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POINTS TO PONDER

1. The path length traversed by an object between two points is, in general, not the same
as the magnitude of displacement. The displacement depends only on the end points;
the path length (as the name implies) depends on the actual path. In one dimension,
the two quantities are equal only if the object does not change its direction during the
course of motion. In all other cases, the path length is greater than the magnitude of
displacement.

2. In view of point 1 above, the average speed of an object is greater than or equal to the
magnitude of the average velocity over a given time interval. The two are equal only if
the path length is equal to the magnitude of displacement.

3. The origin and the positive direction of an axis are a matter of choice. You should first
specify this choice before you assign signs to quantities like displacement, velocity
and acceleration.

4. 1If a particle is speeding up, acceleration is in the direction of velocity; if its speed is
decreasing, acceleration is in the direction opposite to that of the velocity. This
statement is independent of the choice of the origin and the axis.

5. The sign of acceleration does not tell us whether the particle’s speed is increasing or
decreasing. The sign of acceleration (as mentioned in point 3) depends on the choice
of the positive direction of the axis. For example, if the vertically upward direction is
chosen to be the positive direction of the axis, the acceleration due to gravity is
negative. If a particle is falling under gravity, this acceleration, though negative,
results in increase in speed. For a particle thrown upward, the same negative
acceleration (of gravity) results in decrease in speed.

6. The zero velocity of a particle at any instant does not necessarily imply zero acceleration
at that instant. A particle may be momentarily at rest and yet have non-zero
acceleration. For example, a particle thrown up has zero velocity at its uppermost
point but the acceleration at that instant continues to be the acceleration due to
gravity.

7. In the kinematic equations of motion [Eq. (3.11)], the various quantities are algebraic,
i.e. they may be positive or negative. The equations are applicable in all situations
(for one dimensional motion with constant acceleration) provided the values of different
quantities are substituted in the equations with proper signs.

8. The definitions of instantaneous velocity and acceleration (Eqs. (3.3) and (3.5)) are
exact and are always correct while the kinematic equations (Eq. (3.11)) are true only
for motion in which the magnitude and the direction of acceleration are constant
during the course of motion.

EXERCISES

3.1 In which of the following examples of motion, can the body be considered
approximately a point object:
(a) a railway carriage moving without jerks between two stations.
(b) a monkey sitting on top of a man cycling smoothly on a circular track.
(c) a spinning cricket ball that turns sharply on hitting the ground.
(d) a tumbling beaker that has slipped off the edge of a table.

3.2 The position-time (x-t) graphs for two children A and B returning from their school
O to their homes P and Q respectively are shown in Fig. 3.19. Choose the correct
entries in the brackets below ;

(a) (A/B) lives closer to the school than (B/A)

(b) (A/B) starts from the school earlier than (B/A)
(c) (A/B) walks faster than (B/A)

(d) A and B reach home at the (same/different) time
(e) (A/B) overtakes (B/A) on the road (once/twice).
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A woman starts from her home at 9.00 am, walks with a speed of 5 km hlona
straight road up to her office 2.5 km away, stays at the office up to 5.00 pm, and
returns home by an auto with a speed of 25 km h~L. Choose suitable scales and
plot the x-t graph of her motion.

A drunkard walking in a narrow lane takes 5 steps forward and 3 steps backward,
followed again by 5 steps forward and 3 steps backward, and so on. Each step is 1
m long and requires 1 s. Plot the x-t graph of his motion. Determine graphically
and otherwise how long the drunkard takes to fall in a pit 13 m away from the
start.

A jet airplane travelling at the speed of 500 km h! ejects its products of combustion
at the speed of 1500 km h~1 relative to the jet plane. What is the speed of the
latter with respect to an observer on the ground ?

A car moving along a straight highway with speed of 126 km hlis brought to a
stop within a distance of 200 m. What is the retardation of the car (assumed
uniform), and how long does it take for the car to stop ?

Two trains A and B of length 400 m each are moving on two parallel tracks with a
uniform speed of 72 km h~! in the same direction, with A ahead of B. The driver of
B decides to overtake A and accelerates by 1 m s?. If after 50 s, the guard of B just
brushes past the driver of A, what was the original distance between them ?

On a two-lane road, car A is travelling with a speed of 36 km h~L. Two cars B and
C approach car A in opposite directions with a speed of 54 km h~1 each. At a
certain instant, when the distance AB is equal to AC, both being 1 km, B decides
to overtake A before C does. What minimum acceleration of car B is required to
avoid an accident ?

Two towns A and B are connected by a regular bus service with a bus leaving in
either direction every T minutes. A man cycling with a speed of 20 km h~!in the
direction A to B notices that a bus goes past him every 18 min in the direction of
his motion, and every 6 min in the opposite direction. What is the period T of the
bus service and with what speed (assumed constant) do the buses ply on the
road?

A player throws a ball upwards with an initial speed of 29.4 m s™'.

(a) What is the direction of acceleration during the upward motion of the ball ?

(b) What are the velocity and acceleration of the ball at the highest point of its
motion ?

(c) Choose the x =0 m and t = O s to be the location and time of the ball at its
highest point, vertically downward direction to be the positive direction of
x-axis, and give the signs of position, velocity and acceleration of the ball
during its upward, and downward motion.

(d) To what height does the ball rise and after how long does the ball return to the
player’'s hands ? (Take g = 9.8 m s and neglect air resistance).

PHYSICS
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3.11 Read each statement below carefully and state with reasons and examples, if it is
true or false ;
A particle in one-dimensional motion
(a) with zero speed at an instant may have non-zero acceleration at that instant
(b) with zero speed may have non-zero velocity,
(c) with constant speed must have zero acceleration,
(d) with positive value of acceleration must be speeding up.

3.12  Aball is dropped from a height of 90 m on a floor. At each collision with the floor,
the ball loses one tenth of its speed. Plot the speed-time graph of its motion
between t =0 to 12 s.

3.13  Explain clearly, with examples, the distinction between :

(a) magnitude of displacement (sometimes called distance) over an interval of time,
and the total length of path covered by a particle over the same interval;

(b) magnitude of average velocity over an interval of time, and the average speed
over the same interval. [Average speed of a particle over an interval of time is
defined as the total path length divided by the time interval]. Show in both (a)
and (b) that the second quantity is either greater than or equal to the first.
When is the equality sign true ? [For simplicity, consider one-dimensional
motion only].

3.14 A man walks on a straight road from his home to a market 2.5 km away with a
speed of 5 km h1. Finding the market closed, he instantly turns and walks back
home with a speed of 7.5 km h~1. What is the
(a) magnitude of average velocity, and
(b) average speed of the man over the interval of time (i) O to 30 min, (i) O to

50 min, (iii) O to 40 min ? [Note: You will appreciate from this exercise why it
is better to define average speed as total path length divided by time, and not
as magnitude of average velocity. You would not like to tell the tired man on
his return home that his average speed was zero !|

3.15 In Exercises 3.13 and 3.14, we have carefully distinguished between average speed
and magnitude of average velocity. No such distinction is necessary when we
consider instantaneous speed and magnitude of velocity. The instantaneous speed
is always equal to the magnitude of instantaneous velocity. Why ?

3.16 Look at the graphs (a) to (d) (Fig. 3.20) carefully and state, with reasons, which of
these cannot possibly represent one-dimensional motion of a particle.
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Fig. 3.20
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3.19

Figure 3.21 shows the x-t plot of one-dimensional
motion of a particle. Is it correct to say from the
graph that the particle moves in a straight line for
t <0 and on a parabolic path for ¢t >0 ? If not, suggest
a suitable physical context for this graph.

A police van moving on a highway with a speed of
30 km h'! fires a bullet at a thief's car speeding away
in the same direction with a speed of 192 km h. If
the muzzle speed of the bullet is 150 m s, with
what speed does the bullet hit the thief's car ? (Note:
Obtain that speed which is relevant for damaging
the thief's car).

Suggest a suitable physical situation for each of the
following graphs (Fig 3.22):
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(c)

Figure 3.23 gives the x-t plot of a particle executing one-dimensional simple
harmonic motion. (You will learn about this motion in more detail in Chapter14).
Give the signs of position, velocity and acceleration variables of the particle at

t=0.8s,1.2s, -12s.

Fig. 3.23

Figure 3.24 gives the x-t plot of a
particle in one-dimensional motion.
Three different equal intervals of time
are shown. In which interval is the
average speed greatest, and in which
is it the least ? Give the sign of average
velocity for each interval.

v

Fig. 3.24
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3.22  Figure 3.25 gives a speed-time graph of
a particle in motion along a constant
direction. Three equal intervals of time
are shown. In which interval is the
average acceleration greatest in
magnitude ? In which interval is the
average speed greatest ? Choosing the
positive direction as the constant
direction of motion, give the signs of v
and a in the three intervals. What are
the accelerations at the points A, B, C
and D ?

Additional Exercises

3.23 A three-wheeler starts from rest, accelerates uniformly with 1 m s2 on a straight
road for 10 s, and then moves with uniform velocity. Plot the distance covered by
the vehicle during the n* second (n = 1,2,3....) versus n. What do you expect this
plot to be during accelerated motion : a straight line or a parabola ?

3.24 A boy standing on a stationary lift (open from above) throws a ball upwards with
the maximum initial speed he can, equal to 49 m s™'. How much time does the ball
take to return to his hands? If the lift starts moving up with a uniform speed of
5 m s! and the boy again throws the ball up with the maximum speed he can, how
long does the ball take to return to his hands ?

3.25 Ona lqulg horizontally moving belt (Fig. 3.26), a child runs to and fro with a speed
9kmh (with respect to the belt) between his father and mother located 50 m apart
on the moving belt. The belt moves with a speed of 4 km h'. For an observer on a
stationary platform outside, what is the
(a) speed of the child running in the direction of motion of the belt ?.

(b) speed of the child running opposite to the direction of motion of the belt ?
(c) time taken by the child in (a) and (b) ?
Which of the answers alter if motion is viewed by one of the parents ?

Moving belt » 4 km/h

i

)

F  Child M
Stationary observer

Fig. 3.26

3.26  Two stones are thrown up simultaneously from the edge of a cliff 200 m high with
initial speeds of 15 m s and 30 m s'. Verify that the graph shown in Fig. 3.27
correctly represents the time variation of the relative position of the second stone
with respect to the first. Neglect air resistance and assume that the stones do not
rebound after hitting the ground. Take g = 10 m s2. Give the equations for the
linear and curved parts of the plot.
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3.27 The speed-time graph of a particle moving along a fixed direction is shown in
Fig. 3.28. Obtain the distance traversed by the particle between (a) t=0 s to 10 s,
b)t=2sto6s.
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Fig. 3.28

What is the average speed of the particle over the intervals in (a) and (b) ?

3.28 The velocity-time graph of a particle in one-dimensional motion is shown in
Fig. 3.29:
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Fig. 3.29

Which of the following formulae are correct for describing the motion of the particle

over the time-interval t_ to t2:

(@) x(t,) =x(t)+v(t) ({t,—t)+() a(t,—t)

(b) v(t,) =v(t)+al(t,-t)

(C) Upporgge = (xlt) = x(t )/ (t,~ t))

() Ao = 00E) = (L )/ (E,~ )

(e] x(t2) = X{tl) + Uauerage (t2_ tl) + (1/2) aaverage {tz_ t1)2

(§i] x(t,) — x(t)) = area under the v-t curve bounded by the t-axis and the dotted line
shown.
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APPENDIX 3.1: ELEMENTS OF CALCULUS
Differential Calculus

Using the concept of ‘differential coefficient’ or ‘derivative’, we can easily define velocity and
acceleration. Though you will learn in detail in mathematics about derivatives, we shall introduce
this concept in brief in this Appendix so as to facilitate its use in describing physical quantitics
involved in motion.

Suppose we have a quantity y whose value depends upon a single variable x, and is expressed
by an equation defining y as some specific function of x. This is represented as:

y=/ (1)

This relationship can be visualised by drawing a graph of function y = f(xJ regarding y and x as
Cartesian coordinates, as shown in Fig. 3.30 (a).

A y — f(x) A

X 0 X x
(b)

Fig. 3.30

Consider the point P on the curve y = f(x) whose coordinates are (x, y) and another point Q
where coordinates are (x + Ax, y + Ay). The slope of the line joining P and Q is given by:

_Ay _+ay)-y
tanQ—E—T (2]

Suppose now that the point Q moves along the curve towards P. In this process, Ay and Ax

decrease and approach zero; though their ratio & will not necessarily vanish. What happens
Ax

to the line PQ as Ay— 0, Ax— 0. You can see that this line becomes a tangent to the curve at
point P as shown in Fig. 3.30(b). This means that tan 6 approaches the slope of the tangent at
P, denoted by m:

m= limA—y: hm—(y+Ay)—y

Ax-0 Ax A0 Ax
The limit of the ratio Ay/Ax as Ax approaches zero is called the derivative of y with respect to x
and is written as dy/dx. It represents the slope of the tangent line to the curve y = f(xJ at the
point (x, y).
Since y = f(» and y + Ay =_f(x + A, we can write the definition of the derivative as:

dy _df0) _ o Ay [f(x+Ax)—f(x)}

3)

dx ~ dx  A&x50Ax  Ax—0 Ax
Given below are some elementary formulae for derivatives of functions. In these u (x and v (¥
represent arbitrary functions of x, and a and b denote constant quantities that are independent

of x. Derivatives of some common functions are also listed .

61
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In terms of derivatives, instantaneous velocity and acceleration are defined as

v lim & _dx
T At—0 At T dt
a = 1m

At=0 AL

Integral Calculus

Av_dv_ d’x
dt de?

You are familiar with the notion of area. The formulae for areas of simple geometrical figures are
also known to you. For example, the area of a rectangle is length times breadth and that of a
triangle is half of the product of base and height. But how to deal with the problem of determination
of area of an irregular figure? The mathematical notion of integral is necessary in connection with
such problems.

Let us take a concrete example. Suppose a variable force f(x) acts on a particle in its motion

along x - axis from x =a to x=b. The problem is to determine the work done (W) by the force on the
particle during the motion. This problem is discussed in detail in Chapter 6.

Figure 3.31 shows the variation of F(x) with x. If the force were constant, work would be simply

the area F(b-a) as shown in Fig. 3.31(i). But in the general case, force is varying .

F(x)

A

(1)

(ii)

><V
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To calculate the area under this curve [Fig. 3.31 (ii)], let us employ the following trick. Divide the
interval on x-axis from a to b into a large number (N) of small intervals: x,(=a) to x;, x; to x,; x, to x;,
................................ Xy.1 to Xy (=b). The area under the curve is thus divided into N strips. Each strip
is approximately a rectangle, since the variation of F{x) over a strip is negligible. The area of the i
strip shown [Fig. 3.31(ii)] is then approximately

AA; = Flx) b —x; ) = Flog)Ax

where Ax is the width of the strip which we have taken to be the same for all the strips. You may
wonder whether we should put F(x; ;) or the mean of Flx) and Flx, ;) in the above expression. If we
take N to be very very large (N—e), it does not really matter, since then the strip will be so thin that
the difference between Fl(x) and Flx; ;) is vanishingly small. The total area under the curve then is:

N N
A= ZAAi = ZF(xi)Ax
i=1 i=1

The limit of this sum as N— is known as the integral of F{x) over x from a to b. It is given a special
symbol as shown below:

b
A= JF(x)dx

The integral sign J looks like an elongated S, reminding us that it basically is the limit of the sum

of an infinite number of terms.
A most significant mathematical fact is that integration is, in a sense, an inverse of differentiation.

dg(x)
dx

Suppose we have a function g (x) whose derivative is f(, i.e. S =

The function g (x) is known as the indefinite integral of f(» and is denoted as:

gl = j Sx)elx

An integral with lower and upper limits is known as a definite integral. Itis a number. Indefinite
integral has no limits; it is a function.

A fundamental theorem of mathematics states that

b
[ readx =gt [} = gt6) - gta

a
As an example, suppose f(x) = x* and we wish to determine the value of the definite integral from
x =1 to x=2. The function g (1 whose derivative is xX’is ¥3/3. Therefore,

3 |2

2 g X
xdx—3

—— o

1

Clearly, to evaluate definite integrals, we need to know the corresponding indefinite integrals. Some
common indefinite integrals are



64 PHYSICS

'[x”dx = ;CJF N (n=-1)
J(%)dx:Inx (x>0

jsinx dx =-cosx jcosx dx =sin x
jexdx:ex

This introduction to differential and integral calculus is not rigorous and is intended to convey to
you the basic notions of calculus.
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4.1 INTRODUCTION

In the last chapter we developed the concepts of position,
displacement, velocity and acceleration that are needed to
describe the motion of an object along a straight line. We
found that the directional aspect of these quantities can be
taken care of by + and - signs, as in one dimension only two
directions are possible. But in order to describe motion of an
object in two dimensions (a plane) or three dimensions
(space), we need to use vectors to describe the above-
mentioned physical quantities. Therefore, it is first necessary
to learn the language of vectors. What is a vector? How to
add, subtract and multiply vectors ? What is the result of
multiplying a vector by a real number ? We shall learn this
to enable us to use vectors for defining velocity and
acceleration in a plane. We then discuss motion of an object
in a plane. As a simple case of motion in a plane, we shall
discuss motion with constant acceleration and treat in detail
the projectile motion. Circular motion is a familiar class of
motion that has a special significance in daily-life situations.
We shall discuss uniform circular motion in some detail.
The equations developed in this chapter for motion in a
plane can be easily extended to the case of three dimensions.

4.2 SCALARS AND VECTORS

In physics, we can classify quantities as scalars or
vectors. Basically, the difference is that a direction is
associated with a vector but not with a scalar. A scalar
quantity is a quantity with magnitude only. It is specified
completely by a single number, along with the proper
unit. Examples are : the distance between two points,
mass of an object, the temperature of a body and the
time at which a certain event happened. The rules for
combining scalars are the rules of ordinary algebra.
Scalars can be added, subtracted, multiplied and divided
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just as the ordinary numbers*. For example,
if the length and breadth of a rectangle are
1.0 m and 0.5 m respectively, then its
perimeter is the sum of the lengths of the
four sides, 1.0 m +0.5m+1.0 m + 0.5 m =
3.0 m. The length of each side is a scalar
and the perimeter is also a scalar. Take
another example: the maximum and
minimum temperatures on a particular day
are 35.6 °C and 24.2 °C respectively. Then,
the difference between the two temperatures
is 11.4 °C. Similarly, if a uniform solid cube
of aluminium of side 10 cm has a mass of
2.7 kg, then its volume is 10°® m?® (a scalar)
and its density is 2.7x10°% kg m® (a scalar).

Avector quantity is a quantity that has both
a magnitude and a direction and obeys the
triangle law of addition or equivalently the
parallelogram law of addition. So, a vector is
specified by giving its magnitude by a number
and its direction. Some physical quantities that
are represented by vectors are displacement,
velocity, acceleration and force.

To represent a vector, we use a bold face type
in this book. Thus, a velocity vector can be
represented by a symbol v. Since bold face is
difficult to produce, when written by hand, a
vector is often represented by an arrow placed

over a letter, say v. Thus, both v and v
represent the velocity vector. The magnitude of
a vector is often called its absolute value,
indicated by lvl = v. Thus, a vector is
represented by a bold face,e.g. by A, a, p, q, T, ...
X, y, with respective magnitudes denoted by light
face A, a,p,q, 1, ... x, y.

4.2.1 Position and Displacement Vectors

To describe the position of an object moving in
a plane, we need to choose a convenient point,
say O as origin. Let P and P’ be the positions of
the object at time tand t, respectively [Fig. 4.1(a)].
We join O and P by a straight line. Then, OP is
the position vector of the object at time t. An
arrow is marked at the head of this line. It is
represented by a symbol r, i.e. OP =r. Point P’ is

represented by another position vector, OP’
denoted by r’. The length of the vector r
represents the magnitude of the vector and its
direction is the direction in which P lies as seen
from O. If the object moves from P to P’, the
vector PP’ (with tail at P and tip at P’) is called
the displacement vector corresponding to
motion from point P (at time {) to point P’ (at time t).

y/\ F
y
P’ D Q
P
E
r’ B
I
P
O > O A >
X X
(a) (b)
Fig. 4.1 (a) Position and displacement vectors.

(b) Displacement vector P@ and different
courses of motion.

It is important to note that displacement
vector is the straight line joining the initial and
final positions and does not depend on the actual
path undertaken by the object between the two
positions. For example, in Fig. 4.1b, given the
initial and final positions as P and Q, the
displacement vector is the same P@ for different
paths of journey, say PABCQ, PDQ, and PBEFQ.
Therefore, the magnitude of displacement is
either less or equal to the path length of an
object between two points. This fact was
emphasised in the previous chapter also while
discussing motion along a straight line.

4.2.2 Equality of Vectors

Two vectors A and B are said to be equal if, and
only if, they have the same magnitude and the
same direction.**

Figure 4.2(a) shows two equal vectors A and
B. We can easily check their equality. Shift B
parallel to itself until its tail Q coincides with that
of A, i.e. Q coincides with O. Then, since their
tips S and P also coincide, the two vectors are
said to be equal. In general, equality is indicated

* Addition and subtraction of scalars malke sense only for quantities with same units. However, you can multiply

and divide scalars of different units.

** In our study, vectors do not have fixed locations. So displacing a vector parallel to itself leaves the vector
unchanged. Such vectors are called free vectors. However, in some physical applications, location or line of
application of a vector is important. Such vectors are called localised vectors.
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Fig. 4.2 (a) Two equal vectors A and B. (b) Two
vectors A’ and B’ are unequal though they
are of the same length.

as A = B. Note that in Fig. 4.2(b), vectors A’ and
B’ have the same magnitude but they are not
equal because they have different directions.
Even if we shift B’ parallel to itself so that its tail
Q’ coincides with the tail O’ of A/, the tip S’ of B
does not coincide with the tip P’ of A’.

4.3 MULTIPLICATION OF VECTORS BY REAL
NUMBERS

Multiplying a vector A with a positive number A
gives a vector whose magnitude is changed by
the factor A but the direction is the same as that
ofA:

Al =2 |A] ifaso.

For example, if A is multiplied by 2, the resultant
vector 2A is in the same direction as A and has
amagnitude twice of 1Al as shown in Fig. 4.3(a).

Multiplying a vector A by a negative number
A gives a vector AA whose direction is opposite
to the direction of A and whose magnitude is
—A times |Al.

Multiplying a given vector A by negative
numbers, say -1 and -1.5, gives vectors as
shown in Fig 4.3(b).

A~
p——
(a) (b)

Fig. 4.3 (a) Vector A and the resultant vector after
multiplying A by a positive number 2.
(b) Vector A and resultant vectors after
multiplying it by a negative number —1
and —1.5.

The factor A by which a vector A is multiplied
could be a scalar having its own physical
dimension. Then, the dimension of A A is the
product of the dimensions of A and A. For
example, if we multiply a constant velocity vector
by duration (of time), we get a displacement
vector.

4.4 ADDITION AND SUBTRACTION OF
VECTORS — GRAPHICAL METHOD

As mentioned in section 4.2, vectors, by
definition, obey the triangle law or equivalently,
the parallelogram law of addition. We shall now
describe this law of addition using the graphical
method. Let us consider two vectors A and B that
lie in a plane as shown in Fig. 4.4(a). The lengths
of the line segments representing these vectors
are proportional to the magnitude of the vectors.
To find the sum A + B, we place vector B so that
its tail is at the head of the vector A, as in
Fig. 4.4(b). Then, we join the tail of A to the head
of B. This line OQ represents a vector R, that is,
the sum of the vectors A and B. Since, in this
procedure of vector addition, vectors are

() (b)
Q A
%
= B
+
° A
C
(c) (d)

Fig. 4.4 (a) Vectors A and B. (b) Vectors A and B
added graphically. (c) Vectors B and A
added graphically. (d) Illustrating the
associative law of vector addition.
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arranged head to tail, this graphical method is
called the head-to-tail method. The two vectors
and their resultant form three sides of a triangle,
so this method is also known as triangle method
of vector addition. If we find the resultant of
B + A as in Fig. 4.4(c), the same vector R is
obtained. Thus, vector addition is commutative:

A+B=B+A 4.1)

The addition of vectors also obeys the associative
law as illustrated in Fig. 4.4(d). The result of
adding vectors A and B first and then adding
vector C is the same as the result of adding B
and C first and then adding vector A :

A+B)+C=A+B+C) 4.2)

What is the result of adding two equal and
opposite vectors ? Consider two vectors A and
—-A shown in Fig. 4.3(b). Their sum is A + (-A).
Since the magnitudes of the two vectors are the
same, but the directions are opposite, the
resultant vector has zero magnitude and is
represented by O called a null vector or a zero
vector:

A-A=0 01=0 (4.3)
Since the magnitude of a null vector is zero, its
direction cannot be specified.

The null vector also results when we multiply
a vector A by the number zero. The main
properties of O are :

A+0=A
L0=0
0OA=0 4.4)
/
B
B

(@)

What is the physical meaning of a zero vector?
Consider the position and displacement vectors
in a plane as shown in Fig. 4.1(a). Now suppose
that an object which is at P at time t, moves to
P’ and then comes back to P. Then, what is its
displacement? Since the initial and final
positions coincide, the displacement is a “null
vector”.

Subtraction of vectors can be defined in terms
of addition of vectors. We define the difference
of two vectors A and B as the sum of two vectors
Aand -B:

A-B=A+(-B) (4.5)

It is shown in Fig 4.5. The vector -B is added to
vector Ato get R = (A-B). The vectorR =A +B
is also shown in the same figure for comparison.
We can also use the parallelogram method to
find the sum of two vectors. Suppose we have
two vectors A and B. To add these vectors, we
bring their tails to a common origin O as
shown in Fig. 4.6(a). Then we draw a line from
the head of A parallel to B and another line from
the head of B parallel to A to complete a
parallelogram OQSP. Now we join the point of
the intersection of these two lines to the origin
O. The resultant vector R is directed from the
common origin O along the diagonal (OS) of the
parallelogram [Fig. 4.6(b)]. In Fig.4.6(c), the
triangle law is used to obtain the resultant of A
and B and we see that the two methods yield the
same result. Thus, the two methods are
equivalent.

(b)

Fig. 4.5 (a) Two vectors A andB, - B is also shown. (b) Subtracting vector B from vector A - the result isR,,. For
comparison, addition of vectors A and B, i.e. R is also shown.
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Fig. 4.6 (a) Two vectors A and B with their tails brought to a common origin. (b) The sum A + B obtained using
the parallelogram method. (c) The parallelogram method of vector addition is equivalent to the triangle

method.

P Example 4.1 Rain is falling vertically with
aspeed of 35 m s'. Winds starts blowing
after sometime with a speed of 12 m s in
east to west direction. In which direction
should a boy waiting at a bus stop hold
his umbrella ?

Vw

Fig. 4.7

Answer The velocity of the rain and the wind
are represented by the vectorsv_and v_in  Fig.
4.7 and are in the direction specified by the
problem. Using the rule of vector addition, we
see that the resultant of v_and v_ is R as shown
in the figure. The magnitude of R is

R=\/vr2+vi =x/852+122 ms ' =37ms

The direction 6 that R makes with the vertical
is given by
v 12

tanf=—=—=0.343
v, 35
Or, ¢ =tan '(0.343)=19°

Therefore, the boy should hold his umbrella
in the vertical plane at an angle of about 19°
with the vertical towards the east. |

4.5 RESOLUTION OF VECTORS

Let a and b be any two non-zero vectors in a
plane with different directions and let A be
another vector in the same plane(Fig. 4.8). A can
be expressed as a sum of two vectors — one
obtained by multiplying a by a real number and
the other obtained by multiplying b by another
real number. To see this, let O and P be the tail
and head of the vector A. Then, through O, draw
a straight line parallel to a, and through P, a
straight line parallel to b. Let them intersect at
Q. Then, we have

A=OP =0Q + QP (4.6)

But since O@ is parallel to a, and @P is parallel
to b, we can write :

O0g@=1a,and @P=ub 4.7)
where A and p are real numbers.
Therefore, A=A1a+ub 4.8

P
N\
A ub
T 0
Aa Q
(b)

(@)

Fig. 4.8 (a) Two non-colinear vectors a and b.
(b) Resolving a vector A in terms of vectors
a andb.

We say that A has been resolved into two
component vectors Aa and ub along a and b
respectively. Using this method one can resolve
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a given vector into two component vectors along
a set of two vectors —all the three lie in the same
plane. It is convenient to resolve a general vector
along the axes of a rectangular coordinate
system using vectors of unit magnitude. These
are called unit vectors that we discuss now.

Unit vectors: A unit vector is a vector of unit
magnitude and points in a particular direction.
It has no dimension and unit. It is used to specify
a direction only. Unit vectors along the x-, y-
and z-axes of a rectangular coordinate system

are denoted by i, j and k, respectively, as

shown in Fig. 4.9(a).

Since these are unit vectors, we have

[il=15=

These unit vectors are perpendicular to each
other. In this text, they are printed in bold face
with a cap (#) to distinguish them from other
vectors. Since we are dealing with motion in two

| &|=1 4.9)

dimensions in this chapter, we require use of

only two unit vectors. If we multiply a unit vector,
say n by a scalar, the result is a vector

A=A1N . Ingeneral, a vector A can be written as
A=1Aln 4.10)

where n is a unit vector along A.

PHYSICS
and A, is parallel to 3 we have :
A=A, A=A j (4.11)
where A and Ay are real numbers.
Thus, A=A_i+A j 4.12)

This is represented in Fig. 4.9(c). The quantities
A, and Ay are called x-, and y-components of the
vector A. Note that A is itself not a vector, but

A_1i is a vector, and so is A, 3 Using simple
trigonometry, we can express A and A interms
of the magnitude of A and the angle 6 it makes
with the x-axis :

AX =Acos 0
Ay =Asin 6 4.13)

As is clear from Eq. (4.13), a component of a
vector can be positive, negative or zero
depending on the value of 6.

Now, we have two ways to specify a vector A
in a plane. It can be specified by :
() its magnitude Aand the direction 6 it makes

with the x-axis; or

(i) its components A and A
If Aand @ are given, A and A can be obtained

using Eq. (4.13). If A_ and A, are given, Aand 6
can be obtained as follows :

We can now resolve a vector A in terms A,Zc + Aj = A%cos”6+ A%sin”’0
of component vectors that liec along unit vectors = A2
i and 3 Consider a vector A that lies in xy 2 2
Or, A=, AZ+ A 4.14
plane as shown in Fig. 4.9(b). We draw lines from 8 o ( )
the head of A perpendicular to the coordinate A
axes as in Fig. 4.9(b), and get vectors A, and A, And tan 0 = —2 . 9 = tan 1 -2 (4.15)
such that A, + A, = A. Since A is parallel to i Ax Ax '
ya ya ya
AN TS h AN T |
A A i A A i
A 4y A A4y} !
O J AT > O >E > 9 AE S
A A -
N 1 X A X o A x/i\ X
k
(2) (b) (c)

z

Fig. 4.9 (a) Unit vectors 1 , J and klle along the x-, y-, and z-axes. (b) A vector A is resolved into its
components A and A, along x-, and y- axes. (c) A, and A, expressed in terms of iand j.
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So far we have considered a vector lying in
an x-y plane. The same procedure can be used
to resolve a general vector A into three
components along x-, y-, and z-axes in three
dimensions. If &, B, and Y are the angles™®

between A and the x-, y-, and z-axes, respectively
Fig. 4.9(d), we have

Ny

Fig. 4.9 (d) A vector A resolved into components along

x-, y-, and z-axes

A, =Acosa, A, =Acos B. A, =Acosy (4.16a)
In general, we have

A=Ai+Aj+AK (4.16b)
The magnitude of vector A is

A= AL+ A%+ A (4.160)
A position vector r can be expressed as

r=xi+yj+zk (4.17)

where x, y, and z are the components of r along
Xx-, Y-, z-axes, respectively.

4.6 VECTOR ADDITION - ANALYTICAL
METHOD

Although the graphical method of adding vectors
helps us in visualising the vectors and the
resultant vector, it is sometimes tedious and has
limited accuracy. It is much easier to add vectors
by combining their respective components.
Consider two vectors A and B in x-y plane with
components A, A and B, B :

A
.

A=Ad+Aj 4.18)

71
B=B,i+B,j
Let R be their sum. We have
R=A+B
= (Axi+ij)+(Bxi+Byj) (4.19a)

Since vectors obey the commutative and
associative laws, we can arrange and regroup
the vectors in Eq. (4.19a) as convenient to us :

A
°

R=(A,+B,)i+(4,+B,); (4.19D)
SinceR = R, i+ R, (4.20)
we have, R, =A, +B,, R, = A, + B, 4.21)

Thus, each component of the resultant
vector R is the sum of the corresponding
components of A and B.

In three dimensions, we have
A=Ai+Aj+Ak
B=B,i+B,j+ Bk

R=A+B=R,i+R,j+Rk

with R, = A, + B,
R,=A,+B,
R,=A,+B, 4.22)

This method can be extended to addition and
subtraction of any number of vectors. For
example, if vectors a, b and ¢ are given as

a= axi + ayj + azﬁ
b=h,i+bh,j+bk

(4.23a)
then, a vector T = a + b — ¢ has components :

c=ci+c,j+ck

T,=a,+b, -c,
T,=a,+b,—¢c, (4.23b)

T,=a,+b,-c,.

» Example 4.2 Find the magnitude and
direction of the resultant of two vectors A
and B in terms of their magnitudes and
angle 6 between them.

* Note that angles «, B, and yare angles in space. They are between pairs of lines, which are not coplanar.



Fig. 4.10

Answer Let OP and OQ represent the two vectors
A and B making an angle 6 (Fig. 4.10). Then,
using the parallelogram method of vector
addition, OS represents the resultant vector R :

R=A+B
SN is normal to OP and PM is normal to OS.
From the geometry of the figure,

OS? = ON? + SN?

ON=0OP+PN=A+ Bcos 0
SN=Bsin 0
0S? = (A + Bcos 6)? + (B sin 6)?

or, R°=A’+ B°+ 2AB cos 6

but

R=+A%+B? + 2ABcos0 (4.24a)

In A OSN, SN =0OS sino = R sina, and
in APSN, SN=PSsin 6=Bsin 6

Therefore, Rsin o = Bsin 0

or, silrfq = sifa (4.24b)
Similarly,
PM=A sino =B sin 8
A B
or, sin b - sin a (4.24¢)
Combining Eqs. (4.24b) and (4.24c), we get
R A B
sin 6 sin B sina (4.240)
Using Eq. (4.24d), we get:
B
sin o = —sin 6 (4.24¢)
where Ris givgn by Eq. (4.244a).
or, tan o= —N Bsino (4.241)

OP + PN N A+ Bcos0

Equation (4.24a) gives the magnitude of the
resultant and Eqgs. (4.24¢) and (4.24]) its direction.
Equation (4.244a) is known as the Law of cosines
and Eq. (4.24d) as the Law of sines. |
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» Example 4.3 A motorboat is racing
towards north at 25 km/h and the water
current in that region is 10 km/h in the
direction of 60° east of south. Find the
resultant velocity of the boat.

Answer The vector v, representing the velocity
of the motorboat and the vector v, representing
the water current are shown in Fig. 4.11 in
directions specified by the problem. Using the
parallelogram method of addition, the resultant
R is obtained in the direction shown in the
figure.

¥ !
600

v
S

Fig. 4.11

We can obtain the magnitude of R using the Law
of cosine :

R= \/v% + vg + 20,0, cos120°

=/25% +10? +2x25x10(-1/2) =22 km/h
To obtain the direction, we apply the Law of sines
R v

C

UC
] or, sin ¢ = —sin @
sin ¢

sin @
10xsin120° 1043
21.8

= = 0.397
2x21.8

¢= 234" <
4.7 MOTION IN A PLANE

In this section we shall see how to describe
motion in two dimensions using vectors.
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4.7.1 Position Vector and Displacement

The position vector r of a particle P located in a
plane with reference to the origin of an xy
reference frame (Fig. 4.12) is given by

r=xi+tyj
where xand y are components of r along x-, and

y- axes or simply they are the coordinates of
the object.

YA
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i
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Y] r i
i
i
O \i N
xi x”
(a)
YA
Direction © Y
) P’
D B
A —
1 1
i r' '
1
r i i
i i
i i
0] : :

A\

— AX —> X

(b)
Fig. 4.12 (a) Position vectorr. (b) Displacement Ar and
average velocity v of a particle.

Suppose a particle moves along the curve shown
by the thick line and is at P at time ¢t and P’ at
time t [Fig. 4.12(b)]. Then, the displacement is :

AY =1 -1 (4.25)
and is directed from P to P’.

We can write Eq. (4.25) in a component form:
AT = (x’i+y'j)—(xi+yj)
= iAx+ jAy
where Ax=x"-x,Ay=y -y (4.26)
Velocity

The average velocity (;) of an object is the ratio

of the displacement and the corresponding time
interval :

_ Ar Axi+Ayj .Ax LAy
Ve =——"""=i—+j— (4.27)
At At At At
o, v=0,i+7,]
Ar

Since V = E’ the direction of the average velocity

is the same as that of ar (Fig. 4.12). The velocity
(instantaneous velocity) is given by the limiting
value of the average velocity as the time interval
approaches zero :

. Ar dr
v=lm—=—

At-0 At dt

The meaning of the limiting process can be easily
understood with the help of Fig 4.13(a) to (d). In
these figures, the thick line represents the path
of an object, which is at P at time t. P.,P, and
P, represent the positions of the object after
times At ,At, and At.. Ar, Ar, and Ar, are the
displacements of the object in times At, AL, and

(4.28)

A o < A o(q A 0’"&/‘ A 0&4
YT KON y o0 VI e y &
0‘{6 P 0\‘ P 0\7 Q)C‘}‘\
1 &
Ar Q¥
P P pAPs P
r I,
r r, r I, r//r, r
o - 5 = 5 = 5 —
(a) (b) () (d)

Fig. 4.13 As the time interval At approaches zero, the average velocity approaches the velocity v. The direction

of v is parallel to the line tangent to the path.
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At,, respectively. The direction of the average
velocity v is shown in figures (a), (b) and (c) for
three decreasing values of At, i.e. At ,At , and at,,
(at, > At, > At). As At - O, ar - O
and is along the tangent to the path [Fig. 4.13(d)].
Therefore, the direction of velocity at any point
on the path of an object is tangential to the
path at that point and is in the direction of
motion.

We can express v in a component form :

(4.29)

At—O\ AL At

: Ax o Ay

=ilim —+j lim —

At—0 At At—0 AL
;dx . dy S

Or, =i—+j =vdi+v,j
o v=i i =odvo,

_dx

d
where Uy = -

, Uy =
de” v dt
So, if the expressions for the coordinates x and

y are known as functions of time, we can use
these equations to find v and v,.

(4.30a)

The magnitude of v is then

V= 1lvfc + vj (4.30Db)

and the direction of v is given by the angle 6:

v v
tanf=—-, 6= tan_l[—y]
v

v
X

(4.30c¢)

v, v, and angle 6 are shown in Fig. 4.14 for a
velocity vector v.

Acceleration

The average acceleration a of an object for a
time interval At moving in x-y plane is the change
in velocity divided by the time interval :
_ Av A(Uxi + ij) AUX 2 Avy 4
a=——= 5 1+
At At At At

(4.31a)

ES
Interms of x and y, a_and a, can be expressed as

d{dx) d%x d(day) %y
a, =—|—|=—+, a = | T |=—Z2
Toda\de) a2 Y de\de)  q?

v

Fig. 4.14 The components v_and v,of velocity v and
the angle 0 it malces with x-axis. Note that
v _=vcos b, v, =vsin 0.

Or, E:axi+ayj.
(4.31b)

The acceleration (instantaneous acceleration)
is the limiting value of the average acceleration
as the time interval approaches zero :

. Av
a= lim — (4.32a)
At—0 AL
Since Av = Avxi + Avyj,we have
R UX R Av
a=1lim + j lim
At—-0 At At—>0 At
or a=a,i+a,j (4.32b)
dv dov
where, a,=—x, a, = Y (4.32¢)*
dt dt

As in the case of velocity, we can understand
graphically the limiting process used in defining
acceleration on a graph showing the path of the
object’s motion. This is shown in Figs. 4.15(a) to
(d). P represents the position of the object at
time tand P, P, P_ positions after time At , At ,
At,, respectively (At > At >At). The velocity
vectors at points P, P, P, P_are also shown in
Figs. 4.15 (a), (b) and (c). In each case of At, Av is
obtained using the triangle law of vector addition.

By definition, the direction of average
acceleration is the same as that of Av. We see
that as Atdecreases, the direction of Av changes
and consequently, the direction of the
acceleration changes. Finally, in the limit At >0
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