 1 1, we may approximate sinh 1
1
2
exp 1 . We can thus show that the transmission coefficient (4.67) becomes

asymptotically equal to

T
1

4 1

1

2
e 1

2 1

16 1 e 2 1

16E

V0
1

E

V0
e 2a h 2m V0 E (4.68)

This shows that the transmission coefficient is not zero, as it would be classically, but has

a finite value. So, quantum mechanically, there is a finite tunneling beyond the barrier,

x a.

When E V0, hence 1, we can verify that (4.66) and (4.67) lead to the relations

(4.46).

Taking the classical limit h 0, the coefficients (4.66) and (4.67) reduce to the classical

result: R 1 and T 0.

4.5.3 The Tunneling Effect

In general, the tunneling effect consists of the propagation of a particle through a region where

the particle’s energy is smaller than the potential energy E V x . Classically this region,
defined by x1 x x2 (Figure 4.5a), is forbidden to the particle where its kinetic energy
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Figure 4.5 (a) Tunneling though a potential barrier. (b) Approximation of a smoothly varying

potential V x by square barriers.

would be negative; the points x x1 and x x2 are known as the classical turning points.
Quantum mechanically, however, since particles display wave features, the quantum waves can

tunnel through the barrier.

As shown in the square barrier example, the particle has a finite probability of tunneling

through the barrier. In this case we managed to find an analytical expression (4.67) for the tun-

neling probability only because we dealt with a simple square potential. Analytic expressions

cannot be obtained for potentials with arbitrary spatial dependence. In such cases one needs

approximations. The Wentzel–Kramers–Brillouin (WKB) method (Chapter 9) provides one of

the most useful approximation methods. We will show that the transmission coefficient for a

barrier potential V x is given by

T exp
2

h

x2

x1

dx 2m [V x E] (4.69)

We can obtain this relation by means of a crude approximation. For this, we need simply to take

the classically forbidden region x1 x x2 (Figure 4.5b) and divide it into a series of small
intervals xi . If xi is small enough, we may approximate the potential V xi at each point xi
by a square potential barrier. Thus, we can use (4.68) to calculate the transmission probability

corresponding to V xi :

Ti exp
2 xi
h

2m V xi E (4.70)

The transmission probability for the general potential of Figure 4.5, where we divided the region

x1 x x2 into a very large number of small intervals xi , is given by

T lim
N

N

i 1

exp
2 xi
h

2m V xi E

exp
2

h
lim
xi 0

i

xi 2m V xi E

exp
2

h

x2

x1

dx 2m [V x E] (4.71)
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The approximation leading to this relation is valid, as will be shown in Chapter 9, only if the

potential V x is a smooth, slowly varying function of x .

4.6 The Infinite Square Well Potential

4.6.1 The Asymmetric Square Well

Consider a particle of mass m confined to move inside an infinitely deep asymmetric potential
well

V x
x 0

0 0 x a
x a

(4.72)

Classically, the particle remains confined inside the well, moving at constant momentum p
2mE back and forth as a result of repeated reflections from the walls of the well.
Quantum mechanically, we expect this particle to have only bound state solutions and a

discrete nondegenerate energy spectrum. Since V x is infinite outside the region 0 x a,
the wave function of the particle must be zero outside the boundary. Hence we can look for

solutions only inside the well

d2 x

dx2
k2 x 0 (4.73)

with k2 2mE h2; the solutions are

x A eikx B e ikx x A sin kx B cos kx (4.74)

The wave function vanishes at the walls, 0 a 0: the condition 0 0 gives

B 0, while a A sin ka 0 gives

kna n n 1 2 3 (4.75)

This condition determines the energy

En
h2

2m
k2n

h2 2

2ma2
n2 n 1 2 3 (4.76)

The energy is quantized; only certain values are permitted. This is expected since the states of a
particle which is confined to a limited region of space are bound states and the energy spectrum
is discrete. This is in sharp contrast to classical physics where the energy of the particle, given
by E p2 2m , takes any value; the classical energy evolves continuously.
As it can be inferred from (4.76), we should note that the energy between adjacent levels is

not constant:

En 1 En 2n 1 (4.77)

which leads to
En 1 En

En

n 1 2 n2

n2
2n 1

n2
(4.78)

In the classical limit n ,

lim
n

En 1 En
En

lim
n

2n 1

n2
0 (4.79)
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Figure 4.6 Three lowest states of an infinite potential well, n x 2 a sin n x a ; the
states 2n 1 x and 2n x are even and odd, respectively, with respect to x a 2.

the levels become so close together as to be practically indistinguishable.

Since B 0 and kn n a, (4.74) yields n x A sin n x a . We can choose the
constant A so that n x is normalized:

1
a

0
n x

2dx A 2
a

0

sin2
n

a
x dx A

2

a
(4.80)

hence

n x
2

a
sin

n

a
x n 1 2 3 (4.81)

The first few functions are plotted in Figure 4.6.

The solution of the time-independent Schrödinger equation has thus given us the energy

(4.76) and the wave function (4.81). There is then an infinite sequence of discrete energy levels

corresponding to the positive integer values of the quantum number n. It is clear that n 0

yields an uninteresting result: 0 x 0 and E0 0; later, we will examine in more detail

the physical implications of this. So, the lowest energy, or ground state energy, corresponds
to n 1; it is E1 h2 2 2ma2 . As will be explained later, this is called the zero-point
energy, for there exists no state with zero energy. The states corresponding to n 2 3 4

are called excited states; their energies are given by En n2E1. As mentioned in Theorem
4.2, each function n x has n 1 nodes. Figure 4.6 shows that the functions 2n 1 x are

even and the functions 2n x are odd with respect to the center of the well; we will study this
in Section 4.6.2 when we consider the symmetric potential well. Note that none of the energy

levels is degenerate (there is only one eigenfunction for each energy level) and that the wave

functions corresponding to different energy levels are orthogonal:

a

0
m x n x dx mn (4.82)

Since we are dealing with stationary states and since En n2E1, the most general solutions of
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the time-dependent Schrödinger equation are given by

x t
n 1

n x e
i En t h 2

a
n 1

sin
n x

a
e in2E1t h (4.83)

Zero-point energy

Let us examine why there is no state with zero energy for a square well potential. If the particle

has zero energy, it will be at rest inside the well, and this violates Heisenberg’s uncertainty

principle. By localizing or confining the particle to a limited region in space, it will acquire a
finitemomentum leading to a minimum kinetic energy. That is, the localization of the particle’s
motion to 0 x a implies a position uncertainty of order x a which, according to the
uncertainty principle, leads to a minimum momentum uncertainty p h a and this in turn
leads to a minimum kinetic energy of order h2 2ma2 . This is in qualitative agreement with
the exact value E1 2h2 2ma2 . In fact, as will be shown in (4.216), an accurate evaluation
of p1 leads to a zero-point energy which is equal to E1.
Note that, as the momentum uncertainty is inversely proportional to the width of the well,

p h a, if the width decreases (i.e., the particle’s position is confined further and further),
the uncertainty on P will increase. This makes the particle move faster and faster, so the zero-
point energy will also increase. Conversely, if the width of the well increases, the zero-point

energy decreases, but it will never vanish.

The zero-point energy therefore reflects the necessity of a minimum motion of a particle
due to localization. The zero-point energy occurs in all bound state potentials. In the case of

binding potentials, the lowest energy state has an energy which is higher than the minimum

of the potential energy. This is in sharp contrast to classical mechanics, where the lowest

possible energy is equal to the minimum value of the potential energy, with zero kinetic energy.

In quantum mechanics, however, the lowest state does not minimize the potential alone, but

applies to the sum of the kinetic and potential energies, and this leads to a finite ground state

or zero-point energy. This concept has far-reaching physical consequences in the realm of the

microscopic world. For instance, without the zero-point motion, atoms would not be stable, for

the electrons would fall into the nuclei. Also, it is the zero-point energy which prevents helium

from freezing at very low temperatures.

The following example shows that the zero-point energy is also present in macroscopic

systems, but it is infinitesimally small. In the case of microscopic systems, however, it has a

nonnegligible size.

Example 4.1 (Zero-point energy)

To illustrate the idea that the zero-point energy gets larger by going from macroscopic to mi-

croscopic systems, calculate the zero-point energy for a particle in an infinite potential well for

the following three cases:

(a) a 100 g ball confined on a 5m long line,

(b) an oxygen atom confined to a 2 10 10m lattice, and

(c) an electron confined to a 10 10m atom.

Solution

(a) The zero-point energy of a 100 g ball that is confined to a 5m long line is

E
h2 2

2ma2
10 10 68 J

2 0 1 25
2 10 68 J 1 25 10 49 eV (4.84)
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This energy is too small to be detected, much less measured, by any known experimental tech-

nique.

(b) For the zero-point energy of an oxygen atom confined to a 2 10 10m lattice, since

the oxygen atom has 16 nucleons, its mass is of the order of m 16 1 6 10 27 kg

26 10 27 kg, so we have

E
10 67 J

2 26 10 27 4 10 20
0 5 10 22 J 3 10 4 eV (4.85)

(c) The zero-point energy of an electron m 10 30 kg that is confined to an atom (a 1

10 10m ) is

E
10 67 J

2 10 30 10 20
5 10 18 J 30 eV (4.86)

This energy is important at the atomic scale, for the binding energy of a hydrogen electron is

about 14 eV. So the zero-point energy is negligible for macroscopic objects, but important for

microscopic systems.

4.6.2 The Symmetric Potential Well

What happens if the potential (4.72) is translated to the left by a distance of a 2 to become
symmetric?

V x
x a 2

0 a 2 x a 2
x a 2

(4.87)

First, we would expect the energy spectrum (4.76) to remain unaffected by this translation,

since the Hamiltonian is invariant under spatial translations; as it contains only a kinetic part,

it commutes with the particle’s momentum, [H P] 0. The energy spectrum is discrete and

nondegenerate.

Second, earlier in this chapter we saw that for symmetric potentials, V x V x , the
wave function of bound states must be either even or odd. The wave function corresponding to

the potential (4.87) can be written as follows:

n x
2

a
sin

n

a
x

a

2

2
a cos

n
a x n 1 3 5 7

2
a sin

n
a x n 2 4 6 8

(4.88)

That is, the wave functions corresponding to odd quantum numbers n 1 3 5 are sym-

metric, x x , and those corresponding to even numbers n 2 4 6 are antisym-

metric, x x .

4.7 The Finite Square Well Potential

Consider a particle of mass m moving in the following symmetric potential:

V x
V0 x a 2
0 a 2 x a 2
V0 x a 2

(4.89)
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Figure 4.7 Finite square well potential and propagation directions of the incident, reflected

and transmitted waves when E V0 and 0 E V0.

The two physically interesting cases are E V0 and E V0 (see Figure 4.7). We expect the
solutions to yield a continuous doubly-degenerate energy spectrum for E V0 and a discrete
nondegenerate spectrum for 0 E V0.

4.7.1 The Scattering Solutions (E V0)

Classically, if the particle is initially incident from left with constant momentum 2m E V0 ,
it will speed up to 2mE between a 2 x a 2 and then slow down to its initial momen-
tum in the region x a. All the particles that come from the left will be transmitted, none will
be reflected back; therefore T 1 and R 0.

Quantum mechanically, and as we did for the step and barrier potentials, we can verify that

we get a finite reflection coefficient. The solution is straightforward to obtain; just follow the
procedure outlined in the previous two sections. The wave function has an oscillating pattern

in all three regions (see Figure 4.7).

4.7.2 The Bound State Solutions (0 E V0)

Classically, when E V0 the particle is completely confined to the region a 2 x a 2;
it will bounce back and forth between x a 2 and x a 2 with constant momentum
p 2mE .
Quantum mechanically, the solutions are particularly interesting for they are expected to

yield a discrete energy spectrum and wave functions that decay in the two regions x a 2
and x a 2, but oscillate in a 2 x a 2. In these three regions, the Schrödinger equation
can be written as

d2

dx2
k21 1 x 0 x

1

2
a (4.90)

d2

dx2
k22 2 x 0

1

2
a x

1

2
a (4.91)

d2

dx2
k21 3 x 0 x

1

2
a (4.92)
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where k21 2m V0 E h2 and k22 2mE h2. Eliminating the physically unacceptable
solutions which grow exponentially for large values of x , we can write the solution to this
Schrödinger equation in the regions x a 2 and x a 2 as follows:

1 x Aek1x x
1

2
a (4.93)

3 x De k1x x
1

2
a (4.94)

As mentioned in (4.4), since the bound state eigenfunctions of symmetric one-dimensional

Hamiltonians are either even or odd under space inversion, the solutions of (4.90) to (4.92) are

then either antisymmetric (odd)

a x
Aek1x x a 2
C sin k2x a 2 x a 2
De k1x x a 2

(4.95)

or symmetric (even)

s x
Aek1x x a 2
B cos k2x a 2 x a 2
De k1x x a 2

(4.96)

To determine the eigenvalues, we need to use the continuity conditions at x a 2. The
continuity of the logarithmic derivative, 1 a x d a x dx , of a x at x a 2 yields

k2 cot
k2a

2
k1 (4.97)

Similarly, the continuity of 1 s x d s x dx at x a 2 gives

k2 tan
k2a

2
k1 (4.98)

The transcendental equations (4.97) and (4.98) cannot be solved directly; we can solve them

either graphically or numerically. To solve these equations graphically, we need only to rewrite

them in the following suggestive forms:

n cot n R2 2
n for odd states (4.99)

n tan n R2 2
n for even states (4.100)

where 2
n k2a 2

2 ma2En 2h2 and R2 ma2V0 2h2 ; these equations are obtained

by inserting k1 2m V0 E h2 and k2 2mE h2 into (4.97) and (4.98). The left-hand
sides of (4.99) and (4.100) consist of trigonometric functions; the right-hand sides consist of a

circle of radius R. The solutions are given by the points where the circle R2 2
n intersects

the functions n cot n and n tan n (Figure 4.8). The solutions form a discrete set. As
illustrated in Figure 4.8, the intersection of the small circle with the curve n tan n yields only

one bound state, n 0, whereas the intersection of the larger circle with n tan n yields two
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bound states, n 0 2, and its intersection with n cot n yields two other bound states,

n 1 3.

The number of solutions depends on the size of R, which in turn depends on the depth V0

and the width a of the well, since R ma2V0 2h2 . The deeper and broader the well,
the larger the value of R, and hence the greater the number of bound states. Note that there is
always at least one bound state (i.e., one intersection) no matter how small V0 is. When

0 R
2

or 0 V0
2

2 2h2

ma2
(4.101)

there is only one bound state corresponding to n 0 (see Figure 4.8); this state—the ground

state—is even. Then, and when

2
R or

2

2 2h2

ma2
V0

2 2h
2

ma2
(4.102)

there are two bound states: an even state (the ground state) corresponding to n 0 and the first

odd state corresponding to n 1. Now, if

R
3

2
or 2 2h

2

ma2
V0

3

2

2 2h2

ma2
(4.103)

there exist three bound states: the ground state (even state), n 0, the first excited state (odd

state), corresponding to n 1, and the second excited state (even state), which corresponds to

n 2. In general, the well width at which n states are allowed is given by

R
n

2
or V0

2

2 2h2

ma2
n2 (4.104)

The spectrum, therefore, consists of a set of alternating even and odd states: the lowest state,

the ground state, is even, the next state (first excited sate) is odd, and so on.

In the limiting case V0 , the circle’s radius R also becomes infinite, and hence the
function R2 2

n will cross n cot n and n tan n at the asymptotes n n 2, because

when V0 both tan n and cot n become infinite:

tan n n
2n 1

2
n 0 1 2 3 (4.105)

cot n n n n 1 2 3 (4.106)

Combining these two cases, we obtain

n
n

2
1 2 3 (4.107)

Since 2
n ma2En 2h2 we see that we recover the energy expression for the infinite well:

n
n

2
En

2h2

2ma2
n2 (4.108)



238 CHAPTER 4. ONE-DIMENSIONAL PROBLEMS

-

6

¾ n cot n

¾ R2 2
n

¾ n tan n

n 0

n 0

n 1

n 2

n 3

0
n

2
3
2

2 5
2

3

Figure 4.8 Graphical solutions for the finite square well potential: they are given by the

intersections of R2 2
n with n tan n and n cot n , where

2
n ma2En 2h2 and R2

ma2V0 2h2 .

Example 4.2

Find the number of bound states and the corresponding energies for the finite square well po-

tential when: (a) R 1 (i.e., ma2V0 2h2 1), and (b) R 2.

Solution

(a) From Figure 4.8, when R ma2V0 2h2 1, there is only one bound state since

n R. This bound state corresponds to n 0. The corresponding energy is given by the

intersection of 0 tan 0 with 1 2
0 :

0 tan 0 1 2
0

2
0 1 tan2 0 1 cos2 0

2
0 (4.109)

The solution of cos2 0
2
0 is given numerically by 0 0 739 09. Thus, the correspond-

ing energy is determined by the relation ma2E0 2h2 0 739 09, which yields E0

1 1h2 ma2 .

(b) When R 2 there are two bound states resulting from the intersections of 4 2
0 with

0 tan 0 and 1 cot 1; they correspond to n 0 and n 1, respectively. The numerical

solutions of the corresponding equations

0 tan 0 4 2
0 4 cos2 0

2
0 (4.110)

1 cot 1 4 2
1 4 sin2 1

2
1 (4.111)

yield 0 1 03 and 1 1 9, respectively. The corresponding energies are

0
ma2E0

2h2
1 03 E0

2 12h2

ma2
(4.112)
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1
ma2E1

2h2
1 9 E1

7 22h2

ma2
(4.113)

4.8 The Harmonic Oscillator

The harmonic oscillator is one of those few problems that are important to all branches of

physics. It provides a useful model for a variety of vibrational phenomena that are encountered,

for instance, in classical mechanics, electrodynamics, statistical mechanics, solid state, atomic,

nuclear, and particle physics. In quantum mechanics, it serves as an invaluable tool to illustrate

the basic concepts and the formalism.

The Hamiltonian of a particle of massm which oscillates with an angular frequency under

the influence of a one-dimensional harmonic potential is

H
P2

2m

1

2
m 2X2 (4.114)

The problem is how to find the energy eigenvalues and eigenstates of this Hamiltonian. This

problem can be studied by means of two separate methods. The first method, called the an-
alytic method, consists in solving the time-independent Schrödinger equation (TISE) for the
Hamiltonian (4.114). The second method, called the ladder or algebraic method, does not deal
with solving the Schrödinger equation, but deals instead with operator algebra involving op-

erators known as the creation and annihilation or ladder operators; this method is in essence
a matrix formulation, because it expresses the various quantities in terms of matrices. In our

presentation, we are going to adopt the second method, for it is more straightforward, more el-

egant and much simpler than solving the Schrödinger equation. Unlike the examples seen up to

now, solving the Schrödinger equation for the potential V x 1
2
m x2 is no easy job. Before

embarking on the second method, let us highlight the main steps involved in the first method.

Brief outline of the analytic method

This approach consists in using the power series method to solve the following differential

(Schrödinger) equation:

h2

2m

d2 x

dx2
1

2
m 2x2 x E x (4.115)

which can be reduced to

d2 x

dx2
2mE

h2
x2

x40
x 0 (4.116)

where x0 h m is a constant that has the dimensions of length; it sets the length scale

of the oscillator, as will be seen later. The solutions of differential equations like (4.116) have

been worked out by our mathematician colleagues well before the arrival of quantummechanics

(the solutions are expressed in terms of some special functions, the Hermite polynomials). The

occurrence of the term x2 x in (4.116) suggests trying a Gaussian type solution3: x

3Solutions of the type x f x exp x2 2x2
0
are physically unacceptable, for they diverge when x .
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f x exp x2 2x20 , where f x is a function of x . Inserting this trial function into (4.116),
we obtain a differential equation for f x . This new differential equation can be solved by
expanding f x out in a power series (i.e., f x n 0 anx

n , where an is just a coefficient),
which when inserted into the differential equation leads to a recursion relation. By demanding

the power series of f x to terminate at some finite value of n (because the wave function
x has to be finite everywhere, notably when x ), the recursion relation yields an

expression for the energy eigenvalues which are discrete or quantized:

En n
1

2
h n 0 1 2 3 (4.117)

After some calculations, we can show that the wave functions that are physically acceptable

and that satisfy (4.116) are given by

n x
1

2nn!x0
e x2 2x20Hn

x

x0
(4.118)

where Hn y are nth order polynomials called Hermite polynomials:

Hn y 1 ney
2 dn

dyn
e y2 (4.119)

From this relation it is easy to calculate the first few polynomials:

H0 y 1 H1 y 2y

H2 y 4y2 2 H3 y 8y3 12y (4.120)

H4 y 16y4 48y2 12 H5 y 32y5 160y3 120y

We will deal with the physical interpretations of the harmonic oscillator results when we study

the second method.

Algebraic method

Let us now show how to solve the harmonic oscillator eigenvalue problem using the algebraic

method. For this, we need to rewrite the Hamiltonian (4.114) in terms of the two Hermitian,

dimensionless operators p P mh and q X m h:

H
h

2
p2 q2 (4.121)

and then introduce two non-Hermitian, dimensionless operators:

a
1

2
q i p a†

1

2
q i p (4.122)

The physical meaning of the operators a and a† will be examined later. Note that

a†a
1

2
q i p q i p

1

2
q2 p2 iq p i pq

1

2
q2 p2

i

2
[q p] (4.123)

where, using [X P] ih, we can verify that the commutator between q and p is

q p
m

h
X

1

hm
P

1

h
X P i (4.124)
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hence

a†a
1

2
q2 p2

1

2
(4.125)

or
1

2
q2 p2 a†a

1

2
(4.126)

Inserting (4.126) into (4.121) we obtain

H h a†a
1

2
h N

1

2
with N a†a (4.127)

where N is known as the number operator or occupation number operator, which is clearly
Hermitian.

Let us now derive the commutator [a a†]. Since [X P] ih we have [q p] 1
h [X P]

i ; hence

[a a†]
1

2
q i p q i p i q p 1 (4.128)

or

[a a†] 1 (4.129)

4.8.1 Energy Eigenvalues

Note that H as given by (4.127) commutes with N , since H is linear in N . Thus, H and N can
have a set of joint eigenstates, to be denoted by n :

N n n n (4.130)

and

H n En n (4.131)

the states n are called energy eigenstates. Combining (4.127) and (4.131), we obtain the

energy eigenvalues at once:

En n
1

2
h (4.132)

We will show later that n is a positive integer; it cannot have negative values.

The physical meaning of the operators a, a†, and N can now be clarified. First, we need the
following two commutators that can be extracted from (4.129) and (4.127):

[a H ] h a [a† H ] h a† (4.133)

These commutation relations along with (4.131) lead to

H a n aH h a n En h a n (4.134)

H a† n a†H h a† n En h a† n (4.135)

Thus, a n and a† n are eigenstates of H with eigenvalues En h and En h ,

respectively. So the actions of a and a† on n generate new energy states that are lower and
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higher by one unit of h , respectively. As a result, a and a† are respectively known as the
lowering and raising operators, or the annihilation and creation operators; they are also known
as the ladder operators.

Let us now find out how the operators a and a† act on the energy eigenstates n . Since

a and a† do not commute with N , the states n are eigenstates neither to a nor to a†. Using
(4.129) along with [AB C] A[B C] [A C]B, we can show that

[N a] a [N a†] a† (4.136)

hence Na a N 1 and Na† a† N 1 . Combining these relations with (4.130), we

obtain

N a n a N 1 n n 1 a n (4.137)

N a† n a† N 1 n n 1 a† n (4.138)

These relations reveal that a n and a† n are eigenstates of N with eigenvalues n 1

and n 1 , respectively. This implies that when a and a† operate on n , respectively, they
decrease and increase n by one unit. That is, while the action of a on n generates a new state

n 1 (i.e., a n n 1 ), the action of a† on n generates n 1 . Hence from (4.137)

we can write

a n cn n 1 (4.139)

where cn is a constant to be determined from the requirement that the states n be normalized
for all values of n. On the one hand, (4.139) yields

n a† a n n a†a n cn
2 n 1 n 1 cn

2 (4.140)

and, on the other hand, (4.130) gives

n a† a n n a†a n n n n n (4.141)

When combined, the last two equations yield

cn
2 n (4.142)

This implies that n, which is equal to the norm of a n (see (4.141)), cannot be negative,
n 0, since the norm is a positive quantity. Substituting (4.142) into (4.139) we end up with

a n n n 1 (4.143)

This equation shows that repeated applications of the operator a on n generate a sequence of
eigenvectors n 1 n 2 n 3 . Since n 0 and since a 0 0, this sequence

has to terminate at n 0; this is true if we start with an integer value of n. But if we start with
a noninteger n, the sequence will not terminate; hence it leads to eigenvectors with negative
values of n. But as shown above, since n cannot be negative, we conclude that n has to be a
nonnegative integer.



4.8. THE HARMONIC OSCILLATOR 243

Now, we can easily show, as we did for (4.143), that

a† n n 1 n 1 (4.144)

This implies that repeated applications of a† on n generate an infinite sequence of eigenvec-
tors n 1 n 2 n 3 . Since n is a positive integer, the energy spectrum of a
harmonic oscillator as specified by (4.132) is therefore discrete:

En n
1

2
h n 0 1 2 3 (4.145)

This expression is similar to the one obtained from the first method (see Eq. (4.117)). The

energy spectrum of the harmonic oscillator consists of energy levels that are equally spaced:

En 1 En h . This is Planck’s famous equidistant energy idea—the energy of the radiation

emitted by the oscillating charges (from the inside walls of the cavity) must come only in

bundles (quanta) that are integral multiples of h —which, as mentioned in Chapter 1, led to

the birth of quantum mechanics.

As expected for bound states of one-dimensional potentials, the energy spectrum is both

discrete and nondegenerate. Once again, as in the case of the infinite square well potential, we

encounter the zero-point energy phenomenon: the lowest energy eigenvalue of the oscillator is

not zero but is instead equal to E0 h 2. It is called the zero-point energy of the oscillator,
for it corresponds to n 0. The zero-point energy of bound state systems cannot be zero,

otherwise it would violate the uncertainty principle. For the harmonic oscillator, for instance,

the classical minimum energy corresponds to x 0 and p 0; there would be no oscillations

in this case. This would imply that we know simultaneously and with absolute precision both

the position and the momentum of the system. This would contradict the uncertainty principle.

4.8.2 Energy Eigenstates

The algebraic or operator method can also be used to determine the energy eigenvectors. First,

using (4.144), we see that the various eigenvectors can be written in terms of the ground state

0 as follows:

1 a† 0 (4.146)

2
1

2
a† 1

1

2!
a†

2
0 (4.147)

3
1

3
a† 2

1

3!
a†

3
0 (4.148)

n
1

n
a† n 1

1

n!
a†

n
0 (4.149)

So, to find any excited eigenstate n , we need simply to operate a† on 0 n successive times.
Note that any set of kets n and n , corresponding to different eigenvalues, must be

orthogonal, n n n n , since H is Hermitian and none of its eigenstates is degenerate.
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Moreover, the states 0 , 1 , 2 , 3 , , n , are simultaneous eigenstates of H and N ;
the set n constitutes an orthonormal and complete basis:

n n n n
n 0

n n 1 (4.150)

4.8.3 Energy Eigenstates in Position Space

Let us now determine the harmonic oscillator wave function in the position representation.

Equations (4.146) to (4.149) show that, knowing the ground state wave function, we can

determine any other eigenstate by successive applications of the operator a† on the ground
state. So let us first determine the ground state wave function in the position representation.

The operator p, defined by p P mh , is given in the position space by

p
ih

mh

d

dx
i x0

d

dx
(4.151)

where, as mentioned above, x0 h m is a constant that has the dimensions of length;

it sets the length scale of the oscillator. We can easily show that the annihilation and creation

operators a and a†, defined in (4.122), can be written in the position representation as

a
1

2

X

x0
x0
d

dx

1

2x0
X x20

d

dx
(4.152)

a†
1

2

X

x0
x0
d

dx

1

2x0
X x20

d

dx
(4.153)

Using (4.152) we can write the equation a 0 0 in the position space as

x a 0
1

2x0
x X x20

d

dx
0

1

2x0
x 0 x x20

d 0 x

dx
0 (4.154)

hence
d 0 x

dx

x

x20
0 x (4.155)

where 0 x x 0 represents the ground state wave function. The solution of this differ-

ential equation is

0 x A exp
x2

2x20
(4.156)

where A is a constant that can be determined from the normalization condition

1 dx 0 x
2 A2 dx exp

x2

x20
A2 x0 (4.157)
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hence A m h 1 4 1 x0. The normalized ground state wave function is then
given by

0 x
1

x0
exp

x2

2x20
(4.158)

This is a Gaussian function.

We can then obtain the wave function of any excited state by a series of applications of a†

on the ground state. For instance, the first excited state is obtained by one single application of

the operator a† of (4.153) on the ground state:

x 1 x a† 0
1

2x0
x x20

d

dx
x 0

1

2x0
x x20

x

x20
0 x

2

x0
x 0 x (4.159)

or

1 x
2

x0
x 0 x

2

x30
x exp

x2

2x20
(4.160)

As for the eigenstates of the second and third excited states, we can obtain them by applying

a† on the ground state twice and three times, respectively:

x 2
1

2!
x a†

2
0

1

2!

1

2x0

2

x x20
d

dx

2

0 x (4.161)

x 3
1

3!
x a†

3
0

1

3!

1

2x0

3

x x20
d

dx

3

0 x (4.162)

or

2 x
1

2 x0

2x2

x20
1 exp

x2

2x20
3 x

1

3 x0

2x3

x30

3x

x0
exp

x2

2x20
(4.163)

Similarly, using (4.149), (4.153), and (4.158), we can easily infer the energy eigenstate for the

nth excited state:

x n
1

n!
x a†

n
0

1

n!

1

2x0

n

x x20
d

dx

n

0 x (4.164)

which in turn can be rewritten as

n x
1

2nn!

1

xn 1 2
0

x x20
d

dx

n

exp
x2

2x20
(4.165)

In summary, by successive applications of a† X x20d dx 2x0 on 0 x , we can
find the wave function of any excited state n x .
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Oscillator wave functions and the Hermite polynomials

At this level, we can show that the wave function (4.165) derived from the algebraic method is

similar to the one obtained from the first method (4.118). To see this, we simply need to use the

following operator identity:

e x2 2 x
d

dx
ex
2 2 d

dx
or e x2 2x20 x x20

d

dx
ex
2 2x20 x20

d

dx
(4.166)

An application of this operator n times leads at once to

e x2 2x20 x x20
d

dx

n

ex
2 2x20 1 n x20

n d
n

dxn
(4.167)

which can be shown to yield

x x20
d

dx

n

e x2 2x20 1 n x20
nex

2 2x20
dn

dxn
e x2 x20 (4.168)

We can now rewrite the right-hand side of this equation as follows:

1 n x20
nex

2 2x20
dn

dxn
e x2 x20 xn0 e

x2 2x20 1 nex
2 x20

dn

d x x0 n
e x2 x20

xn0 e
x2 2x20 1 ney

2 dn

dyn
e y2

xn0 e
x2 2x20 Hn y (4.169)

where y x x0 and where Hn y are the Hermite polynomials listed in (4.119):

Hn y 1 ney
2 dn

dyn
e y2 (4.170)

Note that the polynomials H2n y are even and H2n 1 y are odd, since Hn y 1 nHn y .
Inserting (4.169) into (4.168), we obtain

x x20
d

dx

n

e x2 2x20 xn0 e
x2 2x20Hn

x

x0
(4.171)

substituting this equation into (4.165), we can write the oscillator wave function in terms of the

Hermite polynomials as follows:

n x
1

2nn!x0
e x2 2x20 Hn

x

x0
(4.172)

This wave function is identical with the one obtained from the first method (see Eq. (4.118)).

Remark

This wave function is either even or odd depending on n; in fact, the functions 2n x are even
(i.e., 2n x 2n x ) and 2n 1 x are odd (i.e., 2n x 2n x ) since, as can be
inferred from Eq (4.120), the Hermite polynomials H2n x are even and H2n 1 x are odd. This
is expected because, as mentioned in Section 4.2.4, the wave functions of even one-dimensional

potentials have definite parity. Figure 4.9 displays the shapes of the first few wave functions.
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Figure 4.9 Shapes of the first three wave functions of the harmonic oscillator.

4.8.4 The Matrix Representation of Various Operators

Here we look at the matrix representation of several operators in the N -space. In particular, we

focus on the representation of the operators a, a†, X , and P . First, since the states n are joint
eigenstates of H and N , it is easy to see from (4.130) and (4.132) that H and N are represented
within the n basis by infinite diagonal matrices:

n N n n n n n H n h n
1

2
n n (4.173)

that is,

N

0 0 0

0 1 0

0 0 2 H
h

2

1 0 0

0 3 0

0 0 5 (4.174)

As for the operators a, a†, X , P , none of them are diagonal in the N -representation, since

they do not commute with N . The matrix elements of a and a† can be obtained from (4.143)
and (4.144):

n a n n n n 1 n a† n n 1 n n 1 (4.175)

that is,

a

0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0
a†

0 0 0 0

1 0 0 0

0 2 0 0

0 0 3 0
(4.176)

Now, let us find the N -representation of the position and momentum operators, X and P .

From (4.122) we can show that X and P are given in terms of a and a† as follows:

X
h

2m
a a† P i

mh

2
a† a (4.177)
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Their matrix elements are given by

n X n
h

2m
n n n 1 n 1 n n 1 (4.178)

n P n i
mh

2
n n n 1 n 1 n n 1 (4.179)

in particular

n X n n P n 0 (4.180)

The matrices corresponding to X and P are thus given by

X
h

2m

0 1 0 0

1 0 2 0

0 2 0 3

0 0 3 0
(4.181)

P i
mh

2

0 1 0 0

1 0 2 0

0 2 0 3

0 0 3 0
(4.182)

As mentioned in Chapter 2, the momentum operator is Hermitian, but not equal to its own

complex conjugate: (4.182) shows that P† P and P P . As for X , however, it is both

Hermitian and equal to its complex conjugate: from (4.181) we have that X† X X .
Finally, we should mention that the eigenstates n are represented by infinite column ma-

trices; the first few states can be written as

0

1

0

0

0
1

0

1

0

0
2

0

0

1

0
3

0

0

0

1
(4.183)

The set of states n forms indeed a complete and orthonormal basis.

4.8.5 Expectation Values of Various Operators

Let us evaluate the expectation values for X2 and P2 in the N -representation:

X2
h

2m
a2 a†2 aa† a†a

h

2m
a2 a†2 2a†a 1 (4.184)

P2
mh

2
a2 a†2 aa† a†a

mh

2
a2 a†2 2a†a 1 (4.185)
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where we have used the fact that aa† a†a 2a†a 1. Since the expectation values of a2

and a†2 are zero, n a2 n n a†2 n 0, and n a†a n n, we have

n aa† a†a n n 2a†a 1 n 2n 1 (4.186)

hence

n X2 n
h

2m
n aa† a†a n

h

2m
2n 1 (4.187)

n P2 n
mh

2
n aa† a†a n

mh

2
2n 1 (4.188)

Comparing (4.187) and (4.188) we see that the expectation values of the potential and kinetic

energies are equal and are also equal to half the total energy:

m 2

2
n X2 n

1

2m
n P2 n

1

2
n H n (4.189)

This result is known as the Virial theorem.
We can now easily calculate the product x p from (4.187) and (4.188). Since X

P 0 we have

x X2 X 2 X2
h

2m
2n 1 (4.190)

p P2 P 2 P2
mh

2
2n 1 (4.191)

hence

x p n
1

2
h x p

h

2
(4.192)

since n 0; this is the Heisenberg uncertainty principle.

4.9 Numerical Solution of the Schrödinger Equation

In this section we are going to show how to solve a one-dimensional Schrödinger equation

numerically. The numerical solutions provide an idea about the properties of stationary states.

4.9.1 Numerical Procedure

We want to solve the following equation numerically:

h2

2m

d2

dx2
V x x E x

d2

dx2
k2 x 0 (4.193)

where k2 2m[E V x ] h2.
First, divide the x-axis into a set of equidistant points with a spacing of h0 x , as shown

in Figure 4.10a. The wave function x can be approximately described by its values at the



250 CHAPTER 4. ONE-DIMENSIONAL PROBLEMS

-

6

0

0 h0

1

2h0

2

3h0

3

4h0

4

5h0

5

6h0

6

x

x

(a)

-

6

x

x

E is too high

E is correct

E is too low

(b)

Figure 4.10 (a) Discretization of the wave function. (b) If the energy E used in the compu-
tation is too high (too low), the wave function will diverge as x ; but at the appropriate

value of E , the wave function converges to the correct values.

points of the grid (i.e., 0 x 0 , 1 h0 , 2 2h0 , 3 3h0 , and so on).
The first derivative of can then be approximated by

d

dx
n 1 n

h0
(4.194)

An analogous approximation for the second derivative is actually a bit tricky. There are

several methods to calculate it, but a very efficient procedure is called the Numerov algorithm
(which is described in standard numerical analysis textbooks). In short, the second derivative

is approximated by the so-called three-point difference formula:

n 1 2 n n 1

h20
n

h20
12 n 0 h40 (4.195)

From (4.193) we have

n
d2

dx2
k2

x xn

k2 n 1 2 k2 n k2 n 1

h20
(4.196)

Using n k2n n and substituting (4.196) into (4.195) we can show that

n 1

2 1 5
12
h20k

2
n n 1 1

12
h20k

2
n 1 n 1

1 1
12
h20k

2
n 1

(4.197)

We can thus assign arbitrary values for 0 and 1; this is equivalent to providing the starting

(or initial) values for x and x . Knowing 0 and 1, we can use (4.197) to calculate

2, then 3, then 4, and so on. The solution of a linear equation, equation (4.197), for either

n 1 or n 1 yields a recursion relation for integrating either forward or backward in x with
a local error O h60 . In this way, the solution depends on two arbitrary constants, 0 and 1,

as it should for any second-order differential equation (i.e., there are two linearly independent

solutions).

The boundary conditions play a crucial role in solving any Schrödinger equation. Every
boundary condition gives a linear homogeneous equation satisfied by the wave function or its
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derivative. For example, in the case of the infinite square well potential and the harmonic

oscillator, the conditions xmin 0, xmax 0 are satisfied as follows:

Infinite square well: a 2 a 2 0

Harmonic oscillator: 0

4.9.2 Algorithm

To solve the Schrödinger equation with the boundary conditions xmin xmax 0, you

may proceed as follows. Suppose you want to find the wave function, n x , and the energy
En for the nth excited4 state of a system:

Take 0 0 and choose 1 (any small number you like), because the value of 1 must

be very close to that of 0.

Choose a trial energy En .

With this value of the energy, En , together with 0 and 1, you can calculate iteratively

the wave function at different values of x ; that is, you can calculate 2, 3, 4, . How?

You need simply to inject 0 0, 1, and En into (4.197) and proceed incrementally to
calculate 2; then use 1 and 2 to calculate 3; then use 2 and 3 to calculate 4;

and so on till you end up with the value of the wave function at xn nh0, n nh0 .

Next, you need to check whether the n you obtained is zero or not. If n is zero, this

means that you have made the right choice for the trial energy. This value En can then
be taken as a possible eigenenergy for the system; at this value of En , the wave function
converges to the correct value (dotted curve in Figure 4.10b). Of course, it is highly

unlikely to have chosen the correct energy from a first trial. In this case you need to

proceed as follows. If the value of n obtained is a nonzero positive number or if it

diverges, this means that the trial En you started with is larger than the correct eigenvalue
(Figure 4.10b); on the other hand, if n is a negative nonzero number, this means that the

En you started with is less than the true energy. If the n you end up with is a positive

nonzero number, you need to start all over again with a smaller value of the energy. But

if the n you end up with is negative, you need to start again with a larger value of E .
You can continue in this way, improving every time, till you end up with a zero value for

n . Note that in practice there is no way to get n exactly equal to zero. You may stop

the procedure the moment n is sufficiently small; that is, you stop the iteration at the

desired accuracy, say at 10 8 of its maximum value.

Example 4.3 (Numerical solution of the Schrödinger equation)

A proton is subject to a harmonic oscillator potential V x m 2x2 2, 5 34 1021s 1.

(a) Find the exact energies of the five lowest states (express them in MeV).

(b) Solve the Schrödinger equation numerically and find the energies of the five lowest states
and compare them with the exact results obtained in (a). Note: You may use these quantities:

rest mass energy of the proton mc2 103MeV, hc 200MeV fm, and h 3 5MeV.

4We have denoted here the wave function of the nth excited state by n x to distinguish it from the value of the
wave function at xn nh0, n nh0 .
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Table 4.1 Exact and numerical energies for the five lowest states of the harmonic oscillator.

n EExactn MeV ENumericn MeV

0 0 1 750 000 1 749 999 999 795

1 0 5 250 000 5 249 999 998 112

2 0 8 750 000 8 749 999 992 829

3 0 12 250 000 12 249 999 982 320

4 0 15 750 000 15 749 999 967 590

Solution

(a) The exact energies can be calculated at once from En h n 1
2

3 5 n 1
2
MeV.

The results for the five lowest states are listed in Table 4.1.

(b) To obtain the numerical values, we need simply to make use of the Numerov relation

(4.197), where k2n x 2m En
1
2
m 2x2 h2. The numerical values involved here can be

calculated as follows:

m2 2

h2
mc2 2 h 2

hc 4
103MeV 2 3 5MeV 2

200MeV fm 4
7 66 10 4 fm 3 (4.198)

2m

h2
2mc2

hc 2
2 103MeV

200MeV fm 2
0 05MeV 1 fm 2 (4.199)

The boundary conditions for the harmonic oscillator imply that the wave function vanishes

at x , i.e., at xmin and xmax . How does one deal with infinities within

a computer program? For this, we need to choose the numerical values of xmin and xmax in
a way that the wave function would not feel the “edge” effects. That is, we simply need to

assign numerical values to xmin and xmax so that they are far away from the turning points
xLef t 2En m 2 and xRight 2En m 2 , respectively. For instance, in the case of

the ground state, where E0 1 75MeV, we have xLef t 3 38 fm and xRight 3 38 fm;

we may then take xmin 20 fm and xmax 20 fm. The wave function should be practically

zero at x 20 fm.

To calculate the energies numerically for the five lowest states, a C++ computer code has

been prepared (see Appendix C). The numerical results generated by this code are listed in

Table 4.1; they are in excellent agreement with the exact results. Figure 4.11 displays the wave

functions obtained from this code for the five lowest states for the proton moving in a harmonic

oscillator potential (these plotted wave functions are normalized).

4.10 Solved Problems

Problem 4.1

A particle moving in one dimension is in a stationary state whose wave function

x
0 x a
A 1 cos x

a a x a
0 x a
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�n( )x
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Figure 4.11 Wave functions n x of the five lowest states of a harmonic oscillator potential

in terms of x , where the x-axis values are in fm (obtained from the C++ code of Appendix C).

where A and a are real constants.
(a) Is this a physically acceptable wave function? Explain.

(b) Find the magnitude of A so that x is normalized.
(c) Evaluate x and p. Verify that x p h 2.
(d) Find the classically allowed region.

Solution

(a) Since x is square integrable, single-valued, continuous, and has a continuous first

derivative, it is indeed physically acceptable.

(b) Normalization of x : using the relation cos2 y 1 cos 2y 2, we have

1 x 2dx A2
a

a
dx 1 2 cos

x

a
cos2

x

a

A2
a

a
dx

3

2
2 cos

x

a

1

2
cos

2 x

a

3

2
A2

a

a
dx 3aA2 (4.200)

hence A 1 3a.
(c) As x is even, we have X a

a x x x dx 0, since the symmetric integral

of an odd function (i.e., x x x is odd) is zero. On the other hand, we also have P 0

because x is real and even. We can thus write

x X2 p P2 (4.201)

since A A
2

A 2. The calculations of X2 and P2 are straightforward:

X2 h2
a

a
x x2 x dx

1

3a

a

a
x2 2x2 cos

x

a
x2 cos2

x

a
dx
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a2

6 2
2 2 15 (4.202)

P2 h2
a

a
x
d2 x

dx2
dx

2h2

a2
A2

a

a
cos

x

a
cos2

x

a
dx

2h2

3a3

a

a

1

2
cos

x

a

1

2
cos

2 x

a
dx

2h2

3a2
(4.203)

hence x a 1 3 5 2 2 and p h 3a . We see that the uncertainties product

x p
h

3
1

15

2 2
(4.204)

satisfies Heisenberg’s uncertainty principle, x p h 2.
(d) Since d 2 dx2 is zero at the inflection points, we have

d2

dx2

2

a2
A cos

x

a
0 (4.205)

This relation holds when x a 2; hence the classically allowed region is defined by the in-
terval between the inflection points a 2 x a 2. That is, since x decays exponentially
for x a 2 and for x a 2, the energy of the system must be smaller than the potential.
Classically, the system cannot be found in this region.

Problem 4.2

Consider a particle of massm moving freely between x 0 and x a inside an infinite square
well potential.

(a) Calculate the expectation values X n , P n , X2 n , and P2 n , and compare them with
their classical counterparts.

(b) Calculate the uncertainties product xn pn .
(c) Use the result of (b) to estimate the zero-point energy.

Solution

(a) Since n x 2 a sin n x a and since it is a real function, we have n P n 0

because for any real function x the integral P ih x d x dx dx is imaginary

and this contradicts the fact that P has to be real. On the other hand, the expectation values

of X , X2, and P2 are

n X n

a

0
n x x n x dx

2

a

a

0

x sin2
n x

a
dx

1

a

a

0

x 1 cos
2n x

a
dx

a

2
(4.206)

n X
2

n
2

a

a

0

x2 sin2
n x

a
dx

1

a

a

0

x2 1 cos
2n x

a
dx

a2

3

1

a

a

0

x2 cos
2n x

a
dx
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a2

3

1

2n
x2 sin

2n x

a

x a

x 0

1

n

a

0

x sin
2n x

a
dx

a2

3

a2

2n2 2
(4.207)

n P
2

n h2
a

0
n x

d2 n x

dx2
dx

n2 2h2

a2

a

0
n x

2dx
n2 2h2

a2
(4.208)

In deriving the previous three expressions, we have used integrations by parts. Since En
n2 2h2 2ma2 , we may write

n P
2

n
n2 2h2

a2
2mEn (4.209)

To calculate the classical average values xa , pa , x2a , p
2
a , it is easy first to infer that pa 0

and p2a 2mE , since the particle moves to the right with constant momentum p m and to

the left with p m . As the particle moves at constant speed, we have x t , hence

xa
1

T

T

0

x t dt
T

T

0

t dt
T

2

a

2
(4.210)

x2a
1

T

T

0

x2 t dt
2

T

T

0

t2dt
1

3
2T 2

a2

3
(4.211)

where T is half 5 of the period of the motion, with a T .
We conclude that, while the average classical and quantum expressions for x , p and p2 are

identical, a comparison of (4.207) and (4.211) yields

n X
2

n
a2

3

a2

2n2 2
x2a

a2

2n2 2
(4.212)

so that in the limit of large quantum numbers, the quantum expression n X2 n matches

with its classical counterpart x2a : limn n X2 n a2 3 x2a .
(b) The position and the momentum uncertainties can be calculated from (4.206) to (4.208):

xn n X2 n n X n
2

a2

3

a2

2n2 2

a2

4
a

1

12

1

2n2 2

(4.213)

pn n P2 n n P n
2

n P2 n
n h

a
(4.214)

hence

xn pn n h
1

12

1

2n2 2
(4.215)

(c) Equation (4.214) shows that the momentum uncertainty for the ground state is not zero,

but

p1
h

a
(4.216)

5We may parameterize the other half of the motion by x t , which when inserted in (4.210) and (4.211), where
the variable t varies between T and 0, the integrals would yield the same results, namely xa a 2 and x2a a2 3,
respectively.
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This leads to a nonzero kinetic energy. Therefore, the lowest value of the particle’s kinetic

energy is of the order of Emin p1 2 2m 2h2 2ma2 . This value, which is in full
agreement with the ground state energy, E1 2h2 2ma2 , is the zero-point energy of the
particle.

Problem 4.3

An electron is moving freely inside a one-dimensional infinite potential box with walls at x 0

and x a. If the electron is initially in the ground state (n 1) of the box and if we suddenly
quadruple the size of the box (i.e., the right-hand side wall is moved instantaneously from x a
to x 4a), calculate the probability of finding the electron in:
(a) the ground state of the new box and

(b) the first excited state of the new box.

Solution

Initially, the electron is in the ground state of the box x 0 and x a; its energy and wave
function are

E1
2h2

2ma2
1 x

2

a
sin

x

a
(4.217)

(a) Once in the new box, x 0 and x 4a, the ground state energy and wave function of
the electron are

E1

2h2

2m 4a 2

2h2

32ma2
1 x

1

2a
sin

x

4a
(4.218)

The probability of finding the electron in 1 x is

P E1 1 1
2

a

0
1 x 1 x dx

2 1

a2

a

0

sin
x

4a
sin

x

a
dx

2

(4.219)

the upper limit of the integral sign is a (and not 4a) because 1 x is limited to the region

between 0 and a. Using the relation sin a sin b 1
2
cos a b 1

2
cos a b , we have

sin x 4a sin x a 1
2
cos 3 x 4a 1

2
cos 5 x 4a ; hence

P E1
1

a2
1

2

a

0

cos
3 x

4a
dx

1

2

a

0

cos
5 x

4a
dx

2

128

152 2
0 058 5 8% (4.220)

(b) If the electron is in the first excited state of the new box, its energy and wave function

are

E2

2h2

8ma2
2 x

1

2a
sin

x

2a
(4.221)

The corresponding probability is

P E2 2 1
2

a

0
2 x 1 x dx

2 1

a2

a

0

sin
x

2a
sin

x

a
dx

2

16

9 2
0 18 18% (4.222)
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Problem 4.4

Consider a particle of mass m subject to an attractive delta potential V x V0 x , where
V0 0 (V0 has the dimensions of Energy Distance).

(a) In the case of negative energies, show that this particle has only one bound state; find

the binding energy and the wave function.

(b) Calculate the probability of finding the particle in the interval a x a.
(c) What is the probability that the particle remains bound when V0 is (i) halved suddenly,

(ii) quadrupled suddenly?

(d) Study the scattering case (i.e., E 0) and calculate the reflection and transmission

coefficients as a function of the wave number k.

Solution

(a) Let us consider first the bound state case E 0. We can write the Schrödinger equation

as follows:
d2 x

dx2
2mV0

h2
x x

2mE

h2
x 0 (4.223)

Since x vanishes for x 0, this equation becomes

d2 x

dx2
2mE

h2
x 0 (4.224)

The bound solutions require that x vanishes at x ; these bound solutions are given

by

x
x Aekx x 0

x Be kx x 0
(4.225)

where k 2m E h. Since x is continuous at x 0, 0 0 , we have A B.
Thus, the wave function is given by x Ae k x ; note that x is even.
The energy can be obtained from the discontinuity condition of the first derivative of the

wave function, which in turn can be obtained by integrating (4.223) from to ,

dx
d2 x

dx2
2mV0

h2
x x dx

2mE

h2
x dx 0 (4.226)

and then letting 0. Using the facts that

dx
d2 x

dx2
d x

dx x

d x

dx x

d x

dx x

d x

dx x
(4.227)

and that x dx 0 (because x is even), we can rewrite (4.226) as follows:

lim
0

d x

dx x

d x

dx x 0

2mV0

h2
0 0 (4.228)

since the wave function is continuous at x 0, but its first derivative is not. Substituting (4.225)

into (4.228) and using A B, we obtain

2kA
2mV0

h2
A 0 (4.229)
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or k mV0 h
2. But since k 2m E h2, we have mV0 h

2 2m E h2, and since the

energy is negative, we conclude that E mV 20 2h2 . There is, therefore, only one bound
state solution. As for the excited states, all of them are unbound. We may normalize x ,

1 x x dx A2
0

exp 2kx dx A2
0

exp 2kx dx

2A2
0

exp 2kx dx
A2

k
(4.230)

hence A k. The normalized wave function is thus given by x ke k x . So the

energy and normalized wave function of the bound state are given by

E
mV 20
2h2

x
mV0

h2
exp

mV0

h2
x (4.231)

(b) Since the wave function x ke k x is normalized, the probability of finding the

particle in the interval a x a is given by

P

a
a x 2 dx

x 2 dx

a

a
x 2 dx k

a

a
e 2k x dx

k
0

a
e2kxdx k

a

0

e 2kxdx 2k
a

0

e 2kxdx

1 e 2ka 1 e 2mV0a h
2

(4.232)

(c) If the strength of the potential changed suddenly from V0 to V1, the wave function will

be given by 1 x mV1 h2 exp mV1 x h2 . The probability that the particle remains in
the bound state 1 x is

P 1
2

1 x x dx
2

m

h2
V0V1 exp

m V0 V1

h2
x dx

2

2
m

h2
V0V1

0

exp
m V0 V1

h2
x dx

2 4V0V1
V0 V1 2

(4.233)

(i) In the case where the strength of the potential is halved, V1
1
2
V0, the probability that the

particle remains bound is

P
2V 20

V0
1
2
V0 2

8

9
89% (4.234)

(ii) When the strength is quadrupled, V1 4V0, the probability is given by

P
16V 20
5V0 2

16

25
64% (4.235)
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(d) The case E 0 corresponds to a free motion and the energy levels represent a contin-

uum. The solution of the Schrödinger equation for E 0 is given by

x
x Aeikx Be ikx x 0

x Ceikx x 0
(4.236)

where k 2mE h; this corresponds to a plane wave incident from the left together with a
reflected wave in the region x 0, and only a transmitted wave for x 0.

The values of the constants A and B are to be found from the continuity relations. On the
one hand, the continuity of x at x 0 yields

A B C (4.237)

and, on the other hand, substituting (4.236) into (4.228), we end up with

ik C A B
2mV0

h2
C 0 (4.238)

Solving (4.237) and (4.238) for B A and C A, we find

B

A

1

1 ikh2

mV0

C

A

1

1 imV0
h2k

(4.239)

Thus, the reflection and transmission coefficients are

R
B

A

2
1

1 h4k2

m2V 20

1

1 2h2E
mV 20

T
C

A

2
1

1
m2V 20
h4k2

1

1
mV 20
2h2E

(4.240)

with R T 1.

Problem 4.5

A particle of mass m is subject to an attractive double-delta potential V x V0 x a
V0 x a , where V0 0. Consider only the case of negative energies.

(a) Obtain the wave functions of the bound states.

(b) Derive the eigenvalue equations.

(c) Specify the number of bound states and the limit on their energies. Is the ground state

an even state or an odd state?

(d) Estimate the ground state energy for the limits a 0 and a .

Solution

(a) The Schrödinger equation for this problem is

d2 x

dx2
2mV0

h2
[ x a x a ] x

2mE

h2
x 0 (4.241)

For x a this equation becomes

d2 x

dx2
2mE

h2
x 0 or

d2 x

dx2
k2 x 0 (4.242)
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-
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x

Even wave function
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x

x

Odd wave function

a
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Figure 4.12 Shapes of the even and odd wave functions for V x V0 x a V0 x a .

where k2 2mE h2 2m E h2, since this problem deals only with the bound states
E 0.

Since the potential is symmetric, V x V x , the wave function is either even or odd;
we will denote the even states by x and the odd states by x . The bound state solutions
for E 0 require that x vanish at x :

x
Ae kx x a
B
2
ekx e kx a x a
Aekx x a

(4.243)

hence

x
Ae kx

B cosh kx
Aekx

x
Ae kx x a
B sinh kx a x a
Aekx x a

(4.244)

The shapes of x are displayed in Figure 4.12.
(b) As for the energy eigenvalues, they can be obtained from the boundary conditions. The

continuity condition at x a of x leads to

Ae ka B cosh ka (4.245)

and that of x leads to
Ae ka B sinh ka (4.246)

To obtain the discontinuity condition for the first derivative of x at x a, we need to
integrate (4.241):

lim
0

a a
2mV0

h2
a 0 (4.247)

hence

k Ae ka kB sinh ka
2mV0

h2
Ae ka 0 A

2mV0

kh2
1 e ka B sinh ka (4.248)
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(b) Eigenvalues for odd states

Figure 4.13 Graphical solutions of the eigenvalue equations for the even states and the odd

states for the double-delta potential V x V0 x a V0 x a .

Similarly, the continuity of the first derivative of x at x a yields

kAe ka kB cosh ka
2mV0

h2
Ae ka 0 A

2mV0

kh2
1 e ka B cosh ka

(4.249)

Dividing (4.248) by (4.245) we obtain the eigenvalue equation for the even solutions:

2mV0

kh2
1 tanh ka tanh y

y
1 (4.250)

where y ka and 2maV0 h2. The eigenvalue equation for the odd solutions can be
obtained by dividing (4.249) by (4.246):

2mV0

kh2
1 coth ka coth y

y
1 tanh y

y
1

1

(4.251)

because coth y 1 tanh y.
To obtain the energy eigenvalues for the even and odd solutions, we need to solve the

transcendental equations (4.250) and (4.251). These equations can be solved graphically. In

what follows, let us determine the upper and lower limits of the energy for both the even and

odd solutions.

(c) To find the number of bound states and the limits on the energy, let us consider the even

and odd states separately.

Energies corresponding to the even solutions

There is only one bound state, since the curves tanh y and y 1 intersect only once (Fig-

ure 4.13a); we call this point y y0. When y we have y 1 0, while tanh 0.

Therefore y0 . On the other hand, since tanh y0 1 we have y0 1 1 or y0 2.

We conclude then that 2 y0 or

2
y0

2mV 20
h2

Ee en
mV 20
2h2

(4.252)

In deriving this relation, we have used the fact that 2 4 y20
2 where 2maV0 h2

and y20 k20a
2 2ma2Ee en h2. So there is always one even bound state, the ground state,

whose energy lies within the range specified by (4.252).
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Energies corresponding to the odd solutions

As shown in Figure 4.13b, if the slope of y 1 1 at y 0 is smaller than the slope of

tanh y, i.e.,

d

dy y
1

1

y 0

d tanh y

dy y 0

1
1 (4.253)

or

1 V0
h2

2ma
(4.254)

there would be only one bound state because the curves tanh y and y 1 1 would intersect

once. But if 1 or V0 h2 2ma , there would be no odd bound states, for the curves of
tanh y and y 1 1 would never intersect.

Note that if y 2 we have y 1 1 1. Thus the intersection of tanh y and
y 1 1, if it takes place at all, has to take place for y 2. That is, the odd bound states

occur only when

y
2

Eodd
mV 20
2h2

(4.255)

A comparison of (4.252) and (4.255) shows that the energies corresponding to even states

are smaller than those of odd states:

Ee en Eodd (4.256)

Thus, the even bound state is the ground state. Using this result, we may infer (a) if 1 there

are no odd bound states, but there is always one even bound state, the ground state; (b) if 1

there are two bound states: the ground state (even) and the first excited state (odd).

We may summarize these results as follows:

If 1 or V0
h2

2ma
there is only one bound state (4.257)

If 1 or V0
h2

2ma
there are two bound states (4.258)

(d) In the limit a 0 we have y 0 and 0; hence the even transcendental

equation tanh y y 1 reduces to y y 1 or y , which in turn leads to y2

ka 2 2 or 2ma2Ee en h
2 2maV0 h

2 2:

Ee en
2mV 20
h2

(4.259)

Note that in the limit a 0, the potential V x V0 x a V0 x a reduces to

V x 2V0 x . We can see that the ground state energy (4.231) of the single-delta potential
is identical with (4.259) provided we replace V0 in (4.231) by 2V0.
In the limit a , we have y and ; hence tanh y y 1 reduces to

1 y 1 or y 2. This leads to y2 ka 2 2 4 or 2ma2Ee en h
2 maV0 h

2 2:

Ee en
mV 20
2h2

(4.260)

This relation is identical with that of the single-delta potential (4.231).



4.10. SOLVED PROBLEMS 263

Problem 4.6

Consider a particle of mass m subject to the potential

V x
x 0

V0 x a x 0

where V0 0. Discuss the existence of bound states in terms of the size of a.

Solution

The Schrödinger equation for x 0 is

d2 x

dx2
2mV0

h2
x a k2 x 0 (4.261)

where k2 2mE h2, since we are looking here at the bound states only, E 0. The

solutions of this equation are

x 1 x Aekx Be kx 0 x a

2 x Ce kx x a
(4.262)

The energy eigenvalues can be obtained from the boundary conditions. As the wave func-

tion vanishes at x 0, we have

1 0 0 A B 0 B A (4.263)

The continuity condition at x a of x , 1 a 2 a , leads to

Aeka Ae ka Ce ka (4.264)

To obtain the discontinuity condition for the first derivative of x at x a, we need to
integrate (4.261):

lim
a 2 a 1 a

2mV0

h2
2 a 0 (4.265)

or

kCe ka kAeka kAe ka 2mV0

h2
Ce ka 0 (4.266)

Substituting Ce ka Aeka Ae ka or (4.264) into (4.266) we have

k Aeka k Ae ka kAeka kAe ka 2mV0

h2
Aeka Ae ka 0 (4.267)

From this point on, we can proceed in two different, yet equivalent, ways. These two methods

differ merely in the way we exploit (4.267). For completeness of the presentation, let us discuss

both methods.

First method

The second and fourth terms of (4.267) cancel each other, so we can reduce it to

kAeka kAeka
2mV0

h2
Aeka Ae ka 0 (4.268)
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(b) Case where a h2

2mV0

Figure 4.14 Graphical solutions of f k g k or k mV0 h
2 1 e 2ka . If the slope of

g k is smaller than 1, i.e., a h2 2mV0 , no bound state will exist, but if the slope of g k is

greater than 1, i.e., a h2

2mV0
, there will be only one bound state.

which in turn leads to the following transcendental equation:

k
mV0

h2
1 e 2ka (4.269)

The energy eigenvalues are given by the intersection of the curves f k k and g k
mV0 1 e 2ka h2. As the slope of f k is equal to 1, if the slope of g k at k 0 is smaller

than 1 (i.e., a h2 2mV0 ), there will be no bound states (Figure 4.14a). But if the slope of
g k is greater than 1 (i.e., a h2 2mV0 ),

dg k

dk k 0

1 or a
h2

2mV0
(4.270)

and there will be one bound state (Figure 4.14b).

Second method

We simply combine the first and second terms of (4.267) to generate 2k A sinh ka ; the third
and fourth terms yield 2kA cosh ka ; and the fifth and sixth terms lead to 2A 2mV0 h

2 sinh ka.
Hence

2kA sinh ka 2kA cosh ka 2A
2mV0

h2
sinh ka 0 (4.271)

which leads to

coth
2mV0

h2
a (4.272)

where ka. The energy eigenvalues are given by the intersection of the curves h
coth and u 2mV0a h

2 . As displayed in Figure 4.15a, if a 2mV0 h
2, no

bound state solution will exist, since the curves of h and u do not intersect. But if a
2mV0 h2, the curves intersect only once; hence there will be one bound state (Figure 4.15b).
We may summarize the results as follows:

a
h2

2mV0
no bound states, (4.273)

a
h2

2mV0
one bound state. (4.274)
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Figure 4.15 Graphical solutions of h u , with ka, h coth , and u
2mV0a h2 . If a 2mV0 h2 there is no bound state. If a 2mV0 h2 there is one bound
state.

Problem 4.7

A particle of mass m, besides being confined to move inside an infinite square well potential of
size a with walls at x 0 and x a, is subject to a delta potential of strength V0

V x
V0 x a 2 0 x a

elsewhere

where V0 0. Show how to calculate the energy levels of the system in terms of V0 and a.

Solution

The Schrödinger equation

d2 x

dx2
2mV0

h2
x

a

2
x

2mE

h2
x 0 (4.275)

can be written for x a 2 as

d2 x

dx2
2mE

h2
x 0 (4.276)

The solutions of this equation must vanish at x 0 and x a:

x L x A sin kx 0 x a 2

R x B sin k x a a 2 x a
(4.277)

where k 2m E h. The continuity of x at x a 2, L a 2 R a 2 , leads to
A sin a 2 B sin a 2 ; hence B A. The wave function is thus given by

x L x A sin kx 0 x a 2

R x A sin k x a a 2 x a
(4.278)
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The energy eigenvalues can be found from the discontinuity condition of the first derivative of

the wave function, which in turn can be obtained by integrating (4.275) from a 2 to a 2
and then letting 0:

lim
0

d R x

dx x a 2

d L x

dx x a 2 0

2mV0

h2
a

2
0 (4.279)

Substituting (4.278) into (4.279) we obtain

kA cos k
a

2
a kA cos k

a

2
A
2mV0

h2
sin k

a

2
0 (4.280)

or

tan k
a

2

h2k

mV0
tan

ma2 E

2h2
2h2 E

mV 20
(4.281)

This is a transcendental equation for the energy; its solutions, which can be obtained numeri-

cally or graphically, yield the values of E .

Problem 4.8

Using the uncertainty principle, show that the lowest energy of an oscillator is h 2.

Solution

The motion of the particle is confined to the region a 2 x a 2; that is, x a.
Then as a result of the uncertainty principle, the lowest value of this particle’s momentum is

h 2 x h 2a . The total energy as a function of a is

E a
1

2m

h

2a

2
1

2
m 2a2 (4.282)

The minimization of E with respect to a,

0
dE

da a a0

h2

4ma30
m 2a0 (4.283)

gives a0 h 2m and hence E a0 h 2; this is equal to the exact value of the oscilla-

tor’s zero-point energy.

Problem 4.9

Find the energy levels of a particle of mass m moving in a one-dimensional potential:

V x
x 0

1
2
m 2x2 x 0

Solution

This is an asymmetric harmonic oscillator potential in which the particle moves only in the

region x 0. The only acceptable solutions are those for which the wave function vanishes at

x 0. These solutions must be those of an ordinary (symmetric) harmonic oscillator that have

odd parity, since the wave functions corresponding to the symmetric harmonic oscillator are
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either even (n even) or odd (n odd), and only the odd solutions vanish at the origin, 2n 1 0

0 n 0 1 2 3 . Therefore, the energy levels of this asymmetric potential must be

given by those corresponding to the odd n energy levels of the symmetric potential, i.e.,

En 2n 1
1

2
h 2n

3

2
h n 0 1 2 3 (4.284)

Problem 4.10

Consider the box potential

V x
0 0 x a

elsewhere

(a) Estimate the energies of the ground state as well as those of the first and the second

excited states for (i) an electron enclosed in a box of size a 10 10m (express your answer

in electron volts; you may use these values: hc 200MeV fm, mec2 0 5MeV); (ii) a 1 g

metallic sphere which is moving in a box of size a 10 cm (express your answer in joules).

(b) Discuss the importance of the quantum effects for both of these two systems.

(c) Use the uncertainty principle to estimate the velocities of the electron and the metallic

sphere.

Solution

The energy of a particle of mass m in a box having perfectly rigid walls is given by

En
n2h2

8ma2
n 1 2 3 (4.285)

where a is the size of the box.
(a) (i) For the electron in the box of size 10 10m, we have

En
h2c2

mec2a2
4 2n2

8

4 104 MeV fm 2

0 5MeV 1010 fm2

2

2
n2

4 2n2 eV 39n2 eV (4.286)

Hence E1 39 eV, E2 156 eV, and E3 351 eV.

(ii) For the sphere in the box of side 10 cm we have

En
6 6 10 34 J s 2

10 3 kg 10 2m2
n2 43 6 10 63n2 J (4.287)

Hence E1 43 6 10 63 J, E2 174 4 10 63 J, and E3 392 4 10 63 J.

(b) The differences between the energy levels are

E2 E1 electron 117 eV E3 E2 electron 195 eV (4.288)

E2 E1 sphere 130 8 10 63 J E3 E2 sphere 218 10 63 J (4.289)

These results show that:

The spacings between the energy levels of the electron are quite large; the levels are far

apart from each other. Thus, the quantum effects are important.
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The energy levels of the sphere are practically indistinguishable; the spacings between

the levels are negligible. The energy spectrum therefore forms a continuum; hence the

quantum effects are not noticeable for the sphere.

(c) According to the uncertainty principle, the speed is proportional to h ma . For the
electron, the typical distances are atomic, a 10 10m; hence

hc

mc2a
c

200MeV fm

0 5MeV 105 fm
c 4 10 3c 1 2 106ms 1 (4.290)

where c is the speed of light. The electron therefore moves quite fast; this is expected since we
have confined the electron to move within a small region.

For the sphere, the typical distances are in the range of 1 cm:

h

ma

6 6 10 34 J s

10 3 kg 10 2m
6 6 10 29ms 1 (4.291)

At this speed the sphere is practically at rest.

Problem 4.11

(a) Verify that the matrices representing the operators X and P in the N -space for a har-
monic oscillator obey the correct commutation relation [X P] ih.
(b) Show that the energy levels of the harmonic oscillator can be obtained by inserting the

matrices of X and P into the Hamiltonian H P2 2m 1
2
m 2X2.

Solution

(a) Using the matrices of X and P in (4.181) and (4.182), we obtain

X P i
h

2

1 0 2

0 1 0

2 0 1 PX i
h

2

1 0 2

0 1 0

2 0 1 (4.292)

hence

X P PX ih

1 0 0

0 1 0

0 0 1 (4.293)

or [X P] ih I , where I is the unit matrix.
(b) Again, using the matrices of X and P in (4.181) and (4.182), we can verify that

X2
h

2m

1 0 2

0 3 0

2 0 5 P2
mh

2

1 0 2

0 3 0

2 0 5

(4.294)
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hence

P2

2m

1

2
m 2X2

h

2

1 0 0

0 3 0

0 0 5 (4.295)

The form of this matrix is similar to the result we obtain from an analytical treatment, En
h 2n 1 2, since

Hn n n H n
h

2
2n 1 n n (4.296)

Problem 4.12

Calculate the probability of finding a particle in the classically forbidden region of a harmonic

oscillator for the states n 0 1 2 3 4. Are these results compatible with their classical

counterparts?

Solution

The classical turning points are defined by En V xn or by h n 1
2

1
2
m 2x2n ; that

is, xn h m 2n 1. Thus, the probability of finding a particle in the classically

forbidden region for a state n x is

Pn
xn

n x
2 dx

xn
n x

2 dx 2
xn

n x
2 dx (4.297)

where n x is given in (4.172), n x 1 2nn!x0e
x2 2x20 Hn x x0 , where x0 is given

by x0 h m . Using the change of variable y x x0, we can rewrite Pn as

Pn
2

2nn! 2n 1

e y2H2n y dy (4.298)

where the Hermite polynomials Hn y are listed in (4.120). The integral in (4.298) can be

evaluated only numerically. Using the numerical values

1

e y2dy 0 1394
3

y2e y2dy 0 0495 (4.299)

5

4y2 2
2
e y2dy 0 6740

7

8y3 12y
2
e y2dy 3 6363 (4.300)

9

16y4 48y2 12
2
e y2dx 26 86 (4.301)

we obtain

P0 0 1573 P1 0 1116 P2 0 095 069 (4.302)

P3 0 085 48 P4 0 078 93 (4.303)

This shows that the probability decreases as n increases, so it would be very small for very
large values of n. It is therefore unlikely to find the particle in the classically forbidden region
when the particle is in a very highly excited state. This is what we expect, since the classical

approximation is recovered in the limit of high values of n.



270 CHAPTER 4. ONE-DIMENSIONAL PROBLEMS

Problem 4.13

Consider a particle of mass m moving in the following potential

V x
x 0

V0 0 x a
0 x a

where V0 0.

(a) Find the wave function.

(b) Show how to obtain the energy eigenvalues from a graph.

(c) Calculate the minimum value of V0 (in terms ofm, a, and h) so that the particle will have
one bound state; then calculate it for two bound states. From these two results, try to obtain the

lowest value of V0 so that the system has n bound states.

Solution

(a) As shown in Figure 4.16, the wave function in the region x 0 is zero, x 0. In

the region x 0 the Schrödinger equation for the bound state solutions, V0 E 0, is

given by

d2

dx2
k21 1 x 0 0 x a (4.304)

d2

dx2
k22 2 x 0 x a (4.305)

where k21 2m V0 E h2 and k22 2mE h2. On one hand, the solution of (4.304) is
oscillatory, 1 x A sin k1x B cos k1x , but since 1 0 0 we must have B 0. On

the other hand, eliminating the physically unacceptable solutions which grow exponentially for

large values of x , the solution of (4.305) is 2 x Ce k2x . Thus, the wave function is given

by

x
0 x 0

1 x A sin k1x 0 x 0

2 x Ce k2x x a
(4.306)

(b) To determine the eigenvalues, we need to use the boundary conditions at x a. The
condition 1 a 2 a yields

A sin k1a Ce k2a (4.307)

while the continuity of the first derivative, 1 a 2 a , leads to

Ak1 cos k1a Ck2e
k2a (4.308)

Dividing (4.308) by (4.307) we obtain

k1a cot k1a k2a (4.309)

Since k21 2m V0 E h2 and k22 2mE h2, we have

k1a
2 k2a

2 2 (4.310)
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-

6

E

0

V0

xa

V x

-

6

¾ k1a cot k1a

¾ k1a 2 k2a 2

n 1

n 1

n 2

0
k1a

k2a

2
3
2

2

Figure 4.16 Potential V x (left curve); the energy levels of V x are given graphically by the
intersection of the circular curve k1a 2 k2a 2 with k1a cot k1a (right curve).

where 2mV0a h.
The transcendental equations (4.309) and (4.310) can be solved graphically. As shown

in Figure 4.16, the energy levels are given by the intersection of the circular curve k1a 2

k2a 2 2 with k1a cot k1a k2a.
(c) If 2 3 2 there will be only one bound state, the ground state n 1, for

there is only one crossing between the curves k1a 2 k2a 2 2 and k1a cot k1a k2a.
The lowest value of V0 that yields a single bound state is given by the relation 2, which

leads to 2ma2V0 h
2 2 4 or to

V0
2h2

8ma2
(4.311)

Similarly, if 3 2 5 2 there will be two crossings between k1a 2 k2a 2 2 and

k1a cot k1a k2a. Thus, there will be two bound states: the ground state, n 1, and the

first excited state, n 2. The lowest value of V0 that yields two bound states corresponds to
2ma2V0 h

2 9 2 4 or to

V0
9 2h2

8ma2
(4.312)

We may thus infer the following general result. If n 2 n 2, there will

be n crossings and hence n bound states:

n
2

2mV0
h

a n
2

there are n bound states (4.313)

The lowest value of V0 giving n bound states is

V0
2h2

8ma2
2n 1 2 (4.314)
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Problem 4.14

(a) Assuming the potential seen by a neutron in a nucleus to be schematically represented by

a one-dimensional, infinite rigid walls potential of length 10 fm, estimate the minimum kinetic

energy of the neutron.

(b) Estimate the minimum kinetic energy of an electron bound within the nucleus described

in (a). Can an electron be confined in a nucleus? Explain.

Solution

The energy of a particle of mass m in a one-dimensional box potential having perfectly rigid
walls is given by

En
2h2

2ma2
n2 n 1 2 3 (4.315)

where a is the size of the box.
(a) Assuming the neutron to be nonrelativistic (i.e., its energy E mnc2), the lowest

energy the neutron can have in a box of size a 10 fm is

Emin
2h2

2mna2

2 h2c2

2 mnc2 a2
2 04MeV (4.316)

where we have used the fact that the rest mass energy of a neutron is mnc2 939 57MeV and

hc 197 3MeV fm. Indeed, we see that Emin mnc2.
(b) The minimum energy of a (nonrelativistic) electron moving in a box of size a 10 fm

is given by

Emin
2h2

2mea2

2 h2c2

2 mec2 a2
3755 45MeV (4.317)

The rest mass energy of an electron is mec2 0 511MeV, so this electron is ultra-relativistic

since Emin mec2. It implies that an electron with this energy cannot be confined within such
a nucleus.

Problem 4.15

(a) Calculate the expectation value of the operator X4 in the N -representation with respect
to the state n (i.e., n X4 n ).
(b) Use the result of (a) to calculate the energy En for a particle whose Hamiltonian is

H P2 2m 1
2
m 2X2 X4.

Solution

(a) Since m 0 m m 1 we can write the expectation value of X4 as

n X4 n
m 0

n X2 m m X2 n
m 0

m X2 n
2

(4.318)

Now since

X2
h

2m
a2 a†2 aa† a†a

h

2m
a2 a†2 2a†a 1 (4.319)
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the only terms m X2 n that survive are

n X2 n
h

2m
n 2a†a 1 n

h

2m
2n 1 (4.320)

n 2 X2 n
h

2m
n 2 a2 n

h

2m
n n 1 (4.321)

n 2 X2 n
h

2m
n 2 a†2 n

h

2m
n 1 n 2 (4.322)

Thus

n X4 n n X2 n
2

n 2 X2 n
2

n 2 X2 n
2

h2

4m2 2
2n 1 2 n n 1 n 1 n 2

h2

4m2 2
6n2 6n 3 (4.323)

(b) Using (4.323), and since the Hamiltonian can be expressed in terms of the harmonic

oscillator, H HHO X4, we immediately obtain the particle energy:

En n HHO n n X4 n h n
1

2

h2

4m2 2
6n2 6n 3 (4.324)

Problem 4.16

Find the energy levels and the wave functions of two harmonic oscillators of masses m1 and
m2, having identical frequencies , and coupled by the interaction 1

2
k X1 X2 2.

Solution

This problem reduces to finding the eigenvalues for the Hamiltonian

H H1 H2
1

2
K X1 X2

2

1

2m1
P21

1

2
m1

2X21
1

2m2
P22

1

2
m2

2X22
1

2
K X1 X2

2 (4.325)

This is a two-particle problem. As in classical mechanics, it is more convenient to describe the

dynamics of a two-particle system in terms of the center of mass (CM) and relative motions.

For this, let us introduce the following operators:

P p1 p2 X
m1x1 m2x2

M
(4.326)

p
m2 p1 m1 p2

M
x x1 x2 (4.327)

where M m1 m2 and m1m2 m1 m2 is the reduced mass; P and X pertain to the
CM; p and x pertain to the relative motion. These relations lead to

p1
m1
M
P p p2

m2
M
P p (4.328)

x1
m2
M
x X x2

m1
M
x X (4.329)
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Note that the sets X P and x p are conjugate variables separately: [X P] ih, [x p]
ih, [X p] [x P] 0. Taking p1, p2, x1, and x2 of (4.328) and (4.329) and inserting them
into (4.325), we obtain

H
1

2m1

m1
M
P p

2 1

2
m1

2 m2
M
x X

2

1

2m2

m2
M
P p

2 1

2
m2

2 m1
M
x X

2 1

2
Kx2

HCM Hrel (4.330)

where

HCM
1

2M
P2

1

2
M 2X2 Hrel

1

2
p2

1

2
2x2 (4.331)

with 2 2 k . We have thus reduced the Hamiltonian of these two coupled harmonic

oscillators to the sum of two independent harmonic oscillators, one with frequency and mass

M and the other of mass and frequency 2 k . That is, by introducing the

CM and relative motion variables, we have managed to eliminate the coupled term from the

Hamiltonian.

The energy levels of this two-oscillator system can be inferred at once from the suggestive

Hamiltonians of (4.331):

En1n2 h n1
1

2
h n2

1

2
(4.332)

The states of this two-particle system are given by the product of the two states N n1 n2 ;
hence the total wave function, n X x , is equal to the product of the center of mass wave func-
tion, n1 X , and the wave function of the relative motion, n2 x : n X x n1 X n2 x .
Note that both of these wave functions are harmonic oscillator functions whose forms can be

found in (4.172):

n X x
1

2n12n2n1!n2!x01x02
e
X2 2x201 e

x2 2x202 Hn1
X

x01
Hn2

x

x02
(4.333)

where n n1 n2 , x01 h M , and x02 h .

Problem 4.17

Consider a particle of mass m and charge q moving under the influence of a one-dimensional
harmonic oscillator potential. Assume it is placed in a constant electric field E . The Hamil-

tonian of this particle is therefore given by H P2 2m 1
2
m 2X2 qEX . Derive the

energy expression and the wave function of the nth excited state.

Solution

To find the eigenenergies of the Hamiltonian

H
1

2m
P2

1

2
m 2X2 qEX (4.334)

it is convenient to use the change of variable y X qE m 2 . Thus the Hamiltonian

becomes

H
1

2m
P2

1

2
m 2y2

q2E2

2m 2
(4.335)
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Since the term q2E2 2m 2 is a mere constant and P2 2m 1
2
m 2y2 HHO has the

structure of a harmonic oscillator Hamiltonian, we can easily infer the energy levels:

En n H n h n
1

2

q2E2

2m 2
(4.336)

The wave function is given by n y n x qE m 2 , where n y is given in (4.172):

n y
1

2nn!x0
e y2 2x20Hn

y

x0
(4.337)

Problem 4.18

Consider a particle of mass m that is bouncing vertically and elastically on a smooth reflecting
floor in the Earth’s gravitational field

V z
mgz z 0

z 0

where g is a constant (the acceleration due to gravity). Find the energy levels and wave function
of this particle.

Solution

We need to solve the Schrödinger equation with the boundary conditions 0 0 and

0:

h2

2m

d2 z

dz2
mgz z E z

d2 z

dz2
2m

h2
mgz E z 0 (4.338)

With the change of variable x h2 2m2g 2 3 2m h2 mgz E , we can reduce this equa-
tion to

d2 x

dx2
x x 0 (4.339)

This is a standard differential equation; its solution (which vanishes at x , i.e.,

0) is given by

x BAi x where Ai x
1

0

cos
1

3
t3 xt dt (4.340)

where Ai x is called the Airy function.
When z 0 we have x 2 mg2h2 1 3E . The boundary condition 0 0 yields

[ 2 mg2h2 1 3E] 0 or Ai[ 2 mg2h2 1 3E] 0. The Airy function has zeros

only at certain values of Rn: Ai Rn 0 with n 0 1 2 3 . The roots Rn of the Airy
function can be found in standard tables. For instance, the first few roots are R0 2 338,

R1 4 088, R2 5 521, R3 6 787.

The boundary condition 0 0 therefore gives a discrete set of energy levels which can
be expressed in terms of the roots of the Airy function:

Ai
2

mg2h2

1 3

E 0
2

mg2h2

1 3

En Rn (4.341)
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hence

En
1

2
mg2h2

1 3

Rn n z BnAi
2m2g2

h2

1 3

z Rn (4.342)

The first few energy levels are

E0 2 338
1

2
mg2h2

1 3

E1 4 088
1

2
mg2h2

1 3

(4.343)

E2 5 521
1

2
mg2h2

1 3

E3 6 787
1

2
mg2h2

1 3

(4.344)

4.11 Exercises

Exercise 4.1

A particle of mass m is subjected to a potential

V x
0 x a 2

x a 2

(a) Find the ground, first, and second excited state wave functions.

(b) Find expressions for E1, E2, and E3.
(c) Plot the probability densities P2 x t and P3 x t .
(d) Find X 2 X 3 P 2, and P 3.

(e) Evaluate x p for the states 2 x t and 3 x t .

Exercise 4.2

Consider a system whose wave function at t 0 is

x 0
3

30
0 x

4

30
1 x

1

6
4 x

where n x is the wave function of the nth excited state of an infinite square well potential of
width a and whose energy is En 2h2n2 2ma2 .
(a) Find the average energy of this system.

(b) Find the state x t at a later time t and the average value of the energy. Compare the
result with the value obtained in (a).

Exercise 4.3

An electron with a kinetic energy of 10 eV at large negative values of x is moving from left to
right along the x-axis. The potential energy is

V x
0 x 0

20 eV x 0

(a) Write the time-independent Schrödinger equation in the regions x 0 and x 0.

(b) Describe the shapes for x for x 0 and x 0.



4.11. EXERCISES 277

(c) Calculate the electron wavelength (in meters) in 20m x 10m and x 10m.

(d) Write down the boundary conditions at x 0.

(e) Calculate the ratio of the probabilities for finding the electron near x 10 10m and

x 0.

Exercise 4.4

A particle is moving in the potential well

V x

0 a x b
V0 b x b
0 b x a

elsewhere

where V0 is positive. In this problem consider E V0. Let 1 x and 2 x represent the two
lowest energy solutions of the Schrödinger equation; call their energies E1 and E2, respectively.
(a) Calculate E1 and E2 in units of eV for the case where mc2 1GeV, a 10 14m, and

b 0 4 10 14m; take hc 200MeV fm.

(b) A particular solution of the Schrödinger equation can be constructed by superposing

1 x ei E1t h and 2 x ei E2t h . Construct a wave packet which at t 0 is (almost) entirely

to the left-hand side of the well and describe its motion in time; find the period of oscillations

between the two terms of .

Exercise 4.5

A particle moves in the potential

V x
h2

2m

4

225
sinh2 x

2

5
cosh x

(a) Sketch V x and locate the position of the two minima.

(b) Show that x 1 4 cosh x exp 2
15
cosh x is a solution of the time-independent

Schrödinger equation for the particle. Find the corresponding energy level and indicate its

position on the sketch of V x .
(c) Sketch x and show that it has the proper behavior at the classical turning points and

in the classically forbidden regions.

Exercise 4.6

Show that for a particle of mass m which moves in a one-dimensional infinite potential well of
length a, the uncertainties product xn pn is given by xn pn n h 12.

Exercise 4.7

A particle of mass m is moving in an infinite potential well

V x
V0 0 x a

elsewhere

(a) Solve the Schrödinger equation and find the energy levels and the corresponding nor-

malized wave functions.

(b) Calculate X 5, P 5, X2 5, and P2 5 for the fourth excited state and infer the value
of x p.
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Exercise 4.8

Consider the potential step

V x
6 eV x 0

0 x 0

(a) An electron of energy 8 eV is moving from left to right in this potential. Calculate the

probability that the electron will (i) continue moving along its initial direction after reaching

the step and (ii) get reflected at the potential step.

(b) Now suppose the electron is moving from right to left with an energy 3 eV. (i) Estimate

the order of magnitude of the distance the electron can penetrate the barrier. (ii) Repeat part (i)

for a 70 kg person initially moving at 4m s 1 and running into a wall which can be represented

by a potential step of height equal to four times this person’s energy before reaching the step.

Exercise 4.9

Consider a system whose wave function at time t 0 is given by

x 0
5

50
0 x

4

50
1 x

3

50
2 x

where n x is the wave function of the nth excited state for a harmonic oscillator of energy
En h n 1 2 .

(a) Find the average energy of this system.

(b) Find the state x t at a later time t and the average value of the energy; compare the
result with the value obtained in (a).

(c)Find the expectation value of the operator X with respect to the state x t (i.e., find
x t X x t ).

Exercise 4.10

Calculate n X2 m and m X4 n in the N -representation; n and m are harmonic

oscillator states.

Exercise 4.11

Consider the dimensionless Hamiltonian H 1
2
P2 1

2
X2, with P id dx .

(a) Show that the wave functions 0 x e x2 2 and 1 x 2 xe x2 2 are

eigenfunctions of H with eigenvalues 1 2 and 3 2, respectively.
(b) Find the values of the coefficients and such that

2 x
1

2
x2 1 e x2 2 and 3 x

1

6
x 1 x2 e x2 2

are orthogonal to 0 x and 1 x , respectively. Then show that 2 x and 3 x are eigen-

functions of H with eigenvalues 5 2 and 7 2, respectively.

Exercise 4.12

Consider the dimensionless Hamiltonian H 1
2
P2 1

2
X2 (with P id dx) whose wave

function at time t 0 is given by

x 0
1

2
0 x

1

8
1 x

1

10
2 x
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where 0 x
1 e x2 2, 1 x

2 xe x2 2, and 2 x
1

2
2x2 1 e x2 2.

(a) Calculate xn pn for n 0 1 where xn n X2 n n X n
2.

(b) Calculate a† 0 x , a 0 x , a† 1 x , a 1 x , and a 2 x , where the operators a† and

a are defined by a X d dx 2 and a† X d dx 2.

Exercise 4.13

Consider a particle of mass m that is moving in a one-dimensional infinite potential well with
walls at x 0 and x a which is initially (i.e., at t 0) in the state

x 0
1

2
[ 1 x 3 x ]

where 1 x and 3 x are the ground and second excited states, respectively.
(a) What is the state vector x t for t 0 in the Schrödinger picture.

(b) Find the expectation values X , P , X2 , and P2 with respect to .

(c) Evaluate x p and verify that it satisfies the uncertainty principle.

Exercise 4.14

If the state of a particle moving in a one-dimensional harmonic oscillator is given by

1

17
0

3

17
1

2

17
2

3

17
3

where n represents the normalized nth energy eigenstate, find the expectation values of the
number operator, N , and of the Hamiltonian operator.

Exercise 4.15

Find the number of bound states and the corresponding energies for the finite square well po-

tential when (a) R 7 (i.e., ma2V0 2h2 7) and (b) R 3 .

Exercise 4.16

A ball of mass m 0 2 kg bouncing on a table located at z 0 is subject to the potential

V z
V0 z 0

mgz z 0

where V0 3 J and g is the acceleration due to gravity.
(a) Describe the spectrum of possible energies (i.e., continuous, discrete, or nonexistent) as

E increases from large negative values to large positive values.
(b) Estimate the order of magnitude for the lowest energy state.

(c) Describe the general shapes of the wave functions 0 z and 1 z corresponding to the
lowest two energy states and sketch the corresponding probability densities.

Exercise 4.17

Consider a particle of mass m moving in a one-dimensional harmonic oscillator potential, with

X h 2m a a† and P i mh 2 a† a .
(a) Calculate the product of the uncertainties in position and momentum for the particle in

the fifth excited state, i.e., X P 5.

(b) Compare the result of (a) with the uncertainty product when the particle is in its lowest

energy state. Explain why the two uncertainty products are different.
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Exercise 4.18

A particle of mass m in an infinite potential well of length a has the following initial wave
function at t 0:

x 0
2

7a
sin

x

a

6

7a
sin

2 x

a

2

7a
sin

3 x

a

(a) If we measure energy, what values will we find and with what probabilities? Calculate

the average energy.

(b) Find the wave function x t at any later time t . Determine the probability of finding
the particle at a time t in the state x t 1 a sin 3 x a exp i E3t h .
(c) Calculate the probability density x t and the current density J x t . Verify that
t J x t 0.

Exercise 4.19

Consider a particle in an infinite square well whose wave function is given by

x
Ax a2 x2 0 x a
0 elsewhere

where A is a real constant.
(a) Find A so that x is normalized.
(b) Calculate the position andmomentum uncertainties, x and p, and the product x p.
(c) Calculate the probability of finding 52 2h2 2ma2 for a measurement of the energy.

Exercise 4.20

The relativistic expression for the energy of a free particle is E2 m20 c
4 p2 c2.

(a) Write down the corresponding relativistic Schrödinger equation, by quantizing this en-

ergy expression (i.e., replacing E and p with their corresponding operators). This equation is
called the Klein–Gordon equation.

(b) Find the solutions corresponding to a free particle moving along the x-axis.

Exercise 4.21

(a) Write down the classical (gravitational) energy Ec of a particle of massm at rest a height
h0 above the ground (take the zero potential energy to be located at the ground level).
(b) Use the uncertainty principle to estimate the ground state energy E0 of the particle

introduced in (a); note that the particle is subject to gravity. Compare E0 to Ec.
(c) If h0 3m obtain the numerical values of Ec and the quantum mechanical correc-

tion E0 Ec for a neutron and then for a particle of mass m 0 01 kg. Comment on the

importance of the quantum correction in both cases.

Exercise 4.22

Find the energy levels and the wave functions of two noninteracting particles of masses m1 and
m2 that are moving in a common infinite square well potential

V xi
0 0 xi a

elsewhere

where xi is the position of the ith particle (i.e., xi denotes x x1 or x2).
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Exercise 4.23

A particle of mass m is subject to a repulsive delta potential V x V0 x , where V0 0 (V0
has the dimensions of Energy Distance). Find the reflection and transmission coefficients, R
and T .

Exercise 4.24

A particle of mass m is scattered by a double-delta potential V x V0 x a V0 x a ,
where V0 0.

(a) Find the transmission coefficient for the particle at an energy E 0.

(b) When V0 is very large (i.e., V0 ), find the energies corresponding to the resonance

case (i.e., T 1) and compare themwith the energies of an infinite square well potential having

a width of 2a.

Exercise 4.25

A particle of mass m is subject to an antisymmetric delta potential V x V0 x a
V0 x a , where V0 0.

(a) Show that there is always one and only one bound state, and find the expression that

gives its energy.

(b) Find the transmission coefficient T .

Exercise 4.26

A particle of mass m is subject to a delta potential

V x
x 0

V0 x a x 0

where V0 0.

(a) Find the wave functions corresponding to the cases 0 x a and x a.
(b) Find the transmission coefficient.

Exercise 4.27

A particle of mass m, besides being confined to move in an infinite square well potential of size
2a with walls at x a and x a, is subject to an attractive delta potential

V x
V0 x a x a

elsewhere

where V0 0.

(a) Find the particle’s wave function corresponding to even solutions when E 0.

(b) Find the energy levels corresponding to even solutions.

Exercise 4.28

A particle of mass m, besides being confined to move in an infinite square well potential of size
2a with walls at x a and x a, is subject to an attractive delta potential

V x
V0 x a x a

elsewhere

where V0 0.

(a) Find the particle’s wave function corresponding to odd solutions when E 0.

(b) Find the energy levels corresponding to odd solutions.
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Exercise 4.29

Consider a particle of mass m that is moving under the influence of an attractive delta potential

V x
V0 x x a

x a

where V0 0. Discuss the existence of bound states in terms of V0 and a.

Exercise 4.30

Consider a system of two identical harmonic oscillators (with an angular frequency ).

(a) Find the energy levels when the oscillators are independent (non-interacting).

(b) Find the energy levels when the oscillators are coupled by an interaction X1X2,
where is a constant.

(c) Assuming that m 2 (weak coupling limit), find an approximate value to first order

in m 2 for the energy expression derived in part (b).

Exercise 4.31

A particle is initially in its ground state in an infinite one-dimensional potential box with sides

at x 0 and x a. If the wall of the box at x a is suddenly moved to x 3a, calculate the
probability of finding the particle in

(a) the ground state of the new box and

(b) the first excited state of the new box.

(c) Now, calculate the probability of finding the particle in the first excited state of the new

box, assuming the particle was initially in the first excited state of the old box.

Exercise 4.32

A particle is initially in its ground state in a one-dimensional harmonic oscillator potential,

V x 1
2
kx2. If the spring constant is suddenly doubled, calculate the probability of finding

the particle in the ground state of the new potential.

Exercise 4.33

Consider an electron in an infinite potential well

V x
0 0 x a

elsewhere

where a 10 10m.

(a) Calculate the energy levels of the three lowest states (the results should be expressed in

eV) and the corresponding wavelengths of the electron.

(b) Calculate the frequency of the radiation that would cause the electron to jump from the

ground to the third excited energy level.

(c) When the electron de-excites, what are the frequencies of the emitted photons?

(d) Specify the probability densities for all these three states and plot them.

Exercise 4.34

Consider an electron which is confined to move in an infinite square well of width a 10 10m.
(a) Find the exact energies of the 11 lowest states (express them in eV).

(b) Solve the Schrödinger equation numerically and find the energies of the 11 lowest states
and compare them with the exact results obtained in (a). Plot the wave functions of the five

lowest states.


