

Objective Questions

Electrical conductors. Arrhenius theory and Ostwald's dilution law

- Which of the following is non-electrolyte [CPMT 2001] 1.
 - (a) NaCl
- (b) *CaCl*₂
- (c) $C_{12}H_{22}O_{11}$
- (d) CH₃COOH
- Ammonium hydroxide is a 2.

[CPMT 1977]

- (a) Strong electrolyte
 - (b) Weak electrolyte
 - (c) Both under different conditions
 - (d) Non-electrolyte
- 3. Ammonium hydroxide is a weak base because

[MP PET 2000]

- (a) It has low vapour pressure
- (b) It is only slightly ionized
- (c) It is not a hydroxide of any metal
- (d) It has low density
- Electrolytes when dissolved in water dissociate 4. into their constituent ions. The degree of dissociation of an electrolyte increases with [CPMT 1974].
 - (a) Increasing concentration of the electrolyte
 - (b) Decreasing concentration of the electrolyte
 - (c) Decreasing temperature
 - (d) Presence of a substance yielding a common

ion

- [MP PMT/PET 1988; CPMT 1974] 5. An electrolyte
 - (a) Gives complex ions in solution
 - (b) Dissolves in water to give ions
 - (c) Is ionized in the solid state
 - (d) Generates ions on passing electric current
- 6. A monoprotic acid in 1.00 M solution is 0.01% ionised. The dissociation constant of this acid is [BVP 2003] (d) On stirring the solution vigorously
 - (a) 1×10^{-8}
- (b) 1×10^{-4}
- (c) 1×10^{-6}
- (d) 10^{-5}
- Molten sodium chloride conducts electricity due 7. to the presence of [BHU 2001]
 - (a) Free electrons
 - (b) Free ions
 - (c) Free molecules
 - (d) Atoms of sodium and chlorine
- 8. An example for a strong electrolyte is [KCET 2002]
 - (a) Urea
- (b) Ammonium

hydroxide

- (c) Sugar
- (d) Sodium acetate

Which one is strongest electrolyte in the 9. following

[CPMT 1990]

- (a) NaCl
- (b) CH₃COOH
- (c) $NH_{\perp}OH$
- (d) $C_6H_{12}O_6$
- The equivalent conductance at infinite dilution of a weak acid such as HF [Pb. PMT 1998]
 - (a) Can be determined by measurement of very dilute HF solution
 - (b) Can be determined by extrapolation of measurements on dilute solutions of HCl, HBr and HI
 - (c) Can best be determined from measurements on dilute solutions of NaF, NaCl and HCl
 - (d) Is an undefined quantity
- If α is the degree of ionization, C the 11. concentration of a weak electrolyte and K_a the acid ionization constant, then the correct relationship between α , C and K_a is

[CET Pune 1998; Pb. PMT 1998; RPMT 2002]

- (a) $\alpha^2 = \sqrt{\frac{K_a}{C}}$
- (b) $\alpha^2 = \sqrt{\frac{C}{K_a}}$
- (c) $\alpha = \sqrt{\frac{K_a}{C}}$
- (d) $\alpha = \sqrt{\frac{C}{K}}$

Theory of ionization was given by

[AMU 1983; DPMT 1985]

- (a) Rutherford
- (b) Graham
- (c) Faraday
- (d) Arrhenius
- An ionizing solvent has 13.
 - (a) Low value of dielectric constant
 - (b) High value of dielectric constant
 - (c) A dielectric constant equal to 1
 - (d) Has a high melting point
- The extent of ionization increases [MNR 1982] 14.
 - (a) With the increase in concentration of solute
 - (b) On addition of excess water to solution
 - (c) On decreasing the temperature of solution

 - Which is generally true about ionic compounds

[Pb. PMT 2002]

- (a) Have low boiling point
- (b) Have low melting point
- (c) Soluble in non polar solvents
- (d) Conduct electricity in the fused state
- At infinite dilution, the percentage ionisation for 16. both strong and weak electrolytes is [CPMT 1999]
 - (a) 1%

15.

- (b) 20%
- (c) 50%
- (d) 100%
- The degree of ionization of a compound depends 17.

[MNR 1980]

(a) Size of solute molecules

35. The values of dissociation constants of some acids

strongest acid in water

(a) 1.4×10^{-2}

(c) 4.4×10^{-10}

(at $25\,^{\circ}\,C$) are as follows. Indicate which is the

(b) 1.6×10^{-4}

(d) 4.3×10^{-7}

[MP PMT 1991]

	(b) Nature of solute i	nolecules		(c) 10^{-7}	(d) 10 ⁻⁹	
	(c) Nature of vessel u	ısed	27.	The hydrog	en ion concen	tration in	weak acid of
	(d) Quantity of electr	ricity passed		dissociation	constant K_a	and conce	entration c is
18.		A, Ostwald's dilution law is		nearly equa	l to		
	represented by the ed	quation			[CBS	SE PMT 198	9; RPMT 2000]
	(a) $K_a = \frac{\alpha c}{1 - \alpha^2}$	(b) $K_a = \frac{\alpha^2 c}{1 - \alpha}$		(a) $\sqrt{K_a/c}$		b) c/K_a	
	(c) $\alpha = \frac{K_a c}{1 - c}$	$\alpha^2 c$		(c) $K_a c$	(d) $\sqrt{K_a c}$	
	(c) $\alpha = \frac{\alpha}{1-c}$	(a) $K_a = \frac{1-\alpha^2}{1-\alpha^2}$	28.	Degree of di	ssociation of (0.1 N CH ₃ C	<i>TOOH</i> is
19.	Acetic acid is a weak	electrolyte because[CPMT 1974]		(Dissociatio	n constant = 1	$\times 10^{-5}$)	[MP PET 1997]
	(a) Its molecular wei	ght is high		(a) 10^{-5}	(b) 10 ⁻⁴	
	(b) It is covalent com	pound			•	d) 10 ⁻²	
		iate much or its ionization is	29.	• •	e following sub	•	an electrolyte
very		,	_5.	***************************************	2 10110 W 111B 0 W		DT Bihar 1980]
	(d) It is highly unstal			(a) Chlorofo	orm	_	
20.		wing dissociation of NH_4OH		(b) Benzene			
	will be minimum	[MP PET 2000]		(c) Toluene			
	(a) NaOH	(b) H_2O		(d) Magnesi	um chloride		
	(c) NH_4Cl	(d) NaCl	30.	In weak elec	ctrolytic soluti	on, degree	of ionization
21.	Vant hoff factor of I	$BaCl_2$ of conc. $0.01M$ is 1.98.		(a) Will be j	proportional to	dilution	
	Percentage dissociat	ion of $BaCl_2$ on this conc.			proportiona	l to con	centration of
	Will be		elec	trolyte			
		[Kerala CET 2005]	4:1		proportional	to the s	quare root of
	(a) 49	(b) 69	dilut		an ai mun and to th	aa dilutian	
	(c) 89	(d) 98	21		reciprocal to the colution of form		
	(e) 100		31.		n constant is	iic aciu is	[MP PMT 1991]
22.	In which of the follow	ing solutions, ions are present		(a) 9.6×10^{-3}		b) 2.1×10	
	(-) ([NCERT 1981]		(c) $1.25 \times 10^{\circ}$		d) 4.8×10	
		(b) Sulphur in CS ₂	22		onductor of	•	
		n water(d) Ethanol in water	32.	solution of	onductor or	electricity	15 a 1.0 W
23.		nilibrium exists inaqueous					[NCERT 1973]
	-	$ Arr CH_3COO^- + H^+$ if dil HCl is	-	(a) Boric ac	id (b) Acetic	acid
		ge in temperature, the	L	UPSEAT 2000, (c) Sulphuri	02] ic acid (d) Phosph	oric acid
	(a) Concentration of	<i>CH</i> ₃ <i>COO</i> [−] will increase	33.	The colour o	of an electrolyt	e solution	depends on
	(b) Concentration of	CH ₃ COO⁻ will decrease					[DPMT 1985]
	(c) The equilibrium of	constant will increase		(a) The natu	are of the anion	n	
	=	constant will decrease		` '	are of the catio		
24.	Which will not affect	the degree of ionisation			are of both the		
		[MP PMT 1994]			are of the solve	ent	
	(a) Temperature	(b) Concentration	34.		epends upon		[CPMT 2004]
	(c) Type of solvent	(d) Current		(a) Pressure	•	b) Volume	
25.	The addition of a pola	ar solvent to a solid		(c) Dilution	(d) None o	f these

[NCERT 1973]

(b) Association

26. The degree of dissociation of 0.1 MHCN solution is

0.01%. Its ionisation constant would be [RPMT 1999]

(b) 10^{-5}

(d) Electron transfer

electrolyte results in

(a) Polarization

(c) Ionization

(a) 10^{-3}

36.	Concentration C	N - in 0.1 <i>M HCN</i>	is	(c) $SO_4^{}$	(d) NO ₂ -	
	$[K_a = 4 \times 10^{-10}]$		10.	NaOH is a strong base	_	[AIIMS 2001]
	(a) $2.5 \times 10^{-6} M$ (c) $6.3 \times 10^{-6} M$	(b) $4.5 \times 10^{-6} M$ (d) $9.2 \times 10^{-6} M$	11.	(a) It gives OH⁻ ion(c) It can be easily ionWhich one of the followingBronsted base		oth (a) and (c)
	Acids an	d Bases		(a) NO_3^-	(b) H_3O^+	
				(c) NH_4^+	(d) <i>CH</i> ₃ <i>CO</i>	ОН
1.	(a) <i>CO</i>	is not a Lewis acid [MP P (b) SiCl ₄	ET 200 <u>2</u>].	Which one of the following highest proton affinity (a) H_2O	_	tance has the [AIEEE 2003]
	(c) SO_3	(d) Zn^{2+}		-	-	
2.	-	m and choose the corre		(c) NH_3	(d) PH_3	
		$\Rightarrow H_3O^+ + ClO_4^-$ [RPMT 20	00] 13.	Which of the following		
	(a) $HClO_4$ is the conjug			(a) BI_3	(b) <i>BBr</i> ₃	[EAMCET 1998]
	(b) H_3O^+ is the conjugate	ate base of H_2O		(c) BCl ₃	$(d BF_3)$	
	(c) H_2O is the conjuga	te acid of H_3O^+	4.4	3	5	eists of
	(d) ClO_4^- is the conjugation	·	14.	An aqueous solution of		[MP PET 2001]
3∙	A solution of $FeCl_3$ in v	vater acts as acidic due to	0	(a) H^+	(b) <i>OH</i> ⁻	
		[BVP 200	03]	(c) NH_4^+	(d) NH_4^+ and	nd <i>OH</i>
	(a) Hydrolysis of Fe^{3+} (c) Dissociation	(b) Acidic impurities(d) Ionisation	15.	Which of the following	_	s acid BSE PMT 1996]
4.		aving alkaline nature	in	(a) BF_3	(b) $FeCl_3$	
	solution is	[BVP 200	12]	(c) SiF_4	(d) C_2H_4	
	(a) NaNO ₃	(b) NH_4Cl	16.	The conjugate base of	NH_2 is	[EAMCET 1998]
	(c) Na_2CO_3	(d) Fe_2O_3		(a) NH_3	(b) NH ²⁻	
5.	-	g can act both as Bronst [MP PET 1995; MP PET/PM		(c) NH_4^+	(d) N_3^-	
	(a) <i>Cl</i> ⁻	(b) HCO_3^-	17.	The strength of an acid	d depends on i	ts tendency to
	(c) H_3O^+	(d) <i>OH</i> ⁻				[MP PET 1996]
6.	Lewis acid	[MP PMT 198	R-71	(a) Accept protons	(b) Donate	-
٠.	(a) Presence of <i>H</i> atom			(c) Accept electrons	(d) Donate	
	(b) Is a electron pair do	_	18.	Which is not a electro	-	[RPET 1999]
	(c) Always a proton do			(a) AlCl ₃	(b) BF_3	
	(d) Is a electron pair ac	cceptor		(c) $(CH_3)_3 C^+$	(d) NH_3	
7•	For two acids A	and $B, pK_a = 1.2, pK_b = 2$	2.8 19.	Ammonia gas dissolve	es in water to	give NH_4OH .
	-	hen which is true [Bihar N	MEE 1998]	In this reaction water	acts as [CPMT	1990; MP PMT 199
	(a) A and B both are eq	-		(a) An acid	(b) A base	
	(b) A is stronger than E			(c) A salt	(d) A conju	igate base
	(c) B is stronger than A		20.	In the equilibrium		
	(d) Neither A nor B is s(e) None of these	ou ong		$CH_3COOH + HF \rightleftharpoons CH_3$	$COOH_2^+ + F^-$	[BHU 1987]
8.	Aq. solution of sodium	cyanide is [BHU 198	81]	(a) F^- is the conjugate	e acid of <i>CH₃C</i>	ООН
	(a) Acidic	(b) Amphoteric	- .	(b) F^- is the conjugate		
	(c) Basic	(d) Netural		(c) CH_3COOH is		te acid of
9.		g is the strongest conjuga	ate <i>CH</i> ₃	$COOH_2^+$	the conjuga	acid of
	[MADT Bihar 1983; CBSE I	PMT 1999; KCET (Med.) 200	01]			
	(a) <i>Cl</i> ⁻	(b) CH_3COO^-				

	(d) $CH_3COOH_2^+$ is	the conjugate	e base of	31.	HNO_3 in liquid hydrog	gen fluoride behaves
CH_3	СООН				(a) As an acid	
21.	The compound that is	s not a Lewis acid	is [IIT 1985]		(b) As a base	
	(a) BF_3	(b) <i>AlCl</i> ₃			(c) Neither as a base a (d) As a base and as a	
	(c) BeCl ₂	(d) NH_3		32.		$CuSO_4.5H_2O$ changes blue
22.	Which of the following a neutral solution		vater to give MADT 1980]	3=-	litmus paper to red du	ue to [CPMT 1979; MP PMT 1989]
	(a) $(NH_4)_2SO_4$	(b) $Ba(NO_3)_2$	WIND1 1900]		(a) Presence of Cu^{++} is	ions
	(c) $CrCl_3$	(d) $CuSO_4$			(b) Presence of $SO_4^{}$	ions
23.	Which of the following	•	t acid FAMII 1	0921	(c) Hydrolysis taking	-
۷٥٠	(a) H_3PO_4	(b) H_2SO_4	t acid [AMO I		(d) Reduction taking p	•
	(c) HNO_2	(d) CH_3COOH	4	33.	In the following react	
2.4	-	_	1		$HC_2O_4^- + PO_4^{} \rightleftharpoons HF$	· ·
24.	An example of a Lew	nar 1982; AMU 198:	2: MNR 1994:			onsted bases [MP PMT 1991]
		7; KCET 2000; Oris			(a) $HC_2O_4^-$ and PO_4^{-1}	(b) $HPO_4^{}$ and $C_2O_4^{}$
	(a) NaCl	(b) $MgCl_2$			(c) $HC_2O_4^-$ and HPO_4	$_4^{}$ (d) $PO_4^{}$ and $C_2O_4^{}$
	(c) AlCl ₃	(d) $SnCl_4$		34.	Which of the following	g is the weakest acid [CPMT 2001]
25.	In the equilibrium He	$ClO_4 + H_2O = H_2O^+$	+ ClO -		(a) HF	(b) HCl
_	•		3HU 1981, 86]		(c) HBr	(d) HI
	(a) $HClO_4$ is the conj	-	- , -	35.	increases	iation in a weak electrolyte
	(b) H_2O is the conju					CBSE PMT 1989; MP PMT 1997]
	_				(a) On increasing dilu	
	(c) H_3O^+ is the conjugate	igate base of H_2O			(c) On decreasing dil	
	(d) ClO_4^- is the conju	gate base of HClC	O_4	36.	H^+ is a	[MADT Bihar 1983]
26.	Which of the following	-		0.1	(a) Lewis acid(c) Bronsted-Lowry b	(b) Lewis base ase (d) None of the above
	ionic solution in wate (a) <i>CCl</i> ₄	er [CPMT 1976; Ku (b) <i>O</i> ₂	ruksnetra CEE	1998] 37•		O_4 takes place in following
	(c) $NaBr$	_		3,	steps	3
. -	A solution of sodium	(d) CHBr ₃	atan tunna		-	[CPMT 1976; NCERT 1987]
27.	A solution of soulum		[NCERT 1971]		(a) 1	(b) 2
	(a) Phenolphthalein			ow 28	(c) 3 The aqueous solution	(d) 4 on of disodium hydrogen
	(c) Methyl orange re	d (d) Blue litm	us red	50.	phosphate is	on of alboaram nyarogen
28.	Accepting the defini		•			[MADT Bihar 1982]
	donor, the acid $NH_3 + H_2O \rightarrow NH_4^+ + O$		(Med.) 2003]		(a) Acidic(c) Basic	(b) Neutral (d) None
			(Med.) 2003]	39.		ng is a conjugated acid-base
	(a) NH_3	(b) H ⁺		33	pair	
	(c) NH_4^+	(d) H_2O				MADT Bihar 1984; DPMT 2001]
29.	With reference to p				(a) HCl, NaOH	(b) NH_4Cl , NH_4OH
	following statements (a) PH_3 is more basis		[CPMT 1990]		(c) H_2SO_4 , HSO_4^-	(d) KCN, HCN
	(b) PH_3 is less basic	-		40.		ong acid and weak base
	-	_			(FeCl ₃) is	Dibor 1091, CDMT 1070, 92, 941
	(c) PH_3 is equally ba	-	a ci c		(a) Acidic	Bihar 1981; CPMT 1979, 83, 84] (b) Basic
	(d) PH_3 is amphoteri	-			(c) Neutral	(d) None of the above
30.	NH_4OH is weak base		[CPMT 1979]	41.	The conjugate acid of	HPO_3^{2-} is [EAMCET 1989]
	(a) It has low vapour(b) It is only slightly	=			(a) H_3PO_4	(b) H_3PO_3
	(c) It is only slightly				(c) $H_2PO_3^-$	(d) PO_4^{3-}
	(d) It has low density					

	hydrogen ion and hydrogenation (c) Hydrolysis	(b) Hydroxylation(d) Neutralization	53.	 H₃BO₃ is (a) Monobasic and we (b) Monobasic and we (c) Monobasic and st 	eak Bronsted acid
43.	Among the following,	the weakest Lewis base is [NCERT 1981]		(d) Tribasic and weal	· ·
	(a) H ⁻	(b) <i>OH</i> ⁻	54.	In the reaction SnCl 2	$+2Cl^{-} \rightarrow SnCl_{4}$, Lewis acid is
	(c) Cl ⁻	(d) HCO_3^-	-	2	[EAMCET 1987]
44.		greater than pKa for acid B .		(a) SnCl ₂	(b) <i>Cl</i> ⁻
	The strong acid is	[DPMT 2000]		(c) SnCl ₄	(d) None of these
	(a) Acid B	(b) Acid A		·	
	(c) Both A and B	(d) Neither A nor B	55.	Lewis base is (a) CO_2	[RPMT 1997] (b) SO ₃
45.	The conjugate acid of	NH_{2}^{-} is[IIT 1985; Roorkee 1995;		-	-
E	AMCET 1997;CBSE PMT I	PMT 2000; MP PET 1996,2000]		(c) SO_2	(d) ROH
	(a) NH_3	(b) NH_4^+	56.	10 ml of 1 M H_2SO_4 V	will completely neutralise
	(c) NH_2OH	(d) N_2H_4		(a) 10 ml of 1 M NaO	H solution
46.	Correct statement is	[CPMT 1985]		(b) 10 ml of 2 M NaO	H solution
	(a) NH_4Cl gives alkali	ne solution in water		(c) 5 ml of 2 M KOH	solution
	(b) CH ₃ COONa gives a	acidic solution in water		(d) 5 ml of 1 M Na ₂ C	Q_{α} solution
	(c) CH_3COOH is a we	ak acid	57.	-	g compounds are diprotic
	(d) NH_4OH is a strong	g base	3/•	which of the followin	[Pb. PMT 2000]
47.	pK_a of a weak acid is	defined as [JIPMER 1999]		(a) H_2PO_5	(b) H_2S
	(a) log V	(h) 1			(d) H_3PO_3
	(a) $\log_{10} K_a$	$\frac{1}{\log_{10} K_a}$	58.	3	NaOH solution is mixed with
	(c) $\log_{10} \frac{1}{K_a}$	(b) $\frac{1}{\log_{10} K_a}$ (d) $-\log_{10} \frac{1}{K_a}$	50.	10 <i>ml</i> of 10 <i>M H</i> ₂ <i>SO</i>	4, the resulting mixture will
48.	и	ved in water $(pH = 7)$, the		be	[AMU 2002]
40.		omes alkaline in nature. The		(a) Acidic(c) Neutral	(b) Alkaline(d) Strongly alkaline
	salt is made of		59.	The pH indicators are	
		[CPMT 1983]	39.	_	
	(a) A strong acid and	_		(a) Salts of strong acid(b) Salts of weak acid	_
	(b) A strong acid and w(c) A weak acid and w			(c) Either weak acids	
	(d) A weak acid and w			(d) Either strong acid	
49.	Which one is not an ac	_	60.	=	ig is not Lewis acid[BHU 1997]
	(a) NaH_2PO_2	(b) NaH_2PO_3		(a) BF_3	(b) AlCl ₃
	(c) NaH_2PO_4	(d) None		(c) FeCl ₃	(d) <i>PH</i> ₃
50.	- ·	s alkaline in solution. Which	61.	9	acetate in water will[MNR 1979]
50.		ances could it be [CPMT 1989]	01.		lue (b) Turn blue litmus red
	(a) Fe_2O_3	(b) Na_2CO_3		(c) Not effect litmus	(d) Decolourises litmus
	(c) NH_4Cl	(d) NaNO ₃	62.	Cl^- is the conjugate b	
- 1	·	f ammonium carbonate is		, ,	CPMT 1976; MP PET/PMT 1988]
51.	All aqueous solution of	[MP PMT 1989]		(a) HClO ₄	(b) HCl
	(a) Weakly acidic	(b) Weakly basic		(c) HOCl	(d) HClO ₃
	(c) Strongly acidic	(d) Neither acidic nor	63.		ng behaves as both Lewis and
basio		, ,	03.	Bronsted base	[MP PMT 2003]
52.	100 ml of 0.2 M H ₂ SO	$_4$ is added to $100 \ ml$ of		(a) BF_3	(b) <i>Cl</i> ⁻
	0.2 M NaOH. The resu	lting solution will be[вни 1996]		(c) CO	(d) None of these
	(a) Acidic	(b) Basic	64.		a strong base is a[EAMCET 1979
	(c) Neutral	(d) Slightly basic	04.	(a) Strong acid	(b) Weak acid
		-		(a) otrollg aclu	(b) Weak actu

_	(c) Strong base	(d) Weak base	76.	Which of the anhydro		
65.	Which one is the weake			contact with water turns (a) Ferrous sulphate	(b) Copper	[AMU 1981, 82]
	(a) HNO_3	(b) HClO ₄		(c) Zinc sulphate	(d) Copper	
	(c) H_2SO_4	(d) HBr	77.	The species among the		_
66.	Conjugate base of HPO_4^2	is [MP PMT 1995]		as an acid and a base is	[AIEEE 20	
	(a) PO_4^{3-}	(b) $H_2PO_4^-$		(a) <i>HSO</i> ⁻ ₄	(b) SO_4^{2-}	
	(c) H_3PO_4	(d) H_4PO_3		(c) H_3O^+	(d) Cl ⁻	
67.	Which of the following	is not Lewis acid [RPET/PMT 2	2062]	The strongest base from	the following	ng species is [KCET 1996]
	(a) $FeCl_3$	(b) AlCl ₃		(a) NH^{2-}	(b) <i>OH</i> ⁻	1 20 1
	(c) BCl_3	(d) NH_3		(c) O^{2-}	(d) S^{2-}	
68.	(i) A strong acid has a v	veak conjugate base	79.	Which one is Lewis acid		[CPMT 1997]
	(ii) An acid is an electro	n pair acceptor		(a) <i>Cl</i> ⁻	(b) Ag +	
	The above statements (i) and (ii)		(c) C_2H_5OH	(d) S^{2-}	
	(a) Correct		0.0			[MD DUM 4000]
	(b) Wrong		80.	The conjugate acid of H	= :	[MP PET 1990]
	(c) (i) Correct and (ii) V	_		(a) H_3PO_4	(b) $H_2PO_4^-$	
_	(d) (i) Wrong and (ii) C			(c) PO_4^{3-}	(d) H_3O^+	
69.	The pH is less than 7, of		81.	The conjugate acid of S_2	O_8^{2-} is	[EAMCET 1984]
	(a) FeCl ₃	(b) NaCN		(a) $H_2S_2O_8$	(b) H_2SO_4	
	(c) <i>NaOH</i>	(d) NaCl		(c) HSO ₄	(d) $HS_2O_8^-$	
			82.	In the reaction BCl_3	2 0	$B - PH_2$. Lewis
70.	In the reaction $I_2 + I^- \rightarrow$			base is		3,
		7; RPMT 2002; BCECE 2005]				[EAMCET 1986]
	(a) I_2	(b) I^-		(a) BCl_3	(b) PH_3	
	(c) I_3^-	(d) None of these		(c) $Cl_3B - PH_3$	(d) None o	f these
71.	The strength of an acid	depends on its tendency to [UPSEAT 2001]	83.	Which of the following s (a) The conjugate base of		
	(a) Accept protons	(b) Donate protons	base			
	(c) Accept electrons	(d) Donate electrons	,	(b) The conjugate base	of a weak a	cid is a strong
72.	In Lewis acid-base theo may be considered as	ry, neutralization reaction [NCERT 1977]	base	(c) The conjugate base	of a weak a	acid is a weak
	(a) Formation of salt an		base	(d) The base and its con	ingate acid i	react to form a
	(b) Competition for pro-	tons by acid and base		neutral solution	jugute ueru i	react to form a
	(c) Oxidation reduction		84.	What is the conjugate ba	ase of OH^-	[AIEEE 2005]
	(d) Coordinate covalent	bond formation		(a) O_2	(b) H_2O	
73.	The salt that forms neut			(c) O ⁻	(d) O^{2-}	
	(a) NH ₄ Cl	[EAMCET 1981] (b) NaCl	85.	Which of the following i	s a Lewis ba	ise [BHU 1995]
	(c) Na_2CO_3	(d) K_3BO_3		(a) <i>CH</i> ₄	(b) C_2H_5OR	Н
74.		cannot act as a Lewis or		(c) Acetone	(d) Second	ary amine
	Bronsted acid	[DCE 2001]	86.	The correct order of acid	d strength is	[CBSE PMT 2005]
	(a) BF_3	(b) AlCl ₃		(a) $HClO < HClO_2 < HClO$	$O_3 < HClO_4$	
	(c) SnCl ₄	(d) <i>CCl</i> ₄		(b) $HClO_4 < HClO < HClO$	$O_2 < HClO_3$	
75.		wing salts gives an acidic		(c) $HClO_2 < HClO_3 < HClO_3$		
	solution in water	[MP PET 2002]		(d) $HClO_4 < HClO_3 < HClo_3$	•	
	(a) CH_3COONa	(b) NH_4Cl	87.	The strongest acid is	-	[DPMT 2000]
	(c) NaCl	(d) CH_3COONH_4	~ , .	(a) $H_3 AsO_4$	(b) $H_3 AsO_3$	

356 Ionic Equilibrium (c) Accepts a lone pair of electrons (c) H_3PO_3 (d) H_3PO_4 (d) Donates a lone pair of electrons 88. Which of the following is the strongest base[Roorkee 2000] Water is a [KCET 2002] (a) $C_2H_5^-$ (b) $C_2H_5COO^{-1}$ (a) Amphoteric acid (b) Aprotic solvent (c) $C_2H_5O^-$ (d) OH^- (c) Protophobic solvent (d) None of these **100.** Conjugate base of NH_2 is The aqueous solution of which one of the 89. following is basic (a) NH₄[⊕] (b) NH₂[⊕] [MP PMT 2001] (c) NH_2^{Θ} (d) N_2 (a) HOCl (b) NaHSO 4 101. Which of the following species is an acid and also (c) NH_4NO_3 (d) NaOCl a conjugate base of another acid [NCERT 1981] 90. Which of the following is the weakest base [IIT 1980] (a) HSO_4^- (b) H_2SO_4 (a) NaOH (b) $Ca(OH)_2$ (d) H_2O^+ (c) OH-(d) KOH (c) $NH_{\perp}OH$ 102. Which of the following is Lewis acid The suitable indicator for strong acid and weak [NCERT 1978; EAMCET 1987; MP PET 1994; hase is CPMT 1990; AFMC 1997; RPMT 1999] [RPMT 1997; UPSEAT 2002] (b) Cl⁻ (a) BF_3 (a) Methyl orange (b) Methyl red (c) H_2O (d) NH_3 (c) Phenol red (d) Phenolphthalein Among the following acids, the weakest one is 103. According to Bronsted-Lowry concept, base is a substance which is[NCERT 1982; RPMT 1997 AFMC 1999] [NCERT 1984] (a) A proton donor (a) HF (b) HCl (b) An electron pair acceptor (c) HBr (d) HI (c) A proton acceptor The compound HCl behaves as in the reaction, (d) An electron pair donor $HCl + HF \rightarrow H_2^+Cl + F^-$ [JIPMER 2001] 104. Which of the following is known as hydronium ion (a) Weak base (b) Weak acid [NCERT 1976] (d) Strong acid (c) Strong base (a) H^+ (b) H_2O^+ **94.** The conjugate base of a strong acid is a [EAMCET 1978] (c) H_3O^+ (d) $H_2O_2^+$ (a) Strong base (b) Strong acid (c) Weak acid 105. An aqueous solution of aluminium sulphate would (d) Weak base 95. Which among the following is strongest acid[BHU 2005] show [NCERT 1977] (a) H(ClO)O2 (b) $H(ClO)O_3$ (a) An acidic reaction (c) H(ClO)O (d) H(ClO) (b) A neutral reaction In the reaction $2H_2O \rightleftharpoons H_3O^+ + OH^-$, water is (c) A basic reaction [MP PET 1989] (d) Both acidic and basic reaction (a) A weak base 106. The aqueous solution of aluminium chloride is (b) A weak acid acidic due to (c) Both a weak acid and a weak base [MNR 1986, 88] (a) Cation hydrolysis (d) Neither an acid nor a base (b) Anion hydrolysis In the reaction $HCl + H_2O = H_3O^+ + Cl^-$ (c) Hydrolysis of both anion and cation [NCERT 1978; EAMCET 1982, 89] (d) Dissociation (a) H_2O is the conjugate base of HCl acid **107.** HSO_4^- is the conjugate base of [NCERT 1977] (b) Cl^- is the conjugate base of HCl acid (a) H^+ (b) H_2SO_3 (c) Cl^- is the conjugate acid of H_2O base (c) SO_4^{2-} (d) H_2SO_4 (d) H_3O^+ is the conjugate base of HCl108. An acid is a compound which furnishes (Bronsted-According to Lewis concept, an acid is a substance 98. Lowry concept) [EAMCET 1975] which (b) A proton (a) An electron [EAMCET 1981; NCERT 1981; (c) An electron and a proton (d) None of the above CPMT 1986; MP PMT 1987] 109. The conjugate base of sulphuric acid is (a) Accepts protons [EAMCET 1974] (b) Donates protons

	(a) Sodium hydroxide	(b) Hydroch	lloric acid	121.	The aqueous solution of	AlCl ₃ is acid	lic due to the
	(c) Bisulphate ion	(d) Barium	hydroxide		hydrolysis of	[UPS	SEAT 2001, 02]
110.	Which is strongest Lewi	s base	[CPMT 1994]		(a) Aluminium ion		
	(a) SbH_3	(b) AsH_3			(b) Chloride ion		
	(c) PH ₃	(d) NH_3			(c) Both aluminium and	chloride ion	
111.	According to Bronsted		an aqueous		(d) None of these		
,	solution of HNO_3 will co		-	122.	Which shows weak ionis		er [MH CET 2001]
	(a) NO_2^-	(b) NO_3^-			(a) H_2SO_4	(b) NaCl	
		-			(c) HNO_3	(d) NH_3	
	(c) NO_2^+	(d) <i>NO</i> ⁺		123.	An organic dye, cosine u		-
112.	Aqueous solution of an	acid is cha	racterised by		precipitation titration by	-	is cailed [MH CET 1999]
	the presence of		[NCERT 1977]		(a) Absorption indicator	_	
	(a) H ⁺ ions	(b) H_2^+ ions	[NCERT 19//]		(c) Chemical indicator	_	
				124.	The indicator used in		
	(c) H_3O^+ ions	(d) H_4O^+ ion	ns		against sodium thiosulph	nate is	[AFMC 2002]
113.	Ammonium ion is		9; KCET 2002]		(a) Starch	(b) $K_3 Fe(CN)$	7)6
	(a) Neither an acid nor l			se	(c) K_2CrO_4	(d) Potassiu	ım
	(c) A conjugate acid	(d) A conjug		125.	Phenolphthalein does no	ot act as an	indicator for
114.	Aqueous solution of AlCl	l_3 is	[RPMT 2002]		the titration between	_	Pb. PMT 2002]
	(a) Acidic	(b) Basic			(a) $NaOH$ and CH_3COOH	I	
	(c) Amphoteric	(d) None of			(b) $H_2C_2O_4$ and $KMnO_4$		
115.	The species which acts Bronsted acid is [MP PM]				(c) $Ba(OH)_2$ and HCl		
		(b) O^{2-}	snetra CET 2002]		(d) KOH and H_2SO_4		
	(a) NH_2^-			126.	Which is not example of	Bronsted Lo	wry theory
	(c) BF_3	(d) <i>OH</i> ⁻					[AIEEE 2003]
116.	Among the following, the	e weakest ba	se is[MP PMT 200	2]	(a) AlCl ₃	(b) H_2SO_4	
	(a) H^-	(b) CH_3^-			(c) SO_2	(d) HNO_3	
	(c) CH_3O^-	(d) Cl ⁻		127.	An aqueous solution		
117.	Which of the following i	s not lewis ba	ase		alkaline because sodium (a) Weak acid and weak		a sait of [MP PET 20
		[EAMCET 1975	5; RPMT 2002]		(b) Strong acid and weak		
	(a) NH_3	(b) PH_3			(c) Weak acid and stron		
	(c) $(CH_3)_3 N$	(d) HN_3			(d) Strong acid and stron	_	
118.	pK_a value of the strofollowing is	ongest acid	among the	128.	The acid that results who is called	en a base acc	epts a proton
	Tollowing 15	г	MP PMT 1990]			[Kerala	a (Med.) 2002]
	(a) 3.0	(b) 4.5			(a) Conjugate base of the		
	(c) 1.0	(d) 2.0			(b) Conjugate protonate	d base	
119.	The most acidic compour	nd in water i	s [CBSE PMT 2001	.]	(c) Lewis base		
	(a) AlCl ₃	(b) <i>BeCl</i> ₂			(d) Conjugate acid of the	e base	
	(c) FeCl ₃	(d) None of	these		(e) None of these		
120	BF_3 is used as a cata			129.	Ammonia gas dissolves		•
120.	processes due to its	-	a (Med.) 2002]		In this reaction water ac		
	(a) Strong reducing agei		. (Mcu., 2002)		(a) A conjugate base	(b) A non-po	oiar soivent
	(b) Weak reducing agen			100	(c) An acid	(d) A base	action
	(c) Strong Lewis acid na			130.	The conjugate base in th	_	
	(d) Weak Lewis acid cha				$H_2SO_4 + H_2O \rightleftharpoons H_3O^+ + H_3O^-$	ASO ₄	[DCE 1999]
	(u) Weak Lewis acid Clid	ii actei			(a) H_2O	(b) HSO_4^-	

358 Ionic Equilibrium (c) H_2O^+ (b) Which provide H^+ ion in the solution (d) SO, (c) Which give electron pair 131. An aqueous solution of aluminium sulphate shows [DPMT 2001] (d) Which accept OH ion (a) A basic nature **143.** The conjugate base of HCO_3^- is (b) An acidic nature (a) H_2CO_3 (b) CO_2^{2-} (c) A neutral nature (c) CO₂ (d) H_2O (d) Both acidic and basic nature 132. Neutralization of an acid with a base invariably **144.** In the reaction $NH_3 + BF_3 = NH_3 \rightarrow BF_3$, BF_3 is results in the production of [CPMT 1983] [MP PMT 1989; MHCET 2001] (a) H_3O^+ (b) OH-(a) Lewis acid (b) Lewis base (d) H^+ and OH^- (c) H_2O (c) Neither Lewis acid nor Lewis base **133.** The conjugate acid of HPO_4^{2-} is (d) Lewis acid and Lewis base both [MP PMT 1987, 90, 91; EAMCET 1993] 145. The strongest Lewis base in the following (b) PO_4^{3-} (a) H_2PO_4 [MP PET/PMT 1988] (d) H_2PO_2 (c) H_3PO_4 (a) CH_2^- (b) F^- 134. Which of the following is not used as a Lewis acid (c) NH_{2} (d) OH [MP PET 2000] **146.** The aqueous solution of $CuSO_A$ is [CPMT 1985] (a) SnCl₄ (b) FeCl₃ (a) Acidic (b) Basic (c) KCl (d) BF_3 (d) Amphoteric (c) Neutral 135. Orthoboric acid in aqueous medium is [AMU 2000] **147.** The acid having the highest pK_a value among the (a) Monobasic (b) Dibasic following is [JIPMER 2002] (c) Tribasic (d) All are correct (a) HCOOH (b) CH₃COOH 136. According to Lewis concept which one of the (d) FCH2COOH (c) ClCH2COOH following is not a base[MP PET/PMT 1988; Pb. CET 2003] 148. The indicator used in the titration of sodium (a) OH^- (b) H_2O carbonate with sulphuric acid is [DPMT 2001] (c) Ag^+ (d) NH_3 (a) Phenolphthalein 137. The aqueous solution of ammonium chloride is (b) Methyl orange [CPMT 1987] (c) Potassium ferrocynide (a) Neutral (b) Basic (d) Potassium ferricynide (c) Acidic (d) Amphoteric 149. According to Bronsted law, water is a/an **138.** In the process $BCl_3 + PH_3 \rightarrow BCl_3 : PH_3$ The Lewis [MP PET/PMT 1988] acid is (a) Base (b) Acid [RPMT 2000] (c) Acid and base both (d) Salt (a) PH_3 (b) BCl_3 **150.** Which of the following can give base OH^- (c) Both (d) None [MP PET/PMT 1988] **139.** The conjugate acid of NH_3 is (a) H_2O (b) H_3O^+ [BHU Varanasi 1999; Pb. PMT 2004] (c) H_2 (d) HCl (b) NH_4^+ (a) NH_3 **151.** Conjugate base of *HBr* is [MP PET/PMT 1988] (d) NH_2OH (c) N_2H_4 (a) H_2Br^+ (b) H^+ 140. Which halide of nitrogen is least basic [DPMT 2001] (a) NBr_3 (d) Br^+ (b) NI_3 (c) Br-152. Molar heat of neutralization of NaOH with HCl (d) NF_3 (c) NCl_3 in comparison to that of KOH with HNO3 is [MP PMT 1989 **141.** When FeCl₃ gets soluble in water, then its (b) More solution represents which of the characteristics [MP PET/PM(a) 1988]

(c) Equal

(a) BF_3

(c) HCl

(a) Amphoteric

142. Lewis acid are those substances

(a) Which accept electron pair

(c) Basic

(b) Acidic

(d) Neutral

[MP PMT 1987]

(d) Depends on pressure

153. Which of the following is not a Lewis acid [J & K 2005]

(b) AlCl₃

(d) LiAlH

			101110	Lquilibriui	359
		163.			[DPMT 2004]
-			(a) <i>Cl</i> ⁻	(b) Br ⁻	
=			(c) F ⁻	(d) I^-	
-		164.	The conjugate base of	$H_2PO_4^-$ is	[AIEEE 2004]
	-		(a) H_3PO_4	(b) P_2O_5	
(a) F ⁻	(b) NO_3^-		(c) PO_4^{3-}	(d) HPO_4^{2}	-
(c) ClO ₄	(d) I^-	165.	Conjugate base of HSO	P_4^- is	[MH CET 2004]
			(a) SO_4^{2-}	_	
			(c) $H_3SO_4^+$	(d) None	of these
		Co	mmon ion effect, Isoh	ydric solutio	ons, Solubility
=	to titrate both strong and				
_	more stable solutions than	1.		the solubil	ity product of
(d) The salts of strong	acids do not hydrolysed			(b) V	- A1 ³ +1 ² (CO ² -1 ³
	lution, the characteristic		*	•	
species of acid is			(c) $K_{sp} = [Al^{3+}]^3 (SO_4^{2-})^2$	$(d) K_{sp} = $	$[Al^{3+}]^2 (SO_4^{2-}]^2$
(a) H^+ ion	[RPMT 1999] (b) H_3O^+ ion	2.	of ammonium hydroxic	de [CPMT	1976, 80, 81, 99;
(c) H_2^+ ion	(d) H_4O^+ ion				
Which is a Lewis base	[CPMT 1988; JEE Orissa 2004]			•	
(a) B_2H_6	(b) LiAlH ₄				
(c) AlH_3	(d) NH_3				
For a weak acid, the in	correct statement is [Pb. PMT	20364]			
			formula MX_2 , in v	vater is :	4×10^{-12} . The
(b) Its pK_a is very low			concentration of M^{2+}	ions in the a	queous solution
(c) It is partially disso	ciated		of the salt is	_	
Boron halides behave	as Lewis acids, because of				
their		4.			
	[CBSE PMT 1996; BHU 2004]				
			electrolyte is known as		[CPMT 1983]
	(d) Electron deficient		(a) Ionic product		ility product
Would gaseous <i>HCl</i> be	considered as an Arrhenius	5.			
acid	[UDODATI coc.4]		salt MX_2 at $25^{\circ}C$ is	1.0×10^{-11} , t	he solubility of
(a) Vac	[UPSEAT 2004]		the salt in mole litre ⁻¹	at this tempe	erature will be[RPMT
			(a) 2.46×10^{14}	(b) 1.36 ×	10^{-4}
			(c) 2.60×10^{-7}	(d) 1.20 ×	10^{-10}
	not exist	6.	The unit of ionic produ	ict of water	K_{w} are
				_	PSEAT 2001, 02]
solvent	owing is carred amphoteffe		(a) $Mol^{-1}L^{-1}$		
	[UPSEAT 2004]		` '	• •	
(a) Ammonium hydrox		7•	A solution which is 10	^{-3}M each in	$Mn^{2+}, Fe^{2+}, Zn^{2+}$
(c) Benzene	(d) Water		and Hg^{2+} is treated w	vith $10^{-16} M$	sulphide ion. If
	donates proton is called (a) Amphoteric (c) Aprotic For the reaction in an ZnX^+ , the K_{eq} is greated (a) F^- (c) ClO_4^- Why are strong acids solutions in acid-based (a) The pH at the equal (b) They can be used as bases (c) Strong acids form acids (d) The salts of strong For an aqueous so species of acid is (a) H^+ ion (c) H_2^+ ion Which is a Lewis base (a) B_2H_6 (c) AlH_3 For a weak acid, the in (a) Its dissociation condition (b) Its pK_a is very low (c) It is partially dissodictly dissodictly acids (d) Solution of its sodid Boron halides behave their (a) Ionic nature (c) Covalent nature rewould gaseous HCl be acid (a) Yes (b) No (c) Not known (d) Gaseous HCl does rework the solution of the following the solution of the solution of the following the solution of th	(c) Aprotic (d) Amphiprotic For the reaction in aqueous solution $Zn^{2+} + X^- = ZnX^+$, the K_{eq} is greatest when X is [Pb. PMT 1998] (a) F^- (b) NO_3^- (c) ClO_4^- (d) I^- Why are strong acids generally used as standard solutions in acid-base titrations [Pb. PMT 1998] (a) The pH at the equivalence point will always (b) They can be used to titrate both strong and k bases (c) Strong acids form more stable solutions than k acids (d) The salts of strong acids do not hydrolysed For an aqueous solution, the characteristic species of acid is [RPMT 1999] (a) H^+ ion (b) H_3O^+ ion (c) H_2^+ ion (d) H_4O^+ ion Which is a Lewis base [CPMT 1988; JEE Orissa 2004] (a) B_2H_6 (b) $LiAlH_4$ (c) AlH_3 (d) NH_3 For a weak acid, the incorrect statement is [Pb. PMT (a) Its dissociation constant is low (b) Its pK_a is very low (c) It is partially dissociated (d) Solution of its sodium salt is alkaline in water Boron halides behave as Lewis acids, because of their [CBSE PMT 1996; BHU 2004] (a) Ionic nature (d) Electron deficient re Would gaseous HCl be considered as an Arrhenius acid [UPSEAT 2004] (a) Yes (b) No (c) Not known (d) Gaseous HCl does not exist Which one of the following is called amphoteric solvent [UPSEAT 2004] (a) Ammonium hydroxide (b) Chloroform	donates proton is called (a) Amphoteric (b) Neutral (c) Aprotic (d) Amphiprotic For the reaction in aqueous solution $Zn^{2+} + X^- = ZnX^+$, the K_{eq} is greatest when X is [Pb. PMT 1998] (a) F^- (b) NO_3^- (c) ClO_4^- (d) I^- 165. Why are strong acids generally used as standard solutions in acid-base titrations (Pb. PMT 1998] (a) The pH at the equivalence point will always (b) They can be used to titrate both strong and k bases (c) Strong acids form more stable solutions than k acids (d) The salts of strong acids do not hydrolysed For an aqueous solution, the characteristic species of acid is [RPMT 1999] 2. (a) H^+ ion (b) H_3O^+ ion (c) H_2^+ ion (d) H_4O^+ ion Which is a Lewis base [CPMT 1988; JEE Orissa 2004] (a) B_2H_6 (b) $LiAlH_4$ (c) AlH_3 (d) NH_3 For a weak acid, the incorrect statement is [Pb. PMT 2004] (a) Its gartially dissociated (d) Solution of its sodium salt is alkaline in water Boron halides behave as Lewis acids, because of their [CBSE PMT 1996; BHU 2004] (a) Ionic nature (b) Acidic nature (c) Covalent nature (d) Electron deficient re Would gaseous HCl be considered as an Arrhenius acid [UPSEAT 2004] (a) Yes (b) No (c) Not known (d) Gaseous HCl does not exist Which one of the following is called amphoteric solvent [UPSEAT 2004] (a) Ammonium hydroxide (b) Chloroform 7-	The solvent which neither accepts proton nor donates proton is called [RPMT 2000] (a) Amphoteric (b) Neutral (c) Aprotic (d) Amphiprotic For the reaction in aqueous solution $Za^{2+} + X^- = ZaX^+$, the K_{eq} is greatest when X is Pb . PMT 1998] (a) F^- (b) NO_3^- (c) CIO_4^- (d) I^- Why are strong acids generally used as standard solutions in acid-base titrations [Pb. PMT 1998] (a) The pH at the equivalence point will always (c) PO_4^{2+} (b) They can be used to titrate both strong and k bases (c) Strong acids form more stable solutions than k acids (d) The salts of strong acids do not hydrolysed For an aqueous solution, the characteristic species of acid is [RPMT 1999] (a) H^+ ion (b) H_3O^+ ion (b) H_3O^+ ion (c) H_2^+ ion (d) H_4O^+ ion (d) H_4O^+ ion (d) H_4O^+ ion (e) H_2^+ ion (d) H_4O^+ ion (f) H_3O^+ is a Lewis base [CPMT 1988; JEE Orissa 2004] (a) H_3O^+ is very low (c) It is partially dissociated (d) Solution of its sodium salt is alkaline in water Boron halides behave as Lewis acids, because of their (c) Covalent nature (d) Electron deficient receptors acid to the considered as an Arrhenius acid (a) Yes (b) No (c) Not known (d) Gaseous HCl be considered as an Arrhenius acid (a) Yes (b) No (c) Not known (d) Gaseous HCl does not exist Which one of the following is called amphoteric solvent (EUPSEAT 2004] (a) Ammonium hydroxide (b) Chloroform (b) Chloroform 164. The conjugate base of H_3Cl (c) PO_4^2 (c) PO_4^2 (d) H_3 (c) PO_4^2 (c) PO_4^2 (d) H_3 (c) PO_4^2 (c) PO_4^2 (d) H_3 (c) PO_4^2 (e) PO_4^2 (f) H_3 (c) PO_4^2 (g) H_3 (c) H_3 (donates proton is called (a) Amphotoric (b) Neutral (c) Aprotic (d) Amphiprotic For the reaction in aqueous solution $Z^{n^2+} + X^- = Z^{n}X^+$, the K_{eq} is greatest when X is [Pb. PMT 1998] (a) F^- (b) NO_5 (c) $C!O_4^-$ (d) F^- (b) NO_5 (c) $C!O_4^-$ (d) F^- (b) NO_5 (c) $C!O_4^-$ (d) F^- (d) F^- (e) F^- (d) F^- (f) F^- (e) F^- (f) F^- (f) F^- (f) F^- (f) F^- (g) F^- (g) F^- (h) F^- (f) F^- (g) F^- (g) F^- (h) F^- (f) F^- (g) F^- (h) F^- (f) F^- (f) F^- (g) F^- (g) F^- (g) F^- (h) F^- (g) F^- (g

 K_{sp} of MnS, FeS, ZnS and HgS are $10^{-15}, 10^{-23}, 10^{-20}$ and 10^{-54} respectively, which one will precipitate first

[IIT Screening 2003]

- (a) FeS
- (b) *MgS*
- (c) HgS
- (d) ZnS
- **8.** Let the solubility of an aqueous solution of $Mg(OH)_2$ be x then its k_{sp} is **[AIEEE 2002]**
 - (a) $4x^3$
- (b) $108 x^5$
- (c) $27x^4$
- (d) 9x
- **9.** The solubility product of $BaSO_4$ at $25^{\circ}C$ is 1.0×10^{-9} . What would be the concentration of H_2SO_4 necessary to precipitate $BaSO_4$ from a solution of $0.01~M~Ba^{2+}$ ions

[RPMT 1999]

- (a) 10^{-9}
- (b) 10^{-8}
- (c) 10^{-7}
- (d) 10^{-6}
- 10. The solubility in water of a sparingly soluble salt AB_2 is $1.0\times 10^{-5}\,mol\,l^{-1}$. Its solubility product number will be

[AIEEE 2003]

- (a) 4×10^{-15}
- (b) 4×10^{-10}
- (c) 1×10^{-15}
- (d) 1×10^{-10}
- 11. The solubility of CaF_2 is a moles/litre. Then its solubility product is [Orissa JEE 2002]
 - (a) s^2

- (b) $4s^3$
- (c) $3s^2$
- (d) s^{3}
- **12.** On passing a current of *HCl* gas in a saturated solution of *NaCl*, the solubility of *NaCl*

[CPMT 1989; CBSE PMT 1989]

- (a) Increases
- (b) Decreases
- (c) Remains unchanged (d) NaCl decomposes
- 13. Which is the correct representation of the solubility product constant of Ag_2CrO_4 [NCERT 1974, 75]
 - (a) $[Ag^+]^2 [CrO_4^{-2}]$
- (b) $[Ag^+][CrO_4^{-2}]$
- (c) $[2Ag^+][CrO_4^{-2}]$
- (d) $[2Ag^+]^2 [CrO_4^{-2}]$
- 14. The solubility of CaF_2 is 2×10^{-4} moles / litre. Its solubility product (K_{sp}) is [NCERT 1981; BHU 1983, 86;

MP PET 1992; CBSE PMT 1999]

- (a) 2.0×10^{-4}
- (b) 4.0×10^{-3}
- (c) 8.0×10^{-12}
- (d) 3.2×10^{-11}
- 15. Solubility product of a sulphide MS is 3×10^{-25} and that of another sulphide NS is 4×10^{-40} . In ammoniacal solution

[NCERT 1981]

- (a) Only NS gets precipitated
- (b) Only MS gets precipitated
- (c) No sulphide precipitates

- (d) Both sulphides precipitate
- **16.** Which of the following salts when dissolved in water will get hydrolysed

[MNR 1985; CPMT 1989; CBSE PMT 1989; MP PET 1999]

- (a) NaCl
- (b) $NH_{\perp}Cl$
- (c) KCl
- (d) Na_2SO_4
- 17. The aqueous solution of $FeCl_3$ is acidic due to

[CPMT 1972, 79, 83, 84;

MP PET/PMT 1988; RPMT 2000]

- (a) Acidic impurities
- (b) Ionisation
- (c) Hydrolysis
- (d) Dissociation
- 18. A precipitate of AgCl is formed when equal volumes of the following are mixed. $[K_{sp}]$ for

 $AgCl = 10^{-10}$]

[KCET 2005]

- (a) $10^{-4} M AgNO_3$ and $10^{-7} M HCl$
- (b) $10^{-5} M AgNO_3$ and $10^{-6} M HCl$
- (c) $10^{-5} M AgNO_3$ and $10^{-4} M HCl$
- (d) $10^{-6} M AgNO_3$ and $10^{-6} M HCl$
- 19. The solubility of silver chromate in 0.01 M K_2CrO_4 is $2\times10^{-8}\,mol\,dm^{-3}$. The solubility product of silver chromate will be
 - (a) 8×10^{-24}
- (b) 16×10^{-24}
- (c) 1.6×10^{-18}
- (d) 16×10^{-18}
- **20.** Some salts although containing two different metallic elements give test for only one of them in solution. Such salts are [MNR 1979]
 - (a) Double salts
- (b) Normal salts
- (c) Complex salts
- (d) Basic salts
- **21.** What is the pH value of $\frac{N}{1000}KOH$ solution

[CPMT 1975; MNR 1986, 91; Pb. CET 2004]

- (a) 10^{-11}
- (b) 3
- (c) 2
- (d) 11
- **22.** Mohr's salt is a
- (a) Normal salt(c) Basic salt
- (b) Acid salt(d) Double salt
- 3. Aqueous solution of sodium acetate is

[MNR 1978; CPMT 1971, 80, 81; MADT Bihar 1982; MP PMT 1985;]

[MNR 1986]

- (a) Neutral
- (b) Weakly acidic
- (c) Strongly acidic
- (d) Alkaline
- **24.** Which is the correct alternate for hydrolysis constant of NH_4CN [CBSE PMT 1989]
 - (a) $\sqrt{\frac{K_w}{K_a}}$
- (b) $\frac{K_w}{K_a \times K_b}$
- (c) $\sqrt{\frac{K_b}{c}}$
- (d) $\frac{K_a}{K_b}$
- 25. Which of the following salts undergoes hydrolysis [CPMT 1972, 74, 78; DPMT 1985]

			Ionic Equilibrium 361	
(a) CH ₃ COONa	(b) <i>KNO</i> ₃	36.	A white salt is readily soluble in water and g	
(c) NaCl	(d) K_2SO_4		colourless solution with a pH of about 9. Th	e salt
What will happen if CCl	4 is treated with AgNO 3		would be [Pb. PMT	10081
	[DPMT 1983]		(a) NH_4NO_3 (b) CH_3COONa	1990]
(a) A white ppt. of AgCl	will form		(c) CH_3COONH_4 (d) $CaCO_3$	
(b) NO_2 will be evolved		37.	If acetic acid mixed with sodium acetate,	then
(c) <i>CCl</i> ₄ will dissolve in	$1 AgNO_3$	3/•	H^+ ion concentration will be [Roorkee	
(d) Nothing will happen			(a) Increased (b) Decreased	5551
	tion for solubility product		(c) Remains unchanged (d) pH decreased	
of SnS_2 is		38.	Solubility of $AgCl$ will be minimum in	
	7; MP PET 1999;RPMT 2000]		[CBSE PMT	1995]
(a) $[Sn^{4+}][S^{2-}]^2$	(b) $[Sn^{2+}][S^{2-}]^2$		(a) $0.001 M AgNO_3$ (b) Pure water	
(c) $[Sn^{2+}][2S^{2-}]$	(d) $[Sn^{4+}][2S^{2-}]^2$		(c) $0.01 M CaCl_2$ (d) $0.01 M NaCl$	
A precipitate of calcium in	n oxalate will not dissolve	39.	In absence of formation of complex ions be addition of a common ion, the solubility of a	given
	[CPMT 1971, 89; IIT 1986]		salt is [BHU (a) Increased	1979]
(a) HCl	(b) <i>HNO</i> ₃		(b) Decreased	
(c) Aquaregia	(d) CH ₃ COOH		(c) Unaffected	
Baking soda is	[RPMT 2000]		(d) First increased and then decreased	
(a) Basic salt	(b) Acidic salt	40.	At 298 K, the solubility product of PbG	tl, is
(c) Complex salt	(d) Double salt		1.0×10^{-6} . What will be the solubility of <i>Pl</i>	bCl_2 in
	wing substances will be a		moles/litre	2
mixed salt	[DDMT 1082, CDMT 1072]		MP PMT 1990; CPMT 198	5, 96]
(a) NaHCO ₃	[DPMT 1982; CPMT 1972]		(a) 6.3×10^{-3} (b) 1.0×10^{-3}	
(b) Ca(OCl)Cl			(c) 3.0×10^{-3} (d) 4.6×10^{-14}	
(c) $K_2SO_4 Al_2(SO_4)_3.24H$	-0	41.	Solubility product is [CET Pune	1998]
(d) $Mg(OH)Br$	20		(a) The ionic product of an electrolyte is saturated solution	in its
	$BaCl_2$ is 4×10^{-9} . Its		(b) The product of the solubilities of the id	ns of
solubility in moles/litre	would be		the electrolyte	
[AFMC 198	2; Roorkee 1990; BHU 2000]		(c) The product of solubilities of the salts	
(a) 1×10^{-3}	(b) 1×10^{-9}	40	(d) The product of the concentration of the id	ons
(c) 4×10^{-27}	(d) 1×10^{-27}	42.	Ionic product of water increases, if [AMU 1983; MP PET 1986; MP PET/PMT	1088:
Which hydroxide will	have lowest value of		IIDIKED	
solubility product at nor	rmal temperature $(25^{\circ}C)$ [IIT	1990;	RPMT 1997] (a) Pressure is reduced (b) H^+ is added	
(a) $Mg(OH)_2$	(b) $Ca(OH)_2$		(c) OH^- is added (d) Temperature	
(c) $Ba(OH)_2$	(d) $Be(OH)_2$	incre	eases	
Which will not be hydro	lysed [MP PMT 1989]	43.	Which one is a mixed salt [DPMT	1985]
(a) Potassium nitrate			(a) $NaHSO_4$ (b) $NaKSO_4$	
(b) Potassium cyanide(c) Potassium succinate			(c) $K_4 Fe(CN)_6$ (d) $Mg(OH)Cl$	
(d) Potassium carbonate		44.	If K_{sp} for $HgSO_4$ is 6.4×10^{-5} , then solubil	ity of

the salt is

(a) 8×10^{-3}

(c) 6.4×10^{-5}

The solubility of

(molecular weight of $BaSO_4 = 233$)

45.

[AFMC 1997; KCET 2000; CPMT 2000; JIPMER 2001]

 2.33×10^{-3} gm / litre. Its solubility product will be

(b) 8×10^{-6}

(d) 6.4×10^{-3}

BaSO₄ in water

[AIIMS 1998]

26.

27.

28.

29.

30.

31.

32.

33.

(d) Potassium carbonate

35. Which is least soluble in water

(a) $BaCl_2 + Ba(NO_3)_2$

(c) $NH_4OH + NH_4Cl$

(a) AgCl

(c) AgI

34. Which pair will show common ion effect

[MP PMT 1990, 99; Pb. PMT 2001]

[UPSEAT 1999]

(b) NaCl + HCl

(b) AgF

(d) Ag_2S

(d) AgCN + KCN

- (a) 1×10^{-5}
- (b) 1×10^{-10}
- (c) 1×10^{-15}

- (d) 1×10^{-20}
- The solubility of AgCl in 0.2 M NaCl solution $(K_{sp} \text{ for } AgCl = 1.20 \times 10^{-10}) \text{ is}$
 - [MP PET 1996]

- (a) 0.2 M
- (b) $1.2 \times 10^{-10} M$
- (c) $0.2 \times 10^{-10} M$
- (d) $6.0 \times 10^{-10} M$
- 47. The solubility of AgI in NaI solution is less than that in pure water because [UPSEAT 2001]
 - (a) AaI forms complex with NaI
 - (b) Of common ion effect
 - (c) Solubility product of AqI is less than that of
 - (d) The temperature of the solution decreases
- The solubility product of $BaSO_4$ is 1.5×10^{-9} . The precipitation in a 0.01 M Ba^{2+} solution will start, on adding H_2SO_4 of concentration [CPMT 1988]
 - (a) $10^{-9} M$
- (b) $10^{-8} M$
- (c) $10^{-7} M$
- (d) $10^{-6} M$
- **49.** At 20° C, the Ag^{+} ion concentration in a saturated solution of Ag_2CrO_4 is 1.5×10^{-4} mole / litre. At $20^{\circ} C$, the solubility product of $Ag_{2}CrO_{4}$ would be

[MP PET 1997; MP PMT 1999]

- (a) 3.3750×10^{-12}
- (b) 1.6875×10^{-10}
- (c) 1.6875×10^{-12}
- (d) 1.6875×10^{-11}
- The solubility of $PbCl_2$ is [MP PMT 1995; DCE 1999]
 - (a) $\sqrt{K_{sn}}$
- (b) ${}^{3}\sqrt{K_{sp}}$
- (c) $\sqrt[3]{\frac{K_{sp}}{4}}$
- The solubility product of AgCl is 1.44×10^{-4} at 100°C. The solubility of silver chloride in boiling water may be

[MP PMT 1994; Bihar MEE 1998]

- (a) $0.72 \times 10^{-4} M$
- (b) $1.20 \times 10^{-2} M$
- (c) $0.72 \times 10^{-2} M$
- (d) $1.20 \times 10^{-4} M$
- If the solubility of a sparingly soluble salt of the 52. type BA_2 (giving three ions on dissociation of a molecule) is x moles per litre, then its solubility product is given by [BHU 1987]
 - (a) x^2
- (b) $2x^3$
- (c) $4x^2$
- (d) $4x^3$
- The solubility product of Ag_2CrO_4 is 32×10^{-12} . What is the concentration of CrO_4^- ions in that solution

[BHU 1997; DPMT 2004]

- (a) $2 \times 10^{-4} \, m \, / \, s$
- (b) $16 \times 10^{-4} \, m / s$
- (c) $8 \times 10^{-4} \, m \, / \, s$
- (d) $8 \times 10^{-8} \, m / s$

The addition of *HCl* will not suppress the 54. ionization of

[MP PET 1993]

- (a) Acetic acid
- (b) Benzoic acid
- (c) H_2S
- (d) Sulphuric acid
- On the addition of a solution containing 55. CrO_4^{2-} ions to the solution of Ba^{2+} , Sr^{2+} and Ca^{2+} ions, the precipitate obtained first will be of [MP PMT 1993]
 - (a) CaCrO₄
- (b) SrCrO₄
- (c) $BaCrO_{\Lambda}$
- (d) Mixture of (a), (b),

- (c)
- The solubility product of a sparingly soluble salt AB at room temperature is 1.21×10^{-6} . Its molar solubility is

[CPMT 1987: MP PET 2001]

- (a) 1.21×10^{-6}
- (b) 1.21×10^{-3}
- (c) 1.1×10^{-4}
- (d) 1.1×10^{-3}
- The precipitation occurs if ionic concentration is 57. [AFMC 1995; J & K 2005]
 - (a) Less than solubility product
 - (b) More than solubility product
 - (c) Equal to solubility product
 - (d) None of these
- 58. If S and K_{sp} are respectively solubility and solubility product of a sparingly soluble binary electrolyte, then

[CPMT 1988; MP PMT 1999]

- (a) $S = K_{sp}$
- (b) $S = K_{sp}^2$
- (c) $S = \sqrt{K_{sp}}$
- (d) $S = \frac{1}{2} K_{sp}$
- 59. Any precipitate is formed when

[AIIMS 1982; DPMT 1985; KCET 1999; MP PMT 2004]

- (a) Solution becomes saturated
- (b) The value of ionic product is less that than the value of solubility product
- (c) The value of ionic product is equal than the value of solubility product
- (d) The value of ionic product is greater than the value of solubility product
- The solubility product of AgCl is 4.0×10^{-10} at 298 K. The solubility of AgCl in 0.04 m CaCl, will

[KCET 1996]

- (a) $2.0 \times 10^{-5} m$
- (b) $1.0 \times 10^{-4} m$
- (c) $5.0 \times 10^{-9} m$
- (d) $2.2 \times 10^{-4} m$
- Hydrolysis of sodium acetate will give [MNR 1978]
 - (a) Acidic solution
- (b) Basic solution
- (c) Neutral solution
- (d) Normal solution
- **62.** If the solubility product of $BaSO_4$ is 1.5×10^{-9} in water, its solubility in moles per litre, is

solubility 71. $PbCl_2$ (b) 3.9×10^{-5} (a) 1.5×10^{-9} 6.3×10^{-3} mole/litre. Its solubility product at that (c) 7.5×10^{-5} (d) 1.5×10^{-5} temperature is On passing H_2S gas through a highly acidic 63. [NCERT 1979; CPMT 1985] Cd^{2+} ions. CdS is (a) $(6.3 \times 10^{-3}) \times (6.3 \times 10^{-3})$ solution containing precipitated because (b) $(6.3 \times 10^{-3}) \times (12.6 \times 10^{-3})$ (a) Of common ion effect (c) $(6.3 \times 10^{-3}) \times (12.6 \times 10^{-3})^2$ (b) The solubility of CdS is low (c) Cd^{2+} ions do not form complex with H_2S (d) $(12.6 \times 10^{-3}) \times (12.6 \times 10^{-3})$ (d) The solubility product of CdS is low Which of the following cannot be hydrolysed 72. Which of the following will occur if a 0.1~M[MP PMT 1996] solution of a weak acid is diluted to 0.01 M at (a) A salt of weak acid and strong base constant temperature (b) A salt of strong acid and weak base [UPSEAT 2001, 02] (c) A salt of weak acid and weak base (a) $[H^+]$ will decrease to 0.01 M(d) A salt of strong acid and strong base (b) pH will decrease pH of water is 7. When a substance Y is dissolved 73. (c) Percentage ionization will increase in water, the pH becomes 13. The substance Y is a (d) K_a will increase salt of [MP PMT 1997] **65.** If solubility of calcium hydroxide is $\sqrt{3}$, then its IM(a) Strong acid and strong base solubility product will be (b) Weak acid and weak base (a) 27 (b) 3 (c) Strong acid and weak base (d) $12\sqrt{3}$ (c) 9 (d) Weak acid and strong base **66.** When NH_4Cl is added to NH_4OH solution, the 74. Which is a basic salt [MP PMT 1985] dissociation of ammonium hydroxide is reduced. (a) *PbS* It is due to (b) $PbCO_3$ [MP PMT 1993] (d) $2PbCO_3.Pb(OH)_2$ (c) $PbSO_4$ (a) Common ion effect (b) Hydrolysis The saturated solution of Ag_2SO_4 is $2.5 \times 10^{-2} M$. (c) Oxidation (d) Reduction Its solubility product (K_{sp}) is **67.** At 298 K, the solubility of $PbCl_2$ is $2 \times 10^{-2} mol/lit$, [RPMT 2002] (a) 62.5×10^{-6} (b) 6.25×10^{-4} then $k_{sp} =$ (d) 3.125×10^{-6} (a) 1×10^{-7} (c) 15.625×10^{-6} (b) 3.2×10^{-7} (c) 1×10^{-5} (d) 3.2×10^{-5} K_{sp} for sodium chloride is $36 \text{ mol}^2 / \text{litre}^2$. The **68.** The solubility product of silver sulphide is solubility of sodium chloride is 3.2×10^{-11} . Its solubility at the experimental (a) $\frac{1}{36}$ (b) $\frac{1}{6}$ temperature is (a) 2×10^{-4} moles per litre (c) 6(d) 3600 (b) 6×10^{-6} moles per litre Sodium chloride is purified by passing hydrogen (c) 1.2×10^{-5} moles per litre chloride gas in an impure solution of sodium (d) 8×10^{-4} moles per litre chloride. It is based on 69. solubility of CaCO 3 in water [MP PMT 1996] 3.05×10^{-4} moles / litre. Its solubility product will be [MP PMT 1997] Buffer action (b) Common ion effect (d) Hydrolysis of salt (c) Association of salt (a) 3.05×10^{-4} (b) 10 78. If the concentration of lead iodide in its saturated (c) 6.1×10^{-4}

[BHU 1995; MP PET 1995; UPSEAT 204]

(d) 9.3×10^{-8}

[UPSEAT 2001, 02; CPMT 2002]

70. Solubility of BaF_2 in a solution $Ba(NO_3)_2$ will be

represents by the concentration term

(a) $[Ba^{++}]$

(c) $\frac{1}{2}[F^-]$

(c) 6×10^{-9} (d) 32×10^{-9} (b) [F⁻] $CaF_2 (K_{sp} = 1.7 \times 10^{-10})$ is The precipitate of 79. (d) $2[NO_3^-]$ obtained when equal volumes of the following are

mixed

(a) 4×10^{-6}

its solubility product is

solution at $25^{\circ} C$ be 2×10^{-3} moles per litre, then

(b) 8×10^{-12}

[CPMT 1984]

[IIT 1992: UPSEAT 2000]

- (a) $10^{-4} M Ca^{2+} + 10^{-4} M F^{-}$
- (b) $10^{-2} M Ca^{2+} + 10^{-3} M F^{-}$
- (c) Both
- (d) None of these
- **80.** In the reaction: $H_2S \rightleftharpoons 2H^+ + S^{--}$, when NH_4OH is added, then [KCET (Med.) 1999; AFMC 2000]
 - (a) S^{--} is precipitate
 - (b) No action takes places
 - (c) Concentration of S^{--} decreases
 - (d) Concentration of S^{--} increases
- 81 What is the minimum concentration of SO_4^{2-} required to precipitate BaSO 4 in a solution containing $1.0 \times 10^{-4} mol \ Ba^{2+}$? (K_{sp} for $BaSO_4$ is 4×10^{-10})

[MP PMT 2000]

- (a) $4 \times 10^{-10} M$
- (b) $2 \times 10^{-7} M$
- (c) $4 \times 10^{-6} M$
- (d) $2 \times 10^{-3} M$
- **82.** Solubility product for salt AB_2 is 4×10^{-12} . Calculate solubility [RPET 2003]
 - (a) 1×10^{-3} gm mol / litre
 - (b) 1×10^{-5} gm mol / litre
 - (c) 1×10^{-4} gm mol / litre
 - (d) 1×10^{-2} gm mol / litre
- **83.** Solubility product of a salt AB is 1×10^{-8} in a solution in which concentration of A is $10^{-3} M$. The salt will precipitate when the concentration of B becomes more than

[MP PET 1990; KCET 2003]

- (a) $10^{-4} M$
- (b) $10^{-7} M$
- (c) $10^{-6} M$
- (d) $10^{-5} M$
- At equilibrium, if to a saturated solution of NaCl, HCl is passed, NaCl gets precipitated because [RPMT 1999]
 - (a) HCl is a strong acid
 - (b) Solubility of NaCl decreases
 - (c) Ionic product of NaCl becomes greater than its K_{sn}
 - (d) HCl is a weak acid
- The solubility product of $BaSO_4$ is 1.3×10^{-9} . The solubility of this salt in pure water will be[MP PET 2009] stillation
 - (a) $1.69 \times 10^{-9} \, mol \, litre^{-1}$
- (b) $1.69 \times 10^{-18} \, mol \, litre^{-1}$
- (c) $3.6 \times 10^{-18} \, mol \, litre^{-1}$
- (d) $3.6 \times 10^{-5} mol \ litre^{-1}$
- The solubility product of AgCl under standard conditions of temperature is given by [Kerala (Med.) 2003] (a) 2.0×10^{-4} mole / litre
 - (a) 1.6×10^{-5}
- (b) 1.5×10^{-8}
- (c) 3.2×10^{-10}
- (d) 1.5×10^{-10}
- An aqueous solution of CH₃COONa will be

- (a) Acidic
- (b) Alkaline
- (c) Neutral
- (d) None of these
- 88. In which of the following salt hydrolysis takes

[CPMT 1974, 78]

- (a) KCl
- (b) NaNO₂
- (c) CH₃COOK
- (d) K_2SO_4
- At $90^{\circ} C$ pure water has $[H_3 O^+] = 10^{-6} M$, the value of $K_{...}$ at this temperature will be

[IIT 1981; MNR 1990; CBSE PMT 1993; UPSEAT 1999]

- (a) 10^{-6}
- (b) 10^{-12}
- (c) 10^{-14}
- (d) 10^{-8}
- Solubility MX_2 type electrolyte 0.5×10^{-4} mole/litre. The value of K_{sp} of the electrolyte is [CBSE PMT 2002]
 - (a) 5×10^{-13}
- (b) 25×10^{-10}
- (c) 1.25×10^{-13}
- (d) 5×10^{12}
- According to the reaction $PbCl_2 = Pb^2 + 2Cl^-$, the solubility coefficient of PbCl2 is [MP PET/PMT 1988]
 - (a) $[Pb^{2+}][Cl^{-}]^{2}$
- (b) $[Pb^{2+}][Cl^{-}]$
- (c) $[Pb^{2+}]^2[Cl^-]$
- (d) None of these
- 92. K_{sp} value of $Al(OH)_3$ and $Zn(OH)_2$ 8.5×10^{-23} and 1.8×10^{-14} respectively. If NH_4OH is added in a solution of Al^{3+} and Zn^{2+} , which will precipitate earlier

[MP PMT 1989; CPMT 1989]

- (a) $Al(OH)_3$
- (b) $Zn(OH)_2$
- (c) Both together
- (d) None
- Why pure NaCl is precipitated when HCl gas is 93. passed in a saturated solution of NaCl

[NCERT 1977; MP PMT 1987; CPMT 1974, 78, 81]

- (a) Impurities dissolves in HCl
- (b) The value of $[Na^+]$ and $[Cl^-]$ becomes smaller than K_{sp} of NaCl
- (c) The value of $[Na^+]$ and $[Cl^-]$ becomes greater than K_{sp} of NaCl
- (d) HCl dissolves in the water
- Pure NaCl is prepared by saturating a cold saturated solution of common salt in water with HCl gas. The principle used is
 - (a) Le Chatelier principle
- (b) Displacement law

 - (c) Common ion effect (d) Fractional
- What is the solubility of calcium fluoride in a 95. saturated solution, if its solubility product is 3.2×10^{-11}

[CPMT 1997]

- (b) $12.0 \times 10^{-3} \text{ mole / litre}$
- (c) $0.2 \times 10^{-4} \text{ mole / litre}$
- (d) 2×10^{-3} mole / litre
- 96. The following equilibrium exists in an aqueous solution of hydrogen sulphide:

[MP PET 2001]

$H_{2}S$	⇄	$H^{\scriptscriptstyle +}$	+	HS

If dilute HCl is added to an aqueous solution of H_2S without any change in temperature[NCERT 1989]

- (a) The equilibrium constant will change
- (b) The concentration of HS will increase
- (c) The concentration of undissociated H_2S will decrease
 - (d) The concentration of HS will decrease
- Solubility of a salt M_2X_3 is y $mol dm^{-3}$. The 97. solubility product of the salt will be

[IIT 1990, 97; AFMC 1991; RPMT 1999; MP PET 2001; MP PMT 2003; Orissa JEE 2005]

- (a) $6v^4$
- (b) $64 y^4$
- (c) $36v^5$
- (d) $108 v^5$
- 98. Which one of the following is most soluble [CBSE PMT 1994; RPMT 2000]

 - (a) $CuS(K_{sp} = 8 \times 10^{-37})$ (b) $MnS(K_{sp} = 7 \times 10^{-16})$

 - (c) $Bi_2S_3(K_{sp} = 1 \times 10^{-70})$ (d) $Ag_2S(K_{sp} = 6 \times 10^{-51})$
- The solubility product of $PbCl_2$ at $20^{\circ}C$ is

 1.5×10^{-4} . Calculate the solubility[Bihar CEE 1995; BHU 2002] (c) 1×10^{-12} mol/litre

- (a) 3.75×10^{-4}
- (b) 3.34×10^{-2}
- (c) 3.34×10^2
- (d) None of these
- 100. Which one of the following compounds is a Lewis

[EAMCET 1997]

- (a) PCl_3
- (b) BCl_3
- (c) NCl_3
- (d) CHCl₃
- 101. Which one of the following salt is most acidic in water

[IIT 1995]

- (a) NiCl₂
- (b) BeCl,
- (c) FeCl₃
- (d) $AlCl_3$
- 102. Which of the following aqueous solution will have a pH less than 7.0 [MP PMT 1991, 92]
 - (a) KNO_3
- (b) NaOH
- (c) FeCl₃
- (d) NaCN
- 103. Hydrolysis constant for a salt of weak acid and weak base would be [RPMT 1999]
 - (a) $K_h = \frac{K_w}{K_a}$
- (b) $K_h = \frac{K_w}{K_h}$
- (c) $K_h = \frac{K_w}{K_a K_b}$
- (d) None of these
- 104. Which salt will give basic solution on hydrolysis [RPMT 1997]
 - (a) KCN
- (b) KCl
- (c) $NH_{\perp}Cl$
- (d) CH₃COONH₄
- 105. Which of the following sulphides has the lowest solubility product [KCET 1996]
 - (a) FeS
- (b) *MnS*

- (c) PbS
- (d) ZnS
- **106.** The concentration of which ion is to be decreased. when NH_3 solution is added [RPMT 1997]
 - (a) OH^-
- (b) NH_{4}^{+}
- (c) H_3O^+
- (d) O_2^-
- 107. The compound insoluble in acetic acid is [IIT 1986]
 - (a) Calcium oxide
 - (b) Calcium carbonate
 - (c) Calcium oxalate
 - (d) Calcium hydroxide
- **108.** A saturated solution of Ag_2SO_4 is $2.5 \times 10^{-2} M$; The value of its solubility product is [Pb.CET 2004]
 - (a) 62.5×10^{-6}
- (b) 6.25×10^{-4}
- (c) 15.625×10^{-6}
- (d) 3.125×10^{-6}
- **109.** Solubility product of AgCl is 1×10^{-6} at 298 K. Its solubility in mole litre⁻¹ would be
 - (a) $1 \times 10^{-6} mol / litre$
 - (b) $1 \times 10^{-3} mol / litre$

 - (d) None of these
- 110. A litre of solution is saturated with AgCl. To this solution if 1.0×10^{-4} mole of solid *NaCl* is added, what will be the $[Ag^+]$, assuming no volume [UPSEAT 2004] change
 - (a) More
- (b) Less
- (c) Equal
- (d) Zero
- **111.** The concentration of *KI* and KCl in certain solution containing both is 0.001M each. If 20 ml of this solution is added to 20 ml of a saturated solution of AqI in water? What will happen [MP PMT 2004
 - (a) AqCl will be precipitated
 - (b) AqI will be precipitated
 - (c) Both AqCl and AqI will be precipitated
 - (d) There will be no precipitated
- 112. The solubility product of a sparingly soluble salt AX_2 is 3.2×10^{-11} . Its solubility (in moles / litres) is

[CBSE PMT 2004]

- (a) 2×10^{-4}
- (b) 4×10^{-4}
- (c) 5.6×10^{-6}
- (d) 3.1×10^{-4}
- 113. 0.5 M ammonium benzoate is hydrolysed to 0.25percent, hence its hydrolysis constant is[MH CET 2004]
 - (a) 2.5×10^{-5}
- (b) 1.5×10^{-4}
- (c) 3.125×10^{-6}
- (d) 6.25×10^{-4}
- **114.** The solubility of Sb_2S_3 in water is 1.0×10^{-5} mol / litre at 298 K. What will be its solubility product [CPMT 20
 - (a) 108×10^{-25}
- (b) 1.0×10^{-25}

- (c) 144×10^{-25}
- (d) 126×10^{-24}
- 115. The ionic product of water at $25^{\circ}C$ is 10^{-14} . The ionic product at $90^{\circ}C$ will be [CBSE PMT 1996]
 - (a) 1×10^{-20}
- (b) 1×10^{-12}
- (c) 1×10^{-14}
- (d) 1×10^{-16}
- **116.** In hydrolysis of a salt of weak acid and strong base, $A^- + H_2O \rightleftharpoons HA + OH^-$, the hydrolysis constant (K_b) is equal to....
 - (a) $\frac{K_w}{K_a}$
- (b) $\frac{K_w}{K_h}$
- (c) $\sqrt{\frac{K_a}{C}}$
- (d) $\frac{K_w}{K_a \times K_b}$

Hydrogen ion concentration- pH scale and Buffer solution

1. The pH of blood does not appreciably change by a small addition of an acid or a base because blood

[CBSE PMT 1995]

- (a) Contains serum protein which acts as buffer
- (b) Contains iron as a part of the molecule
- (c) Can be easily coagulated
- (d) It is body fluid
- **2.** The pH of a 0.001 M NaOH will be

[MP PMT 1995; UPSEAT 2001]

(a) 3

(b) 2

(c) 11

- (d) 12
- 3. pH value of a solution, whose hydronium ion concentration is $6.2 \times 10^{-9} mol/l$, is [AFMC 1999; AIIMS 2000]
 - (a) 6.21
- (b) 7.2
- (c) 7.75
- (d) 8.21
- **4.** 0.1 mole of CH_3NH_2 ($K_b = 5 \times 10^{-4}$) is mixed with 0.08 mole of HCl and diluted to one litre. What will be the H^+ concentration in the solution? [IIT 2005]
 - (a) $8 \times 10^{-2} M$
- (b) $8 \times 10^{-11} M$
- (c) $1.6 \times 10^{-11} M$
- (d) $8 \times 10^{-5} M$
- 5. What will be the sum of pH and pOH in an aqueous solution? [MP PET/PMT 1998]
 - (a) 7

- (b) pk_w
- (c) Zero
- (d) 1
- **6.** Hydrogen ion concentration in mol/L in a solution of pH = 5.4 will be **[AIEEE 2005]**
 - (a) 3.98×10^8
- (b) 3.88×10^6
- (c) 3.68×10^{-6}
- (d) 3.98×10^{-6}
- **7.** When solid potassium cyanide is added in water then

[CPMT 2002; BHU 2002]

- (a) pH will increase
- (b) pH will decrease

- (c) pH will remain the same
- (d) Electrical conductivity will not change
- **8.** pH of a $10^{-3}M$ solution of hydrochloric acid will be

[MP PET 2000]

- (a) 1.3
- (b) 2.0
- (c) 3.0
- (d) 4.5
- The pH of water at $25^{\circ}C$ is nearly [Orissa JEE 2002]

[CPMT 1986, 89, 90, 93; CBSE PMT 1989;

MADT Bihar 1995]

(a) 2

- (b) 7
- (c) 10
- (d) 12
- **10.** pH of a solution is 5. Its hydroxyl ion concentration is

[JIPMER 1999]

(a) 5

- (b) 10
- (c) 10^{-5}
- (d) 10^{-9}
- 11. The pH of a solution in which the $[H^+] = 0.01$, is

[MADT Bihar 1980]

(a) 2

(b) 1

- (c) 4
- (d) 3
- 12. At $25^{\circ}C$, the dissociation constant of a base *BOH* is 1.0×10^{-12} . The concentration of Hydroxyl ions in 0.01 *M* aqueous solution of the base would be [CBSE PMT 2]
 - (a) $2.0 \times 10^{-6} mol \ L^{-1}$
- (b) $1.0 \times 10^{-5} mol \ L^{-1}$
- (c) $1.0 \times 10^{-6} mol L^{-1}$
- (d) $1.0 \times 10^{-7} mol \ L^{-1}$
- **13.** Aqueous solution of HCl has the pH = 4. Its molarity would be **[RPMT 1999]**
 - (a) 4 M
- (b) 0.4 M
- (c) 0.0001 M
- (d) 10 M
- **14.** Which is a buffer solution

[CPMT 1985, 88; AIIMS 1980; MP PMT 1994; AFMC 2004]

- (a) $CH_3COOH + CH_3COONa$
- (b) $CH_3COOH + CH_3COONH_4$
- (c) $CH_3COOH + NH_4Cl$
- (d) NaOH + NaCl
- **15.** The addition of solid sodium carbonate to pure water causes

[NCERT 1973]

- (a) An increase in hydronium ion concentration
- (b) An increase in alkalinity
- (c) No change in acidity
- (d) A decrease in hydroxide ion concentration
- The aqueous solution of which of the following salt has the lowest pH [CBSE PMT 2002]
 - (a) NaClO
- (b) NaClO₂
- (c) NaClO₃
- (d) NaClO₄
- **17.** The pH of a $10^{-10} M NaOH$ solution is nearest to

		[UPSEAT 2001, 02]		(c) pH of A and B increase	
	(a) 10	(b) 7		(d) pH of B and A decrease	
	(c) 4	(d) -10	28.	The compound whose 0.1 M solution is basic is	
18.	Which will have maxim	um <i>pH</i> [NCERT 1979]		[IIT 1986; MP PMT 199	91]
	(a) Distilled water			(a) Ammonium acetate	
	(b) $1 M NH_3$			(b) Calcium carbonate	
	(c) 1 <i>M NaOH</i>			(c) Ammonium sulphate	
	(d) Water saturated by	chloring		(d) Sodium acetate	1
19.		Che solution is[MH CET 200	29.	The following reaction is known to occur in t	
19.	(a) Neutral	(b) Acidic	O]	body $CO_2 + H_2O = H_2CO_3 = H^+ + HCO_3^-$.	
	(c) Basic	(d) Amphoteric		CO_2 escapes from the system[NCERT 1973; RPMT	1997]
				(a) pH will decrease	
20.	The pH of a $10^{-9}M$ solu			(b) Hydrogen ion concentration will decrease	
	4	[UPSEAT 2000, 02]		(c) H_2CO_3 concentration will be unaltered	
	(a) 8	(b) - 8		(d) The forward reaction will be promoted	
	(c) Between 7 and 8	(d) Between 6 and 7	30.		_
21.	pH + pOH equal to	[NCERT 1975]		sodium acetate and acetic acid, the ratio of t	
	(a) Zero	(b) Fourteen		concentration of salt and acid should be $(K_a = 10^{-1})$	³)[MP PE
	(c) A negative number	(d) Infinity		(a) 1:10 (b) 10:1	
22.	Which of the following	0.1 <i>M</i> solution will contain	L	(c) 100:1 (d) 1:100	
	the largest concentratio	n of hydronium ions[NCER	^{Г 1971, 73} 31.	Which is incorrect for buffer solution [CPMT 198	35]
	(a) $NaHCO_3$	(b) NH_4Cl		(a) It contains weak acid and its conjugate base	
	(c) HCl	(d) NH_3		(b) It contains weak base and its conjugate acid	
23.	Which one has pH 12	[Roorkee 1995]		(c) In this there is very less change is pH val	lue
	(a) 0.01 <i>M KOH</i>	(b) 1 N KOH ml		when very less amount of acid and base	is
	(c) 1 N NaOH ml	(d) $1N Ca(OH)_2 ml$		mixed	
24.	What is the correct rela	tionship between the pHs		(d) None of the above	- C
-		of sodium oxide (pH_1) ,	32.	pH values of HCl and NaOH solutions each	
		sodium selenide (pH_3) and		strength $\frac{N}{100}$ will be respectively [MP PMT 199	99]
	sodium telluride (pH_4) ?	·		(a) 2 and 2 (b) 2 and 12	
	(a) $pH_1 > pH_2 = pH_3 > pH_3$			(c) 12 and 2 (d) 2 and 10	
	(b) $pH_1 < pH_2 < pH_3 < pH_3$	•	33.	When rain is accompained by a thunderstorm, t	he
		-		collected rain water will have a pH value[AIEEE	
	(c) $pH_1 < pH_2 < pH_3 = pH_3$	·		(a) Slightly lower than that of rain water without	out
	(d) $pH_1 > pH_2 > pH_3 > pH_3$	H_4		thunderstorm	
25.		A is 3 and it is mixed with			the
		ving pH 2. If both mixed		thunderstorm is not there	
	-	solution will be[BHU 2005]	J	(c) Uninfluenced by occurrence of thunderstorm	1
	(a) 3.2 (c) 3.4	(b) 1.9 (d) 3.5	2.4	(d) Which depends on the amount of dust in air	of
26.	On adding solid potassi		34.	Which of the following is the buffer solution strong acidic nature [MP PET 200]	
20.	on adding sond potassit	[MP PMT 1989]		(a) $HCOOH + HCOO^-$, <u>-</u> ,
	(a) pH will increase	. 5-53			
	(b) <i>pH</i> will decrease			(b) $CH_3COOH + CH_3COO^-$	
	(c) pH will not change			(c) $H_2C_2O_4 + C_2O_4^{2-}$	
	(d) Electrical conductan	ice will not change		(d) $H_3BO_3 + BO_3^{3-}$	
27.	<u>-</u>	is an aqueous base. They	25	The dissociation constant of an acid <i>HA</i> is 1×10	-5
	are diluted separately, t		33.	The pH of 0.1 molar solution of the acid will be	
	(a) <i>pH</i> of <i>A</i> increases a			[KCET (Engg./Med.) 199	
	=	and pH of B decreases till	l	(a) Five (b) Four	
	pH in each case is 7	7		(c) Three (d) One	

36.	The <i>pH</i> value of 1.0×1	$0^{-8}MHCl$ solution is less	46.	The hydrogen ion co	ncentration of 0.1	N solution
	than 8 because			of CH ₃ COOH, which	is 30% dissociated	l, is [JIPMER 2002]
	(a) HCl is complet	tely ionised at this		(a) 0.03	(b) 3.0	
conc	entration			(c) 0.3	(d) 30.0	
	(b) The ionization of wa		47.	What is the pH of 0.1	MNH_3	RPET 2000]
		ater cannot be assumed to		(a) 11.27	(b) 11.13	
	concentration of HC	omparison with this low		(c) 12.0	(d) 9.13	
		calculated at such a low	48.	, ,		olution, the
	concentration of HC			<i>pH</i> of the buffer solut		DPMT 1996]
37.	What is the <i>pH</i> for a	neutral solutions at the		(a) Remains constant	* *	
	_	he human body [JIPMER 2000]	١ ,,	(c) Decreases	(d) Becomes z	
	(a) 7.2	(b) 14.0	49.	The pH of $0.1 M NaOH$		P PET 2003]
	(c) 6.8	(d) 6.0		(a) 11	(b) 12	
38.		are present in an aqueous		(c) 13	(d) 14	
	solution. The solution is		50.	<pre>pH of human blood is will be</pre>	s 7.4. Then H^+ con	ncentration
	(a) Not a buffer solution	_		will be	г	RPMT 2002]
	(b) Not a buffer solution	- ·		(a) 4×10^{-8}	(b) 2×10^{-8}	
	(c) A buffer solution wit	=		(c) 4×10^{-4}	(d) 2×10^{-4}	
	(d) A buffer solution wit	=	-1	Assuming complete	• •	e pH of
39.	then it will become $pH = 3$,	it is diluted 100 times, [NCERT 1978; AFMC 2005]	51.	0.1 M HCl, is 1. The		
				same <i>pH</i> is	2 - 1 - 3	4
	(a) Neutral	(b) Basic		Julio P11 15	[Pb	. PMT 2002]
40	(c) Unaffected	(d) More acidic		(a) 0.1	(b) 0.2	_
40.	of the solution is	dissociates 2% hence, pH [MH CET 2000]		(c) 0.05	(d) 2.0	
	(a) 0.3979	(b) 1.3979	52.	Highest <i>pH</i> 14 is give	n by	[DCE 1999]
	(c) 1.699	(d) 3.3979		(a) $0.1MH_2SO_4$	(b) 0.1 <i>M NaOH</i>	I
41.		olution are $0.1 MHCN$ and		(c) 1 <i>N NaOH</i>	(d) 1 <i>N HCl</i>	
-		pH of the solution[RPET 2000	0153.	What will be the pH	of a 10^{-8} M HCl. so	lution
	(a) 9.61	(b) 6.15	255.	_	998; RPET 1999;MI	
	(c) 2.0	(d) 4.2		(a) 8.0	(b) 7.0	FM1 2000]
42.		al. 1N sodium acetate and		(c) 6.98	(d) 14.0	
_	_	acid $(K_a = 1.8 \times 10^{-5})$, is	54.	When 10 <i>ml</i> of 0.1		pK = 5.0) is
	approximately	$(\mathbf{R}_a = 1.0 \times 10^{-3}), 15$	51	titrated against 10 n	_	
	аррголинасту	[MP PMT 2003]		$(pK_b = 5.0)$, the equivalent		
	(a) 4	(b) 5		(a) 5.0	(b) 6.0	
	(c) 6	(d) 7		(c) 7.0	(d) 9.0	
43.	By adding 20 ml 0.1 N He	Cl to 20 ml 0.001 N KOH,	55.	Which on reaction w		ve <i>pH</i> less
	the <i>pH</i> of the obtained s	olution will be[KCET 2000]		than 7		-
	(a) 2	(b) 1.3			[M:	H CET 2001]
	(c) 0	(d) 7		(a) <i>BaO</i>	(b) <i>CaO</i>	
44.	=	on containing 10 ml of a		(c) Na ₂ O	(d) P_2O_5	
	0.1 N NaOH and 10 ml of	$0.05 N H_2 SO_4$ would be	56.	A solution of $MgCl_2$ i	n water has <i>pH</i>	
		[Pb. PMT 2002, 04]			[MI	P PMT 2002]
	(a) 1	(b) 0		(a) < 7	(b) > 7	
	(c) 7	(d) > 7		(c) 7	(d) 14.2	
45.	The pH of $10^{-7} M NaOH$		57•	pH of completely diss	sociated $0.005 MH_2$	SO_4 is
	(a) 7.01	(b) Between 7 and 8			I	[RPET 2003]
	(c) Between 9 and 10	(d) Greater than 10		(a) 3	(b) 4	
				(c) 2	(d) 5	

58.	ratio of [Acid]/[S	c acid is 4.8. What should be the calt of a buffer if $pH = 5.8$ is	68.	To obtain a buffer which she maintaining a pH of about 4 in solution, a mixture of	
	required	[MP PET 2003]		(a) A strong base + its salt wi	th a weak acid
	(a) 10	(b) 0.1		(b) A weak base + its salt with	
	(c) 1	(d) 2		(c) A strong acid + its salt wit	th a weak base
59.	Which of the follow			(d) A weak acid + its salt with	-
		[CPMT 1979, 81; NCERT 1979, 81;	69.	The concentration of NaOH	solution is $10^{-8} M$.
		MP PET 1990; JIPMER 2002]		Find out the (OH^-) concentrate	ion [CPMT 1993]
	(a) Na_2SO_4	(b) $NaHSO_3$		(a) 10^{-8}	
	(c) Na_2SO_3	(d) Na_2S		(b) Greater than 10^{-6}	
60.	20 <i>ml</i> of 0.5 <i>N HCl</i>	and 35 ml of 0.1N NaOH are		(c) 10^{-6}	
	mixed. The resulti			(d) Lies between 10^{-6} and 10^{-6}	7
	(a) Be neutral	ing solution will [Red 2003]	70.	The pH of 0.0001 N solution of	
	(b) Be basic		,		1997; CET Pune 1998]
		thalein solution pink		(a) 4 (b) 6	
	(d) Turn methyl o	-		(c) 10 (d) 1	2
61.		M solution of hydrochloric acid	71.	Given that the dissociation of	constant for H_2O is
01.	is	w solution of flydrochiotic deld		$K_w = 1 \times 10^{-14}$ mole ² litre ⁻² , wh	nat is the pH of a
		[MP PMT 1993]		0.001 molar KOH solution	
	(a) 2.0	(b) 1.7		[MP PET 199	5; MP PET/PMT 1998]
	(c) 0.3	(d) 2.2		(a) 10^{-11} (b) 3	}
62.		$O_3.H_2O$ weighing 0.62 g is added		(c) 14 (d) 1	
	_	$V(NH_4)_2SO_4$ solution. What will	72.	An acidic buffer solution c	an be prepared by
	be the resulting so			mixing solution of	[MNR 1983]
	(a) Acidic	(b) Neutral		(a) Ammonium acetate and ac	
	(c) Basic	(d) None of these		(b) Ammonium chloride and h	
63.		olution is 4. The hydrogen ion		(c) Sulphuric acid and sodium(d) Acetic acid and sulphuric a	=
03.		the solution in <i>mol/litre</i> is[UPSEAT		(e) NaCl and NaOH	
	(a) 9.5	(b) 10^{-4}	73•	Which of the following mixt buffer	tures forms an acid
	(c) 10 ⁴	(d) 10^{-2}		[MP PMT 1993; IIT 1981; CPMT 1	1989: CBSE PMT 19891
64.	$NaOH_{(aq)}, HCl_{(aq)}$ an	d $NaCl_{(aq)}$ concentration of each		(a) NaOH + HCl	5-5,
		Will be respectively [BHU 2003]		(b) $CH_3COOH + CH_3COONa$	
	(a) 10, 6, 2	(b) 11, 3, 7		(c) $NH_4OH + NH_4Cl$	
	(c) 10, 2, 6	(d) 3, 4, 7		(d) $H_2CO_3 + (NH_4)_2CO_3$	
65.	The pH of $10^{-5} M$	aqueous solution of NaOH is	74.	A buffer solution has	
	(2) 5	[MP PET 1996]		$0.2M NH_4OH$ and $0.02M NH_4OH$	Cl . The pK_b of the
	(a) 5 (c) 9	(b) 7 (d) 11		base is 5. The <i>pH</i> is	NAT 1000. VCET 200=1
66.		solution of dibasic acid is		(a) 10 (b) 9	PMT 1989; KCET 2005]
	,	[MH CET 2002]		(c) 4 (d) 7	
	(a) +1	(b) −1	75.	The pH of a simple sodium as	
	(c) +2	(d) −2		=	-
67.		contains $0.1 M$ of acetic acid		by $pH = pK_a + \log \frac{[Salt]}{[Acid]}$	
07.	and $0.1 M$ of soc	lium acetate. What will be its		K_a of acetic acid = 1.8×10^{-5}	
07.	unu 0.1 m 01 500			u	
07.	pH , if pK_a of acet	ic acid is 4.75		$[MP PMT 1996]$ If $[Salt] = [Acid] = 0.1 M_1 th$	e pH of the solution
07.		ic acid is 4.75 (b) 4.75		If $[Sait] = [Acid] = 0.1 M$, the would be about	e pH of the solution [BHU 1987]
07.	pH , if pK_a of acet			If $[Sait] = [Acid] = 0.1 M$, the would be about (a) 7 (b) 4	[BHU 1987]

76.	Amongst the followin solution is	g solutions, the buffer	87.		ns maximum number of
	Solution 15	[MP PMT 1999]		H^+ ion	
	(a) $NH_4Cl + NH_4OH$ solu				(b) 0.1 M <i>NH</i> ₄ <i>Cl</i>
	(b) $NH_4Cl + NaOH$ soluti	on		(c) 0.1 M $NaHCO_3$	
	(c) $NH_4OH + HCl$ solutio	n	88.		solution contains equal
	(d) NaOH + HCl solution				nd HX . The K_b for X^- is
77•	The pH of solution havi	$ng [OH^{-}] = 10^{-7} is[AIIMS 1996]$		10^{-10} . The pH of the buf	ffer is
	(a) 7	(b) 14			97; CPMT 1996; DPMT 2004]
	(c) Zero	(d) -7		(a) 4	(b) 7
78.	50 ml water is added	to a 50 ml solution of		(c) 10	(d) 14
	$Ba(OH)_2$ of strength 0.0	1 M . The pH value of the	89.	The defination of pH is	[EAMCET 1980; UPSEAT 2001]
	resulting solution will be			(a) $pH = \log \frac{1}{m}$	(b) $pH = \log[H^+]$
	(a) 8	(b) 10		$[H^+]$	
70	(c) 12 pH of a solution can be	(d) 6		(a) $pH = \log \frac{1}{[H^+]}$ (c) $pH = -\log \frac{1}{[H^+]}$	(d) $pH = -\log^{[H^+]}$
79.	pii of a solution can be v	[CPMT 1999; UPSEAT 2001]			
	(a) $-\log_e(H^+)$	(b) $-\log_{10}(H^+)$	90.		does not make any change 0 ml dilute HCl [NCERT 1975]
	(c) $\log_e(H^+)$	(d) $\log_{10}(H^+)$		(a) 5 <i>ml</i> pure water	
80.	The solution of sodium of	carbonate has pH [MP PET 200	0]	(c) 10 ml HCl	(d) Same 20 ml dilute
		(b) Less than 7	HCl	(5) == 110.	(3, 23, 23, 23, 23, 23, 23, 23, 23, 23, 2
	-	(d) Equal to zero	91.	A compound whose agu	eous solution will have the
81.	The pH of $10^{-7} N HCl$ is	[RPMT 2000]		highest pH	
	(a) 6.0	(b) 6.97		[CPMT 1974, 75, 78; M	IP PET 1996; DPMT 1982, 83]
0-	(c) 8.0	(d) 10.0		(a) NaCl	(b) Na_2CO_3
82.	If the pH of a solution i	S 2, its normality will be T Bihar 1982; MP PET 2000]		(c) NH_4Cl	(d) NaHCO ₃
	(a) 2N	(b) $\frac{1}{2}N$	92.	At 80°C, distilled water	r has $[H_3O^+]$ concentration
	(c) 0.01 N	(d) None of these			re . The value of K_w at this
83.		00 <i>ml</i> having a <i>pH</i> value		=	CBSE PMT 1994; RPMT 2000;
- 0		ilute HCl , then the pH of		=	001; AIIMS 2002; BHU 2002]
	buffer solution			(a) 1×10^{-6}	(b) 1×10^{-9}
		[NCERT 1976, 77]		(c) 1×10^{-12}	(d) 1×10^{-15}
	(a) Converts to 7		03.		M NaOH solution is (when
•	(c) Converts to 2	(d) Changes to 10	55.	-	$H^{+}[OH^{-}] = 10^{-15}$)[CPMT 1997]
84.		c acid, sodium acetate is [NCERT 1977; DPMT 1985; MP I	OMT 10	_	
	(a) Decreases	[NCDR1 19//, D1 M1 1903, M1 1	1411 15	` , •	(b) 12
	(b) Increases		0.4	(c) 11	(d) 2
	(c) Remains unchanged		94.	-	maximum <i>pH</i> [CPMT 1997]
	(d) (a) and (b) both are	correct		(a) NaClO	(b) NaClO ₂
85.	If <i>pOH</i> of a solution is 6.	.0, then its pH will be		(c) NaClO ₃	(d) NaClO ₄
		[MP PMT 1987]	95.	pH of $HCl(10^{-12}M)$ is [CF	PMT 1997; Pb. PET/PMT 1999]
	(a) 6	(b) 10		(a) 12	(b) −12
86.	(c) 8 In a solution of $nH = 5$	(d) 14 5, more acid is added in		(c) ≈ 7	(d) 14
<i>5</i> 0.		pH = 2. The increase in	96.	Which one is buffer solu	ation [CPMT 1997]
		tion is[MP PET 1989; CPMT 199	0]	(a) $[PO_4^{}][[HPO_4^{}]]$	(b) $[PO_3^{3-}][[H_2PO_4^{}]]$
	(a) 100 times	(b) 1000 times	-	(c) $[HPO_4^{}][[H_2PO_4^{}]]$	(d) All of these
	(c) 3 times	(d) 5 times		4 3 2 4 3	

97.	When $100 \ ml$ of $M/10$	NaOH solution and 50 ml	106.	The	pH (of the	aque	ous so	lution	containing
	of $M/5$ HCl solution	are mixed, the pH of		0.49 g	m of I	H_2SO_4	in one	litre is	[EA	AMCET 1997]
	resulting solution would	d be	[1	RI(M)T219	997]			(b) 1		
	(a) 0	(b) 7		(c) 1.7	7			(d) 0.3		
	(c) Less than 7	(d) More than 7	107.	Which	n of th	e follo	wing s	olutions	can a	ct as buffer
98.	How many millilitres	of 6.0 <i>M</i> hydrochloric acid							[]	IPMER 1997]
	should be used to pre	pare 150 ml of a solution				ar aq.				
	which is $0.30 M$ in hydr	rogen ion						OOH + 0.1		NaOH
	(a) 3.0	(b) 7.5						nium ace	tate	
	(c) 9.3	(d) 30	_			the ab				
99.	The pH of 0.1 M acetic	acid is 3, the dissociation	108.						-	ing 50 <i>ml</i> of
	constant of acid will be			0.4 N	HCl a	and 50	ml of	$0.2 N N_0$	aOH is	[KCET 1996]
	(a) 1.0×10^{-4}	(b) 1.0×10^{-5}		(a) -1	log 2			(b) -lo	g 0.2	
	(c) 1.0×10^{-3}	(d) 1.0×10^{-8}		(c) 1.0				(d) 2.0		
100.	The pH of a buffer set	olution containing 25 ml of	109.	Which	n of th	e follo	wing i	s a buffe		
	1 M CH ₃ COONa and 25	ml of 1 M CH ₃ COOH will		(-) 17		CIL CC	NOM.	[MP PI	MT 199	1; BHU 1995]
	be appreciably affected	by 5 ml of	[0	(a) <i>No</i> C PMT 19 (b) <i>No</i>	aOH + 987]	CH ₃ CO	ONa			
	(a) 1 <i>M CH</i> ₃ <i>COOH</i>	(b) 5 <i>M CH</i> ₃ <i>COOH</i>								
	-	(d) $1 M NH_4OH$		(c) K_2	$_2SO_4$ +	$-H_2SO_4$				
		•		(d) N	H_4OH	$+CH_3C$	COONH	4		
101.		ormal solution of NH ₄ OH	110.		-		s prese	ent in 1 l		olution, then
	which is 20% ionised, i			its <i>pH</i>	<i>I</i> will	be				[CPMT 1989]
	(a) 13.30	(b) 14.70		(a) 6				(b) 13		
102	(c) 12.30	(d) 12.95 prepare a buffer solution at		(c) 18				(d) 24		
102.		tly resists changes in pH	111.					10.0. T	-	drogen ion
		nall concentration of the				on will	be			[P PMT 1994]
	-	ch of the following weak		(a) 10				(b) 10 ⁻		
	_	sodium salt would be best		(c) 10				(d) 10 ⁻¹		
	to use	[CBSE PMT 1997]	112.					n of soo		acetate and [CPMT 1985]
	(a) m – chlorobenzoic a	- 4						ation in		
	(b) p – chlorocinnamic	acid $(pK_a = 4.41)$		• •				increas		
	(c) 2, 5 – dihydroxy ben	zoic acid $(pK_a = 2.97)$						on increas		
	(d) Acetoacetic acid (pk	$X_a = 3.58$)						n remain		orod
103.	In a mixture of a weak	acid and its salt, the ratio	112					$(1)_2$ if nor		
5		d to salt is increased ten-	113.	Wilac	is the	pii oi	Da(OII	1)2 11 1101	-	[CPMT 1996]
	fold. The pH of the solu	ution	[1	KCET 19 (a) 4	96]			(b) 10		[CIMI 1990]
	(a) Decreases by one	(b) Increases by one-		(c) 7				(d) 9		
tenth			114.	What	will	be the	pH	of a so	lution	formed by
	(c) Increases by one	(d) Increases ten-fold		mixin	g 40	ml o	f 0.10) M HCl	with	10 <i>ml</i> of
104.	When an acid or alk solution, then pH of but	ali is mixed with buffer ffer solution [CPMT 1997]		0.45 N	M NaO	Н		r	Manin:	al MEE 1995]
	(a) Not changes	(b) Changes slightly		(a) 12	2			(b) 10	u.iip	ar will 1995]
	(c) Increases	(d) Decreases		(c) 8				(d) 6		
105.		tate should be added to a	115.	The	pH	C	of	a so	olution	having
	-	COOH to give a solution of		$[H^{+}] =$	10×10	$)^{-4}$ mole	es / litre	will be		[BHU 1981]
	$pH = 5.5 (pK_a \text{ of } CH_3 COC)$			(a) 1				(b) 2		
	(a) 0.1 <i>m</i>	(b) 0.2 m		(c) 3				(d) 4		
	(c) 1.0 m	(d) 10.0 m								

372 Ionic Equilibrium **116.** If 0.4 gm NaOH is present in 1 litre solution, then (b) Acid (a) Basic (c) Neutral (d) Both (a) and (b) its pH will be ГСРМТ 1985; RHII 1980] **128.** The pH of a solution is increased from 3 to 6. Its (a) 2 (b) 10 H^+ ion concentration will be [EAMCET 1998] (c) 11 (d) 12 (a) Reduced to half 117. Which of the following is not a Bronsted acid [BHU 1997] (b) Doubled (b) CH₃COO⁻ (a) $CH_3NH_4^+$ (c) Reduced by 1000 times (d) Increased by 1000 times (c) H_2O (d) HSO_4^- 129. Pure water is kept in a vessel and it remains 118. pH of 0.005 M H_2SO_4 solution will be[NCERT 1980] exposed to atmospheric CO2 which is absorbed, (b) 2 (a) 0.005 then its pH will be (d) 0.01 (c) 1 [MADT Bihar 1984; DPMT 2002] 119. A buffer solution is a mixture of [MP PMT 1987] (a) Greater than 7 (a) Strong acid and strong base (b) Less than 7 (b) Weak acid and weak base (c) 7 (c) Weak acid and conjugate acid (d) Depends on ionic product of water (d) Weak acid and conjugate base **130.** The pH of a solution is 2. If its pH is to be raised **120.** When pH of a solution decreases, its hydrogen to 4, then the $[H^+]$ of the original solution has to ion concentration [MADT Bihar 1981] be [MP PET 1994] (a) Decreases (b) Increases (a) Doubled (c) Rapidly increases (d) Remains always (b) Halved constant (c) Increased hundred times **121.** If the pH of a solution is 4.0 at $25^{\circ}C$, its pOH(d) Decreased hundred times would be $(K_w = 10^{-14})$ [MP PMT 1989] 131. Which of the following solutions cannot act as a (b) 6.0 (a) 4.0 buffer (c) 8.0(d) 10.0 [EAMCET 1998] **122.** An aqueous solution whose pH = 0 is (a) $NaH_2PO_4 + H_3PO_4$ [CPMT 1976; DPMT 1982] (b) $CH_3COOH + CH_3COONa$ (a) Alkaline (b) Acidic (c) $HCl + NH_{\perp}Cl$ (c) Neutral (d) Amphoteric (d) $H_3PO_4 + Na_2HPO_4$ **123.** In a solution of acid H^+ concentration is $10^{-10} M$. **132.** Assuming complete ionisation, the The *pH* of this solution will be (a) 8 $0.1 M \ HCl$ is 1. The molarity of H_2SO_4 with the (c) Between 6 and 7 (d) Between 3 and 6 same pH is **124.** The concentration of hydronium (H_3O^+) ion in [KCET 1998] (b) 0.1 (a) 0.2 water is (c) 2.0[CET Pune 1998] (d) 0.05**133.** The pH of blood is (b) 1×10^7 gm ion / litre (a) Zero (a) 5.2 (b) 6.3(c) 1×10^{-14} gm ion / litre (d) 1×10^{-7} gm ion / litre (d) 8.5(c) 7.4**125.** A solution whose pH value is less than 7 will be **134.** The pH of 10^{-8} molar aqueous solution of HCl is (a) Basic (b) Acidic [CPMT 1988; MNR 1983, 90; MP PMT 1987; IIT 1981; (c) Neutral (d) Buffer BHU 1995; AFMC 1998; MP PET 1989, 99; BCECE 2005] **126.** When the pH of a solution is 2, the hydrogen ion (a) -8concentration in moles per litre is (b) 8 [NCERT 1973; MNR 1979]

(a) 1×10^{-14}

(c) 1×10^{-7}

The solution is

(b) 1×10^{-2}

(d) 1×10^{-12}

[AFMC 1997]

127. A base is dissolved in water yields a solution with

a hydroxide ion concentration of $0.05 \text{ mol litre}^{-1}$.

135. As the temperature increases, the *pH* of a *KOH* solution [UPSEAT 2001]

lecreases

(a) Will decreases

(c) 6 > 7 (Between 6 and 7)

(d) 7 > 8 (Between 7 and 8)

	(b) Will increases			(c) Pb(OH)Cl	(d) Na ₂ HPO ₄
	(c) Remains constant		147.	Given a 0.1M solution	of each of the following.
	(d) Depends upon conce	entration of <i>KOH</i> solution	-,	Which solution has the	
136.	= =	oncentration in a given		(a) NaHSO 4	(b) NH_4Cl
_5		oH will be [EAMCET 1978]		(c) HCl	(d) NH_3
			4.40		3
	(a) 6	(b) 4	148.	a buffer solution	nich pair of solutions is not
	(c) 3.22	(d) 2		(a) $NH_4Cl + NH_4OH$	
137.	The pH of $\frac{N}{100}HCl$ wou	ıld be approximately		(b) $NaCl + NaOH$	
	100				
		[CPMT 1971; DPMT 1982, 83;		(c) $Na_2HPO_4 + Na_3PO_4$	
		PMT 1991; Bihar MEE 1996]		(d) $CH_3COOH + CH_3COO$	
	(a) 1	(b) 1.5	149.		nstant of an acid <i>HA</i> is
	(c) 2	(d) 2.5			molar solution of the acid
138.	A solution which is re	esistant to change of pH		will be approximately	[NCERT 1979]
		acid or a base is known as		(a) Three	(b) Five
	[BHU 1979]			(c) One	(d) Six
	(a) A colloid	(b) A crystalloid	150.	pH value of $N/10$ NaOF	
	(c) A buffer	(d) An indicator			Pb. CET 2001; Pb. PMT 2002]
139.	$10^{-6} M HCl$ is diluted to	100 times. Its pH is		(a) 10	(b) 11
		[CPMT 1984]		(c) 12	(d) 13
	(a) 6.0	(b) 8.0	151.		n borate has a <i>pH</i> of
	(c) 6.95	(d) 9.5		approximately	
140.	The <i>pH</i> of a 10^{-10}	molar <i>HCl</i> solution is			[JIPMER 2001]
	approximately			(a) < 7	(b) > 7
	(-) 10	[NCERT 1977]		(c) = 7	(d) Between 4 to 5
	(a) 10	(b) 7	152.		are 9.5, 2.5, 3.5 and 5.5
	(c) 1	(d) 14		respectively, then stron	_
141.		on is 1.0×10^{-6} mole/litre in		(a) A	(b) C
	a solution. Its <i>pH</i> value	[MP PMT 1985; AFMC 1982]		(c) D	(d) B
	(a) 12	(b) 6	153.		e of a solution is 6. The
	(c) 18	(d) 24		solution is	[ATIMO accel
142.		the negative logarithm to		(a) Pagia	[AFMC 2001]
-	the base 10 of its hydrog			(a) Basic(c) Neutral	(b) Acidic
		[Manipal MEE 1995]	154		(d) Both (b) and (c) olution contains equal
	(a) Moles per litre	(b) Millimoles per litre	154.		-
	(c) Micromoles per litre	e (d) Nanomoles per litre			nd HX . The K_a for HX is
143.	When 10^{-8} mole of HCl	is dissolved in one litre of		10^{-8} . The pH of the buf	fer is
	water, the pH of the sol	ution will be			[UPSEAT 2001]
		[CPMT 1973, 94; DPMT 1982]		(a) 3	(b) 8
	(a) 8	(b) 7		(c) 11	(d) 14
	(c) Above 8	(d) Below 7	155.		nt of HCN is 5×10^{-10} . The
144.	=	containing 10 ml of 0.1 N			pared by mixing 1.5 mole of
	NaOH and 10 ml of 0.0	- ·			KCN in water and making
	_	PMT 1987; Pb. PMT 2002,04]		up the total volume to 0	$0.5 dm^3$ is
	(a) 0	(b) 1		(a) 7.302	(b) 9.302
	(c) > 7	(d) 7		(c) 8.302	(d) 10.302
145.	The pH of 0.001 molar		156.		out of the following will
		(h) 2		have $pH > 7$	
	(a) 0.001	(b) 3			[MP PET 2001]
146	(c) 2	(d) 6	0.1	(a) $CH_3COOH + CH_3COO$	Na
140.		fied as an acid salt [CPMT 1989 (b) <i>BiOCl</i>	9]	(b) HCOOH + HCOOK	
	(a) Na_2SO_4	(U) BIOCI			

	(c) CH ₃ COONH ₄		[AIIMS	1982; CPMT 1994; MP PET 1994]
	(d) $NH_4OH + NH_4Cl$		(a) HCl and NaCl	(b) $NaOH$ and $NaNO_3$
157.	The pK_a of equimolecular sodium acetate and		(c) KOH and KCl	(d) NH_4OH and NH_4Cl
5,	acetic acid mixture is 4.74. If pH is [DPMT 2001]	166.	-	solution of an alkali metal
	(a) 7 (b) 9.2		hydroxide is 13.6, this [JIPMER 2000]	he concentration of hydroxide
	(c) 4.74 (d) 14		(a) Between 0.1 <i>M</i> a	nd 1 M
158.	pH of NaCl solution is [CET Pune 1998]		(b) More than 1 M	nd 1 M
	(a) 7 (b) Zero		(c) Less than 0.001	M
	(c) >7 (d) <7		(d) Between 0.01 <i>M</i>	
159.	A solution of sodium chloride in contact with	167.		calicylic acid (aspirin) is 3.5.
	atmosphere has a pH of about [NCERT 1972, 77]	,,		juice in human stomach is
	(a) 3.5 (b) 5		_	pH in the small intestine is
	(c) 7 (d) 1.4		about 8. Aspirin will	
160.	Which would decrease the pH of $25 cm^3$ of a			[IIT 1988; KCET 2003]
	0.01 <i>M</i> solution of hydrochloric acid [MH CET 2001]		(a) Unionized in th	e small intestine and in the
	(a) The addition of $25 cm^3 + 0.005 M$ hydrochloric	stom		
	acid	41.		zed in the small intestine and
	(b) The addition of $25 cm^3$ of $0.02 M$ hydrochloric	in th		
	acid		stomach	
	(c) The addition of magnesium metal		in the small inte	tomach and almost unionized
	(d) None of these			small intestine and almost
161.	The condition for minimum change in pH for a		unionized in the	
	buffer solution is [RPMT 2000]	168.	The concentration of	f hydrogen ion in water is
	(a) Isoelectronic species are added			[MP PET 1990]
	(b) Conjugate acid or base is added		(a) 8	(b) 1×10^{-7}
	(c) $pH = pK_a$		(c) 7	(d) 1/7
	(d) None of these	169.	pH of a 10 M soluti	on of HCl is [CBSE PMT 1995]
162.	A buffer solution with pH 9 is to be prepared by		(a) Less than o	(b) 2
	mixing $N\!H_4C\!l$ and $N\!H_4O\!H$. Calculate the number		(c) 0	(d) 1
	of moles of NH_4Cl that should be added to one	170.	The pH of $1 N H_2O$	is [CPMT 1988]
	litre of $1.0 M NH_4 OH$. $[K_b = 1.8 \times 10^{-5}]$ [UPSEAT 2001]		(a) 7	(b) >7
	(a) 3.4 (b) 2.6		(c) <7	(d) 0
	(c) 1.5 (d) 1.8	171.		on of a solution is increased by
163.	The ionization constant of a certain weak acid is		10 times its <i>pH</i> will	
	10^{-4} . What should be the [salt] to [acid] ratio if		(a) Increase by one	(b) Remains unchanged
	we have to prepare a buffer with $pH = 5$ using	. ##2 00	(c) Decrease by one	-
	this acid and one of the salts [CPMT 2000; KCET 2000 (a) 1:10 (b) 10:1	; нуды		hydrogen ion concentration
	(a) 1.10 (b) 10.1 (c) 5:4 (d) 4:5			The pH of gastric juice is[NCERT 197.
164	Which solution has the highest pH value [JIPMER 2000]	n]	(a) 0.01	(b) 1
104.	(a) 1 M KOH	~]	(c) 2	(d) 14
		173.		chemical will decrease the
	(b) $1MH_2SO_4$		• •	entration of an acetic acid
	(c) Chlorine water		solution	[MP PMT 1990]
16-	(d) Water containing carbon dioxide		(a) NH_4Cl	(b) $Al_2(SO_4)_3$
105.	One weak acid (like CH_3COOH) and its strong		(c) $AgNO_3$	(d) HCN
	base together with salt (like CH_3COONa) is a	174.		he highest value of pH is
	buffer solution. In which pair this type of characteristic is found		(a) Distilled water	

								
	(b) NH_3 solution in wat	er		186.	The concentration of hy	drogen ion	$[H^+]$ in 0.0	1 <i>M</i>
	(c) NH_3				HCl is		[BAMORT 44	170 ¹
	(d) Water saturated wit	th Cl ₂			(a) 10^{12}	(b) 10 ⁻²	[EAMCET 19	791
175.	The solution of Na_2CO_3	has pH	[AMU 1988]		(a) 10	(d) 10^{-12}		
	(a) Greater than 7	(b) Less thar	1 <i>7</i>	187.	A solution of weak acid	• •	d by adding	an
	(c) Equal to 7	(d) Equal to		107.	equal volume of water			
176.	Which is not a buffer so	lution	[CPMT 1990]		will not change			
	(a) $NH_4Cl + NH_4OH$				() () () () ()		[JIPMER 19	97]
	(b) $CH_3COOH + CH_3COO$)Na			(a) Strength of the acid			
	(c) CH_3COONH_4				(b) The value of $[H_3O^+]$			
	(d) Borax + Boric acid				(c) pH of the solution			
177	What will be hydrogen:	ion concentrat	ion in moles	-00	(d) The degree of dissoc			_
1//•	<i>litre</i> ⁻¹ of a solution, who			188.	$Ka ext{ of } H_2O_2 ext{ is of the order}$		[DCE 20	04]
		_			(a) 10^{-12}	(b) 10^{-14}		
	(a) 2.63×10^{-5}	(b) 3.0×10^{-5}			(c) 10^{-16}	(d) 10^{-10}		
1=0	(c) 4.68	(d) None of t		189.	Equivalent weight of an		[UPSEAT 20	04]
170.	Assuming complete diss <i>M NaOH</i> solution is equ		рн 01 а 0.01		(a) Depends on the reac			
	[NCERT 1975; CPMT:		82: BHU 1997]	pres	(b) Depends upon the	number of	oxygen ato	oms
	(a)	2.0 (b)	14.0	pres	(c) Is always same			
	(c) 12.0	(d) 0.01	-		(d) None of the above			
179.	50 ml of 2N acetic a	acid mixed w	ith 10 ml of	190.	pH scale was introduced	l by	[UPSEAT 20	04]
	1 N sodium acetate	solution will	l have an		(a) Arrhenius	(b) Sorens	sen	
	approximate pH of				(c) Lewis	(d) Lowry		
		[MP PN	MT/PET 1988]	191.	Buffer solution is prepar	red by mixi	ng[MH CET 2	003]
	(a) 4	(b) 5			(a) Strong acid + its sal	_		
- 0 -	(c) 6	(d) 7	6		(b) Weak acid + its salt			
180.	The hydrogen ion <i>M NaOH</i> solution is	concentration	01 0.001 [AFMC 1983]		(c) Strong acid + its salt			
		(1-) 1 10-11			(d) Weak acid + its salt	_		_
	(a) 1×10^{-2} mole / litre	(b) $1 \times 10^{-11} m$		192.	The pH of millimolar HC		[MH CET 20	04]
. 0 -		(d) $1 \times 10^{-12} m$			(a) 1 (c) 2	(b) 3 (d) 4		
181.	A weak monoprotic acid			102	Which of the following i		ase[CDMT 20	041
	(a) 1	(b) 2	ion [max 1900]	193.	(a) NaOH	(b) NH_3	ascicimi zo	04]
	(c) 3	(d) 11				-	-boso	
182.	pH of a solution is		droxide ion		(c) <i>BCl</i> ₃	(d) All of t		
	concentration of the sol	ution would be	e	194.	What will be the	pH value	of 0.05	M
	[NCERT 1981; CB		MP PMT 1994]		$Ba(OH)_2$ solution			_
	(a) 10^{-4}	(b) 10 ⁻¹⁰			(-) 10	(h) 45	[CPMT 20	04]
_	(c) 10^{-2}	(d) 10 ⁻¹²			(a) 12	(b) 13		
183.	The pH of an aque			105	(c) 1 In a mixing of acetic ac	(d) 12.96	um acetato	the
	$[H^+] = 3 \times 10^{-3} M$ is		PET 2001,04]	195.	ratio of concentration			
	(a) 2.471	(b) 2.523			increased ten times. The			
10 4	(c) 3.0	(d) - 3	constant be-		(a) Increase by one	(b) Decrea	ases by one	
184.	<i>pH</i> of blood is r mechanism of	maintained c	constant by		(c) Decrease ten fold	(d) Increa	ses ten fold	
	mechanism of	Γħ	MH CET 2002]	196.	The rapid change of pl			
	(a) Common ion effect	(b) Buffer			point of an acid-base			
	(c) Solubility	(d) All of the	ese		indicator detection. <i>pH</i> to ratio of the concen			
185.	The <i>pH</i> of normal <i>KOH</i> i	is []	MP PET 1990]		acid (HIn) and base (In^-			
	(a) 1	(b) o			the expression		CBSE PMT 20	-
	(c) 14	(d) 7			¥	L.		

- (a) $\log \frac{[HIn]}{[In^{-1}]} = pH pK_{In}$ (b) $\log \frac{[In^{-1}]}{[HIn]} = pH pK_{In}$
- (c) $\log \frac{[In^{-}]}{[HIn]} = pK_{In} pH$ (d) $\log \frac{[HIn]}{[In^{-}]} = pK_{In} pH$
- 197. Which of the following statement(s) is(are) correct

[IIT 1998]

- (a) The pH of $1.0 \times 10^{-8} M$ solution of HCl is 8
- (b) The conjugate base of $H_2PO_4^-$ is HPO_4^{2-}
- (c) Autoprotolysis constant of water increases with temperature
- (d) When a solution of a weak monoprotic acid is titrated against a strong base, at half neutralization point $pH = \frac{1}{2}pK_a$
- 198. An aqueous solution of sodium carbnate has a pH [DCE 2003] greater than 7 becaue
- (a) It contains more carbonate ions than H_2O molecules
- (b) Contains more hydroxide ions than carbonate ions
 - (c) Na ions react with water
 - (d) Carbonate ions react with H_2O
- **199.** A pH of 7 signifies

[CPMT 1974; DPMT 1982]

- (a) Pure water
- (b) Neutral solution
- (c) Basic solution
- (d) Acidic solution
- 200. Assuming complete dissociation, which of the following aqueous solutions will have the same pH value

[Roorkee Qualifying 1998]

- (a) 100 ml of 0.01 M HCl
- (b) $100 \ ml$ of $0.01 \ M \ H_2 SO_4$
- (c) 50 ml of 0.01 M HCl
- (d) Mixture of 50 ml of $0.02 M H_2SO_4$ and 50 mlof 0.02 M NaOH
- 201. A buffer solution can be prepared from a mixture

[IIT 1999; KCET 1999; MP PMT 2002]

- (a) Sodium acetate and acetic acid in water
- (b) Sodium acetate and hydrochloric acid in water
- (c) Ammonia and ammonium chloride in water
- (d) Ammonia and sodium hydroxide in water
- 202. Which of the following will not function as a buffer solution

[Roorkee 2000]

- (a) NaCl and NaOH
- (b) NaOH and NH4OH
- (c) CH₃COONH₄ and HCl
- (d) Borax and boric acid
- **203.** Which one of the following statements is not true [AIEEE 2003]

- (a) The conjugate base of $H_2PO_4^-$ is HPO_4^{2-}
- (b) pH + pOH = 14 for all aqueous solutions
- (c) The pH of $1 \times 10^{-8} MHCl$ is 8
- (d) 96,500 coulombs of electricity when passed through a CuSO 4 solution deposits 1 gram equivalent of copper at the cathode
- **204.** The pH value of 0.1 M HCl is approximately 1. What will be the approximate pH value of 0.05 $M H_2SO_4$

[MP PMT 1991]

- (a) 0.05
- (b) 0.5

(c) 1

- (d) 2
- **205.** The K_{sp} of $Mg(OH)_2$ is $1 \times 10^{-12}, 0.01 M Mg(OH)_2$ will precipitate at the limiting pH [DPMT 2005]
 - (a) 3

(c) 5

- (d) 8
- **206.** The pH of an aqueous solution having hydroxide ion concentration as 1×10^{-5} is [MP PMT 1991]
 - (a) 5

- (b) 9
- (c) 4.5
- (d) 11

Critical Thinking Objective Questions

The K_{SP} of AgI is 1.5×10^{-16} . On mixing equal volumes of the following solutions, precipitation will occur only with

[AMU 2000]

- (a) $10^{-7} M Ag^{+}$ and $10^{-19} M \Gamma^{-}$
- (b) $10^{-8} M Ag^{+}$ and $10^{-8} M I^{-}$
- (c) $10^{-16} M Ag^+$ and $10^{-16} M \Gamma$
- (d) $10^{-9} M Ag^{+}$ and $10^{-9} M I^{-}$
- The strongest Bronsted base in the following 2. anion is

[IIT 1981; MP PET 1992, 97; MP PMT 1994; RPMT 1999; KCET 2000; AIIMS 2001; UPSEAT 2002; AFMC 2002; Pb. CET 2004]

- (a) ClO-
- (b) ClO₂
- (c) ClO_3^-
- (d) ClO_4^-
- Which one of the following compound is not a 3. protonic acid

[CBSE PMT 2003]

- (a) $SO_2(OH)_2$
- (b) $B(OH)_3$
- (c) $PO(OH)_3$
- (d) $SO(OH)_2$
- Calculate the hydrolysis constant of the salt containing NO_2 . Given the K_a for HNO_2 $=4.5\times10^{-10}$

[UPSEAT 2001]

- (a) 2.22×10^{-5}
- (b) 2.02×10^5
- (c) 4.33×10^4
- (d) 3.03×10^{-5}
- The molar solubility $(mol L^{-1})$ of a sparingly soluble salt MX_4 is 's'. The corresponding solubility product is K_{sp} . 's' is given in terms of $_{K_{an}}$ by the relation [AIEEE 2004]

- (a) $s = (256 K_{sn})^{1/5}$
- (b) $s = (128 K_{sp})^{1/4}$
- (c) $s = (K_{sp}/128)^{1/4}$
- (d) $s = (K_{sp}/256)^{1/5}$
- 6. Electrophiles are

[RPET 2000]

- (a) Lewis acids
- (b) Lewis base
- (c) Bronsted acid
- (d) Bronsted base
- Total number of moles for the reaction $2HI \rightleftharpoons$ 7. $H_2 + I_2$. if α is degree of dissociation is [CBSE PMT 1996]
 - (a) 2

(b) $2-\alpha$

(c) 1

- (d) $1-\alpha$
- 8. Which one is a Lewis acid

[RPMT 1997]

- (a) ClF_2
- (b) H_2O
- (c) NH_3
- (d) None of these
- Heat of neutralisation of weak acid and strong 9. base is less than the heat of neutralisation of strong acid and strong base due to
 - (a) Energy has to be spent for the total dissociation of weak acid
 - (b) Salt of weak acid and strong base is not stable
 - (c) Incomplete dissociation of weak acid
 - (d) Incomplete neutralisation of weak acid
- pK_a values of two acids A and B are 4 and 5. The 10. strengths of these two acids are related as[KCET 2001]
 - (a) Acid A is 10 times stronger than acids B
 - (b) Strength of acid A: strengtha of acid B = 4:5
 - (c) The strengths of the two acids can not be compared
 - (d) Acid B is 10 times stronger than acid A
- The dissociation constant of two acids HA_1 and 11. HA_2 are 3.14×10^{-4} and 1.96×10^{-5} respectively. The relative strength of the acids will be [RPMT 2000] approximately
 - (a) 1:4
- (b) 4:1
- (c) 1:16
- (d) 16:1
- An aqueous solution of ammonium acetate is 12.

[NCERT 1980, 81; RPMT 1999]

- (a) Faintly acidic
- (b) Faintly basic
- (c) Fairly acidic
- (d) Almost neutral
- The dissociation constant of a weak acid is 1.0×10^{-5} , the equilibrium constant for the reaction with strong base is

[MP PMT 1990]

- (a) 1.0×10^{-5}
- (b) 1.0×10^{-9}
- (c) 1.0×10^9
- (d) 1.0×10^{14}
- The pH of 0.1 M solution of the following salts 14. increases in the order [IIT 1999]
 - (a) $NaCl < NH_{\perp}Cl < NaCN < HCl$
 - (b) $HCl < NH_{\perp}Cl < NaCl < NaCN$
 - (c) $NaCN < NH_4Cl < NaCl < HCl$
 - (d) $HCl < NaCl < NaCN < NH_{\perp}Cl$
- 15. Which of the following is the strongest acid [AMU 1999; MH CET 1999, 2002]
 - (a) $SO(OH)_2$
- (b) $SO_{2}(OH)_{2}$
- (c) $ClO_3(OH)$
- (d) $PO(OH)_3$
- 16. The strongest of the four acids listed below is

[NCERT 1984]

- (a) HCOOH
- (b) CH₃COOH
- (c) ClCH2COOH
- (d) FCH2COOH
- Which equilibrium can be described as an acidbase reaction using the Lewis acid-base definition but not using the Bronsted-Lowry definition[AIIMS 1980]
 - (a) $2NH_3 + H_2SO_4 \rightleftharpoons 2NH_4^+ + SO_4^{2-}$
 - (b) $NH_3 + CH_3COOH \rightleftharpoons NH_4^+ + CH_3COO^-$
 - (c) $H_2O + CH_3COOH \Rightarrow H_3O^+ + CH_3COO^-$
 - (d) $[Cu(H_2O)_4]^2 + 4NH_3 \rightleftharpoons [Cu(NH_3)_4]^{2+} + 4H_2O$
- The hydride ion H^- is stronger base than its 18. hydroxide ion OH^- . Which of the following reaction will occur if sodium hydride (NaH) is dissolved in water [CBSE PMT 1997]
 - (a) $H^{-}(aq) + H_{2}O \rightarrow H_{2}O$
 - (b) $H^{-}(aq) + H_{2}O(l) \rightarrow OH^{-} + H_{2}$
 - (c) $H^- + H_2O \rightarrow \text{No reaction}$
 - (d) None of these
- Dissociation constant of a weak acid is 1×10^{-4} . 19. Equilibrium constant of its reaction with strong base is [UPSEAT 2003]
 - (a) 1×10^{-4}
- (b) 1×10^{10}
- (c) 1×10^{-10}
- (d) 1×10^{14}
- Arrange the acids (I) H_2SO_3 (II) H_3PO_3 and (III) HClO₃ in the decreasing order of acidity [UPSEAT 2001]
 - (a) I > III > II
- (b) I > II > III
- (c) II > III > I
- (d) III > I > II
- 21. Self-ionisation of liquid ammonia occurs as, $2NH_3 \rightleftharpoons NH_4^+ + NH_2^-; K = 10^{-10}$. In this solvent, an acid might be [JIPMER 2001]
 - (a) NH_4^+
 - (b) NH_3
 - (c) Any species that will form NH_4^+

378 Ionic	Equilibrium
All of these	

- **22.** $\Delta H_f(H_2O) = X$; Heat of neutralisation of CH_3COOH and NaOH will be [BHU 2003]
 - (a) Less than 2X
- (b) Less than X

(c) X

(d)

- (d) Between X and 2X
- **23.** Which of the following oxides will not give OH^- in aqueous solution [NCERT 1980]
 - (a) Fe_2O_3
- (b) *MgO*
- (c) Li₂O
- (d) K_2O
- **24.** A precipitate of CaF_2 ($K_{sp} = 1.7 \times 10^{-10}$) will be obtained when equal volume of the following are mixed

[MP PMT 1990, 95; IIT 1982; MNR 1992]

- (a) $10^{-4} M Ca^{2+}$ and $10^{-4} M F^{-}$
- (b) $10^{-2} M Ca^{2+}$ and $10^{-3} M F^{-}$
- (c) $10^{-5} M Ca^{2+}$ and $10^{-3} M F^{-}$
- (d) $10^{-3} M Ca^{2+}$ and $10^{-5} M F^{-}$
- 25. The degree of hydrolysis of a salt of weak acid and weak base in its 0.1 M solution is found to be 50%. If the molarity of the solution is 0.2 M, the percentage hydrolysis of the salt should be[AMU 1999]
 - (a) 50%
- (b) 35%
- (c) 75%
- (d) 100%
- **26.** The pH of 0.1 M solution of a weak monoprotic acid 1% ionized is [UPSEAT 2001; Pb. PMT 2001]
 - (a) 1

(b) 2

(c) 3

- (d) 4
- 27. Which one is the strongest acid

[MH CET 1999; AMU 1999,2000; Pb.CET 2001,03; MP PET 2001]

- (a) HClO
- (b) HClO₂
- (c) H_2SO_4
- (d) HClO₄
- 28. Which of the following is Lewis acid [Pb. CET 2000]
 - (a) S

- (b) : CH_2
- (c) $(CH_3)_3 B$
- (d) All of these
- **29.** The solubility product of $Mg(OH)_2$ is 1.2×10^{-11} . The solubility of this compound in gram per $100 \ cm^3$ of solution is

[Roorkee 2000]

- (a) 1.4×10^{-4}
- (b) 8.16×10^{-4}
- (c) 0.816
- (d) 1.4
- **30.** What is $[H^+]$ of a solution that is 0.01 M in HCN and 0.02 M in NaCN

 $(K_a \text{ for } HCN = 6.2 \times 10^{-10})$

[MP PMT 2000]

- (a) 3.1×10^{10}
- (b) 6.2×10^5
- (c) 6.2×10^{-10}
- (d) 3.1×10^{-10}

- 31. Which is neucleophile [DPMT 2001; RPMT 2002]
 - (a) BF_3
- (b) NH_3
- (c) $BeCl_2$
- (d) H_2O
- 32. The solubility of CuBr is $2 \times 10^{-4} mol/l$ at $25 ^{\circ}C$. The K_{sp} value for CuBr is **[AIIMS 2002]**
 - (a) $4 \times 10^{-8} mol^2 l^{-2}$
- (b) $4 \times 10^{-11} mol^2 L^{-1}$
- (c) $4 \times 10^{-4} mol^2 l^{-2}$
- (d) $4 \times 10^{-15} mol^2 l^{-2}$
- **33.** A 0.004 M solution of Na_2SO_4 is isotonic with a 0.010 M solution of glucose at same temperature. The apparent degree of disociation of Na_2SO_4 is

[IIT JEE Screening 2004]

- (a) 25%
- (b) 50%
- (c) 75%
- (d) 85%
- **34.** K_{sp} for $Cr(OH)_3$ is 2.7×10^{-31} . What is its solubility in *moles / litre*. **[JEE Orissa 2004]**
 - (a) 1×10^{-8}
- **(b)** 8×10^{-8}
- (c) 1.1×10^{-8}
- (d) 0.18×10^{-8}
- **35.** pK_a of acetic acid is 4.74 . The concentration of CH_3COONa is 0.01 M. The pH of CH_3OONa is

[Orissa JEE 2004]

- (a) 3.37
- (b) 4.37
- (c) 4.74
- (d) 0.474
- **36.** If the solubility product of $AgBrO_3$ and Ag_2SO_4 are 5.5×10^{-5} and 2×10^{-5} respectively, the relationship between the solubilities of these can be correctly represented as **[EAMCET 1985]**
 - (a) $S_{AgBrO_3} > S_{Ag_2SO_4}$
- (b) $S_{AgBrO_3} < S_{Ag_2SO_4}$
- (c) $S_{AgBrO_3} = S_{Ag_2SO_4}$
- (d) $S_{AgBrO_3} \approx S_{Ag_2SO_4}$
- **37.** The ionisation constant of phenol is higher than that of ethanol because [JIPMER 2002]
 - (a) Phenoxide ion is bulkier than ethanoxide
 - (b) Phenoxide ion is stronger base than ethanoxide
 - (c) Phenoxide ion is stabilised through delocalisation
 - (d) Phenoxide ion is less stable than ethoxide
- **38.** A weak acid HX has the dissociation constant $1\times10^{-5}M$. It forms a salt NaX on reaction with alkali. The degree of hydrolysis of 0.1 M solution of NaX is

[IIT JEE Screening 2004]

- (a) 0.0001%
- (b) 0.01%
- (c) 0.1%
- (d) 0.15%
- **39.** In the equilibrium $A^- + H_2O = HA + OH^ (K_a = 1.0 \times 10^{-5})$. The degree of hydrolysis of 0.001 M solution of the salt is **[AMU 1999]**
 - (a) 10^{-3}
- **(b)** 10^{-4}
- (c) 10^{-5}
- (d) 10^{-6}

40. The sulphide ion concentration $[S^{2-}]$ in saturated H_2S solution is 1×10^{-22} . Which of the following sulphides should be quantitatively precipitated by H_2S in the presence of dil. HCl

Sulphide **Solubility Product** 1.4×10^{-16} (I) 1.2×10^{-22} (II) (III) 8.2×10^{-46} 5.0×10^{-34} (IV) (a) I, II (b) III, IV (c) II, III, IV (d) Only I

When equal volumes of the following solutions 41. are mixed, precipitation of $AgCl(K_{sp} = 1.8 \times 10^{-10})$ will occur only with

[IIT 1988; CBSE PMT PMT 1992; DCE 2000]

- (a) $10^{-4} M Ag^{+}$ and $10^{-4} M Cl^{-}$
- (b) $10^{-5} M Ag^{+}$ and $10^{-5} M Cl^{-}$
- (c) $10^{-6} M Ag^{+}$ and $10^{-6} M Cl^{-}$
- (d) $10^{-10} M Ag^+$ and $10^{-10} M Cl^-$
- K_{sp} of an electrolyte AB is 1×10^{-10} . $[A^+] = 10^{-5} M$, which concentration of B^- will not give precipitate of AB

[BHU 2003]

- (a) 5×10^{-6}
- (b) 1×10^{-5}
- (c) 2×10^{-5}
- (d) 5×10^{-5}
- One litre of water contains 10⁻⁷ mole hydrogen 43. ions. The degree of ionization in water will be [CPMT 1985, 88e)93 $l_{5\times10^{-4}}$ mol/l
 - (a) $1.8 \times 10^{-7}\%$
- (b) $0.8 \times 10^{-9}\%$
- (c) $3.6 \times 10^{-7}\%$
- (d) $3.6 \times 10^{-9}\%$
- 44. If the solubility products of AgCl and AgBr are 1.2×10^{-10} and 3.5×10^{-13} respectively, then the relation between the solubilities (denoted by the symbol'S') of these

salts can correctly be represented as [MP PET 1994]

- (a) S of AgBr is less than that of AgCl
- (b) S of AgBr is greater than that of AgCl
- (c) S of AgBr is equal to that of AgCl
- (d) S of AgBr is 10^6 times greater than that of
- **45.** If the solubility product of lead iodide (Pbl_2) is 3.2×10^{-8} , then its solubility in moles/litre will be [MP PMT 1990] (c) 2.3×10^{-16} mole / litre
 - (a) 2×10^{-3}

AgCl

- (b) 4×10^{-4}
- (c) 1.6×10^{-5}
- (d) 1.8×10^{-5}
- **46.** Calculate the solubility of AgCl (s) in 0.1M NaCl at 25°C. $K_{sp}(AgCl) = 2.8 \times 10^{-10}$
 - (a) $3.0 \times 10^{-8} ML^{-1}$
- (b) $2.5 \times 10^{-7} ML^{-1}$

- (c) $2.8 \times 10^{-9} ML^{-1}$
- (d) $2.5 \times 10^7 ML^{-1}$
- The solubility product of a binary weak 47. electrolyte is 4×10^{-10} at 298 K. Its solubility in mol dm^{-3} at the same temperature is [KCET 2001]
 - (a) 4×10^{-5}
- (c) 8×10^{-10}
- (d) 16×10^{-20}
- Solubility of AgCl at $20^{\circ} C$ is 1.435×10^{-3} gm per litre. 48. The solubility product of AgCl is

[CPMT 1989; BHU 1997; AFMC 2000; CBSE PMT 2002]

- (a) 1×10^{-5}
- (b) 1×10^{-10}
- (c) 1.435×10^{-5}
- (d) 108×10^{-3}
- pK_a value for acetic acid at the experimental 49. temperature is 5. The percentage hydrolysis of 0.1 M sodium acetate solution will be
 - (a) 1×10^{-4}
- (b) 1×10^{-2}
- (c) 1×10^{-3}
- (d) 1×10^{-5}
- At 30°C, the solubility of $Ag_2CO_3(K_{sp} = 8 \times 10^{-12})$ 50. [MP PMT 1990] would be greatest in one litre of
 - (a) $0.05 \, M \, Na_2 CO_3$
- (b) $0.05 \, M \, AgNO_3$
- (c) Pure water
- (d) $0.05 \, M \, NH_3$
- The values of K_{sp} for CuS, Ag_2S and HgS are 51. $10^{-31}.10^{42}$ and 10^{-54} respectively. The correct order of their solubility in water is [MP PMT 2003]
 - (a) $Ag_2S > HgS > CuS$
- (b) $HgS > CuS > Ag_2S$
- (c) $HgS > Ag_2S > CuS$
- (d) $Ag_2S > CuS > HgS$
- The pH of a soft drink is 3.82. Its hydrogen ion concentration will be [MP PET 1990]
 - (a) $1.96 \times 10^{-2} \ mol / l$
- (b) $1.96 \times 10^{-3} \mod l$
- (d) $1.96 \times 10^{-1} \ mol / l$
- The pH of a solution at $25^{\circ}C$ containing $0.10 \, m$ sodium acetate and 0.03 m acetic acid is (pK_a) for $CH_{2}COOH = 4.57$) [AIIMS 2002; BHU 2002]
 - (a) 4.09
- (b) 5.09
- (c) 6.10
- (d) 7.09
- A weak acid is 0.1% ionised in 0.1 M solution. Its 54. pH is

[BVP 2004]

- (a) 2
- (b) 3
- (c) 4

- (d) 1
- The solubility product of $A_{S_2}S_3$ is 2.8×10^{-72} . 55. What is the solubility of As_2S_3
 - (a) $1.09 \times 10^{-15} \text{ mole / litre}$
 - (b) $1.72 \times 10^{-15} \text{ mole / litre}$

 - (d) 1.65×10^{-36} mole / litre
- **56.** For a weak acid *HA* with dissociation constant 10^{-9} , pOH of its 0.1 M solution is [CBSE PMT 1989] [UPSEAT 2001]
 - (a) 9

(b) 3

(c) 11

(d) 10

57•	The	disso	ciation	of w	ater	at	25°	Cis	1.9×10	0^{-7} %
	and	the	density	of	wat	er	is	1.0g	$/cm^3$.	The
	ionis	sation	constan	t of	wate	r is			[IIT 1	995]

(a) 3.42×10^{-6}

(b) 3.42×10^{-8}

(c) 1.00×10^{-14}

(d) 2.00×10^{-16}

What is the pH of 0.01 M glycine solution? For glycine, $Ka_1 = 4.5 \times 10^{-3}$ and $Ka_2 = 1.7 \times 10^{-10}$ at 298

[AIIMS 2004]

(a) 3.0

(b) 10.0

(c) 6.1

(d) 7.2

59. The concentration of $[H^+]$ and concentration of $[OH^{-}]$ of a 0.1 aqueous solution of 2% ionised weak acid is

[Ionic product of water = 1×10^{-14}]

[DPMT 2004; CBSE PMT 1999]

(a) $2 \times 10^{-3} M$ and $5 \times 10^{-12} M$

(b) $1 \times 10^3 M$ and $3 \times 10^{-11} M$

(c) $0.02 \times 10^{-3} M$ and $5 \times 10^{-11} M$

(d) $3 \times 10^{-2} M$ and $4 \times 10^{-13} M$

60. If solubility product of $HgSO_4$ is 6.4×10^{-5} , then its solubility is

(a) 8×10^{-3} mole / litre

(b) 6.4×10^{-5} mole / litre

(c) 6.4×10^{-3} mole / litre

(d) 2.8×10^{-6} mole / litre

61. At 298*K* a 0.1 *M* CH_3COOH solution is 1.34% ionized. The ionization constant K_a for acetic acid will be

[AMU 2002; AFMC 2005]

(a) 1.82×10^{-5}

(b) 18.2×10^{-5}

(c) 0.182×10^{-5}

(d) None of these

Hydrogen ion concentration of an aqueous solution is $1 \times 10^{-4} M$. The solution is diluted with volume of water. Hydroxyl concentration of the resultant solution in terms of $mol dm^{-3}$ is [KCET 2001]

(a) 1×10^{-8}

(b) 1×10^{-6}

(c) 2×10^{-10}

(d) 0.5×10^{-10}

Which one of the following is not a buffer solution 63. [AIIMS 2003]

(a) $0.8 M H_2 S + 0.8 M KHS$

(b) $2MC_6H_5NH_2 + 2MC_6H_5NH_3Br$

(c) $3MH_2CO_3 + 3MKHCO_3$

(d) $0.05 M KClO_4 + 0.05 M HClO_4$

The hydrogen ion concentration of a 0.006 Mbenzoic acid solution is $(K_a = 6 \times 10^{-5})$ [MP PET 1994]

(a) 0.6×10^{-4}

(b) 6×10^{-4}

(c) 6×10^{-5}

(d) 3.6×10^{-4}

Calculate the amount of $(NH_4)_2SO_4$ in grams which must be added to 500 ml of $0.200 \, MNH_3$ to yield a solution with pH = 9.35 (K_b for $NH_3 = 1.78 \times 10^{-5}$) [UPSEAT 2001]

(a) 10.56 *qm*

(b) 15 qm

(c) 12.74 gm

(d) 16.25 gm

pH of a solution produced when an aqueous solution of pH 6 is mixed with an equal volume of an aqueous solution of pH 3 is about [KCET 2001]

(a) 3.3

(b) 4.3

(c) 4.0

(d) 4.5

67. Calculate the H^+ ion concentration in a 1.00 (M) HCN litre solution $(K_a = 4 \times 10^{-10})$ [Bihar CEE 1995]

(a) $4 \times 10^{-14} \ mole \ / \ litre$

(b) 2×10^{-5} mole / litre

(c) 2.5×10^{-5} mole / litre

(d) None of these

The number of moles of hydroxide (OH^{-}) ion in 0.3 litre of 0.005 M solution of $Ba(OH)_2$ is[JIPMER 2001]

(a) 0.0050

(b) 0.0030

(c) 0.0015

(d) 0.0075

The pH of pure water or neutral solution at $50^{\circ}C$ is $(pK_w = 13.26 = 13.26 \text{ at } 50^{\circ}C)$

[Pb. PMT 2002; DPMT 2002]

(a) 7.0

(b) 7.13

(c) 6.0

(d) 6.63

pH of 0.1 M solution of a weak acid (HA) is 4.50. It is neutralised with NaOH solution to decrease the acid content to half pH of the resulting solution [JIPMER 2002]

(a) 4.50

(b) 8.00

(c) 7.00

(d) 10.00

71. If 50 ml of 0.2 M KOH is added to 40 ml of $0.5\,M\,HCOOH$, the pH of the resulting solution is

 $(K_a = 1.8 \times 10^{-4})$

[MH CET 2000]

(a) 3.4

(b) 7.5

(c) 5.6

(d) 3.75

The Bronsted acids in the reversible reaction are $HCO_3^-(aq.) + OH^-(aq.) \Rightarrow CO_3^{2-}(aq.) + H_2O$ [DPMT 2002]

(a) OH^- and CO_3^{2-}

(b) OH^- and H_2O

(c) HCO_3^- and H_2O

(d) HCO_3^- and CO_3^{2-}

A 0.1N solution of an acid at room temperature has a degree of ionisation 0.1. The concentration of OH^- would be [MH CET 1999]

(a) $10^{-12} M$

(b) $10^{-11} M$

(c) $10^{-9}M$

(d) $10^{-2}M$

Increasing order of acidic character would be[RPMT 1999]

(a) $CH_3COOH < H_2SO_4 < H_2CO_3$

(b) $CH_3COOH < H_2CO_3 < H_2SO_4$

(c) $H_2CO_3 < CH_3COOH < H_2SO_4$

- **75.** The correct order of increasing $[H_3O^+]$ in the following aqueous solutions is **[UPSEAT 2000]**
 - (a) $0.01 M H_2 S < 0.01 M H_2 S O_4 < 0.01 M NaCl$

< 0.01 M $NaNO_2$

(b) $0.01 \ M \ NaCl < 0.01 \ M \ NaNO_2 < 0.01 \ M \ H_2S$

 $< 0.01 M H_2 SO_4$

(c) $0.01 M NaNO_2 < 0.01 M NaCl < 0.01 M H_2S$

< 0.01 M H₂SO₄

(d) $0.01 M H_2 S < 0.01 M NaNO_2 < 0.01 M NaCl$

< 0.01 M H₂SO₄

76. A base dissolved, in water, yields a solution with a hydroxyl ion concentration of $0.05\,mol\,litre^{-1}$. The solution is

[CBSE PMT 2000]

- (a) Basic
- (b) Acid
- (c) Neutral
- (d) Either (b) or (c)
- 77. In the given reaction, the oxide of sodium is

$$.... \begin{bmatrix} 4Na + O_2 \rightarrow 2Na_2O \\ Na_2O + H_2O \rightarrow 2NaOH \end{bmatrix}$$

[Orissa JEE 2002]

- (a) Acidic
- (b) Basic
- (c) Amphoteric
- (d) Neutral
- **78.** What is the *pH* of a 1*M* CH_3COOH a solution K_a of acetic acid = 1.8×10^{-5} .

$$K=10^{-14}\,mol^{\,2}litre^{-2}$$

[DPMT 2002]

- (a) 9.4
- (b) 4.8
- (c) 3.6
- (d) 2.4

Assertion: Sh (III) is not precipit

8. Assertion: Sb (III) is not precipitated as sulphide when in its alkaline

solution H_2S is passed.

Reason : The concentration of S^{2-} ion in alkaline medium is inadequate for

precipitation.

[AIIMS 2004]

9. Assertion: Ionic reactions are not instantaneous.

Reason : Oppositely charged ions exert strong forces.

Electrical conductors, Arrenius theory and Ostwald's dilution law

1	С	2	b	3	b	4	b	5	b
6	а	7	b	8	d	9	а	10	а
11	С	12	d	13	b	14	b	15	d
16	d	17	b	18	b	19	С	20	С
21	а	22	С	23	b	24	d	25	С
26	d	27	а	28	d	29	d	30	С
31	b	32	С	33	С	34	С	35	а
36	С								

Acids and Bases

1	а	2	d	3	а	4	С	5	b
6	d	7	b	8	С	9	b	10	а
11	а	12	С	13	а	14	d	15	d
16	b	17	b	18	d	19	а	20	b
21	d	22	b	23	b	24	С	25	d
26	С	27	С	28	d	29	b	30	b
31	b	32	С	33	d	34	а	35	а
36	а	37	С	38	С	39	С	40	а
41	С	42	d	43	С	44	а	45	а
46	С	47	С	48	d	49	а	50	b
51	b	52	а	53	а	54	а	55	d
56	b	57	ab	58	а	59	С	60	d
61	а	62	b	63	b	64	b	65	а
66	а	67	d	68	а	69	а	70	b
71	b	72	d	73	b	74	d	75	b
76	b	77	а	78	а	79	b	80	а
81	d	82	b	83	b	84	d	85	bd
86	а	87	d	88	а	89	d	90	С
91	а	92	а	93	а	94	d	95	b
96	С	97	b	98	С	99	d	100	С
101	а	102	а	103	С	104	С	105	а
106	а	107	d	108	b	109	С	110	d

Assertion & Reason

For A1990S Aspirants

Read the assertion and reason carefully to mark the correct option out of the options given below:

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.
- 1. Assertion: pH of hydrochloric acid solution is

less than that of acetic acid solution

of the same concentration.

Reason : In equimolar solutions, the number of titrable protons present in

hydrochloric acid is less than that

persent in acetic acid.

[NDA 1999]

2. Assertion: A ionic product is used fro any types of electrolytes whereas solubility product is applicable

only to sparingly soluble salts.

Ionic product is defined at any

Reason : Ionic product is defined at any stage of the raction whereas solubility product is only appicable

to the saturation stage.

[AIIMS 2001]

3. Assertion: A solution of $FeCl_3$ in water produce brown precipitate on

groduce brown precipitate on

standing.

Reason : Hydrolysis of $FeCl_3$ takes place in

water

4. Assertion: BaCO₃ is more soluble in

 HNO_3 than in plain water.

Reason : Carbonate is a weak base and reacts

with the H^+ from the strong acid, casuing the barium salt to

dissociate.

5. Assertion : $CHCl_3$ is more acidic than CHF_3 .

Reason : The conjugate base of CHCl3 is more

stable than CHF_3 .

6. Assertion: Addition of silver ions to a mixture

of aqueous sodium chloride and sodium bromide solution will first precipitate AgBr rather than AgCl.

Reason : K_{sp} of $AgCl < K_{sp}$ of AgBr .[AIIMS 2004]

7. Assertion: The pK_a of acetic acid is lower than

that of phenol.

Reason : Phenoxide ion is more resonance

stabilized. [AIIMS 2004]

111	b	112	С	113	С	114	а	115	С
116	d	117	d	118	С	119	С	120	С
121	а	122	d	123	b	124	а	125	b
126	С	127	С	128	d	129	С	130	b
131	b	132	С	133	а	134	С	135	а
136	С	137	С	138	b	139	b	140	b
141	b	142	а	143	b	144	а	145	а
146	а	147	b	148	b	149	С	150	а
151	С	152	С	153	d	154	С	155	а
156	b	157	а	158	d	159	b	160	d
161	b	162	d	163	С	164	d	165	а

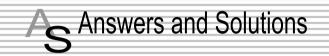
Common ion effect, Isohydric solutions, Solubility product, Ionic product of water and Salt hydrolysis

1	b	2	С	3	b	4	b	5	b
6	d	7	С	8	а	9	С	10	а
11	b	12	b	13	а	14	d	15	d
16	b	17	С	18	С	19	d	20	С
21	d	22	d	23	d	24	b	25	а
26	d	27	а	28	d	29	b	30	b
31	а	32	d	33	а	34	С	35	d
36	b	37	b	38	С	39	b	40	а
41	а	42	d	43	b	44	а	45	b
46	d	47	b	48	С	49	С	50	С
51	b	52	d	53	а	54	d	55	С
56	d	57	b	58	С	59	d	60	С
61	b	62	b	63	а	64	bc	65	d
66	а	67	d	68	а	69	d	70	С
71	С	72	d	73	d	74	d	75	а
76	С	77	b	78	d	79	b	80	d
81	С	82	С	83	d	84	С	85	d
86	d	87	b	88	С	89	b	90	а
91	а	92	а	93	С	94	С	95	а
96	d	97	d	98	b	99	b	100	ab
101	d	102	С	103	С	104	а	105	С
106	С	107	С	108	а	109	b	110	b
111	b	112	а	113	а	114	а	115	b
116	a								

Hydrogen ion concentration - *pH* scale and Buffer solution

1	а	2	С	3	d	4	b	5	b
6	d	7	а	8	С	9	b	10	d
11	а	12	d	13	С	14	а	15	b
16	d	17	b	18	С	19	С	20	d
21	b	22	С	23	а	24	d	25	b
26	а	27	а	28	d	29	b	30	b
31	d	32	b	33	а	34	а	35	С
36	С	37	С	38	а	39	а	40	d

41	а	42	а	43	b	44	d	45	b
46	а	47	b	48	а	49	С	50	а
51	а	52	С	53	С	54	С	55	d
56	а	57	С	58	b	59	b	60	С
61	b	62	С	63	b	64	b	65	С
66	а	67	b	68	d	69	а	70	С
71	d	72	а	73	b	74	а	75	b
76	а	77	а	78	С	79	b	80	а
81	b	82	С	83	b	84	b	85	С
86	b	87	а	88	а	89	а	90	d
91	b	92	С	93	а	94	а	95	С
96	b	97	b	98	b	99	b	100	b
101	С	102	С	103	а	104	а	105	С
106	а	107	С	108	С	109	d	110	b
111	d	112	d	113	b	114	а	115	С
116	d	117	b	118	b	119	d	120	С
121	d	122	b	123	С	124	d	125	b
126	b	127	а	128	С	129	b	130	d
131	С	132	d	133	С	134	С	135	а
136	С	137	С	138	С	139	С	140	b
141	b	142	а	143	d	144	b	145	b
146	d	147	С	148	b	149	а	150	d
151	b	152	d	153	b	154	b	155	С
156	d	157	С	158	а	159	С	160	d
161	С	162	d	163	b	164	а	165	d
166	а	167	d	168	b	169	С	170	а
171	С	172	С	173	d	174	b	175	а
176	С	177	а	178	С	179	а	180	b
181	С	182	b	183	b	184	b	185	С
186	b	187	b	188	а	189	а	190	b
191	d	192	b	193	b	194	b	195	а
196	b	197	b	198	b	199	а	200	ad
201	ac	202	a bc	203	С	204	С	205	b
206	b								


Critical Thinking Questions

1	b	2	а	3	b	4	а	5	d
6	а	7	С	8	а	9	а	10	а
11	b	12	d	13	С	14	d	15	С
16	d	17	d	18	b	19	b	20	d
21	а	22	b	23	а	24	b	25	а
26	С	27	d	28	d	29	b	30	d
31	b	32	а	33	С	34	а	35	а
36	b	37	С	38	b	39	а	40	b
41	а	42	а	43	а	44	а	45	а
46	С	47	b	48	b	49	b	50	С
51	d	52	С	53	b	54	С	55	а
56	d	57	d	58	С	59	а	60	а

								_	_
61	а	62	С	63	d	64	b	65	а
66	а	67	b	68	b	69	d	70	b
71	а	72	С	73	а	74	С	75	С
76	а	77	b	78	а				

Assertion & Reason

1	С	2	b	3	а	4	а	5	а
6	С	7	С	8	а	9	е		

Electrical conductors, Arrhenius theory and Ostwald's dilution law

- 1. (c) $C_{12}H_{22}O_{11}$ is a sugar and non-electrolyte.
- **2.** (b) It is a weak electrolyte since it is slightly ionized.
- **3.** (b) It is a weak electrolyte since slightly ionized.
- **4.** (b) Because the degree of dissociation is inversely proportional to the concentration of the electrolyte.
- **5.** (b) Electrolytes are those substances which on dissolving in water give ions.

6. (a)
$$K = \frac{\alpha^2 C}{1 - \alpha}$$
; $\alpha = \frac{0.01}{100} \approx 1$:: $K = \alpha^2 C = \left[\frac{0.01}{100}\right]^2 \times 1$

- 7. (b) As *NaCl* ionises completely to yield free ions.
- 8. (d) $CH_3COONa = CH_3COO^- + Na^+$ $H_2O = H^+ + OH^ CH_3COOH + NaOH$
- **9.** (a) *NaCl*, being a salt, is a strong electrolyte.
- **10.** (a) We can determine by measurement of very dilute *HF* solutions.
- 11. (c) According to the Ostwald's dilution formula $\alpha^2 = \frac{K(1-\alpha)}{C} \;. \; \text{But for weak electrolytes } \alpha \; \text{is very small. So that } (1-\alpha) \; \text{can be neglected. So}$ that $\alpha = \sqrt{\frac{K_a}{C}} \;.$
- **12.** (d) Arrhenius proposed the theory of ionisation.
- **13.** (b) higher the dielectric constant of a solvent more of its ionising power.
- **14.** (b) $\alpha \propto \text{dilution of solution.}$
- **15.** (d) Generally ionic compound are conduct electricity in fused state.
- **16.** (d) According to Ostwald's dilution law because degree of ionization is directly proportional to the dilution.

- 17. (b) The degree of ionisation of a solute depends upon its nature, concentration, and temperature.
- **18.** (b) Mathematical form of Ostwald's dilution law.
- **19.** (c) It is a weak electrolyte because it's ionization is very less.
- **20.** (c) When we add NH_4OH in NH_4Cl solution ionization of NH_4OH is decreased due to common ion effect.
- 21. (a) $BaCl_{2} = Ba^{2+} + 2Cl^{-}$ Initially 1 0 0
 After dissociation $a \alpha$ α 2α $Total = 1 \alpha + \alpha + 2\alpha = 1 + 2\alpha$ $\alpha = \frac{1.98 1}{\alpha} = \frac{0.98}{\alpha} = 0.49$ for a mole $\alpha = 0.49$ For 0.01 mole $\alpha = \frac{0.49}{0.01} = 49$
- 22. (c) It is an ionic salt.
- **23.** (b) Due to common ion effect of H^+ .
- 24. (d) Current does not affect the degree of ionization
- **25.** (c) Polar solvent facilitate ionisation of strong electrolytes due to dipole-ion attraction.
- **26.** (d) $HA \Rightarrow H^+ + A^ K = Ca^2 = 0.1 \times (10^{-4})^2 = 10^{-9}$
- **28.** (d) Degree of dissociation $\alpha = ?$

Normality of solution = 0.1 $N = \frac{1}{10} N$

Volume = 10 litre

Dissociation constant $K = 1 \times 10^{-5}$

$$K = \frac{\alpha^2}{V}$$
; $\alpha = \sqrt{KV} = \sqrt{1 \times 10^{-5} \times 10}$; $\alpha = 1 \times 10^{-2}$

- **29.** (d) $MgCl_2 = Mg^{++} + 2Cl^-$ in aqueous solution it is dissociated into ions.
- **30.** (c) Ostwald's dilution formula is $\alpha^2 = K(1-\alpha)/C$ but for weak electrolyte α is very small. So that $(1-\alpha)$ is neglected for weak electrolytes. So for weak electrolyte the dilution formula is $\alpha = \sqrt{\frac{K}{C}}$.

31. (b)
$$K_a = C\alpha^2 = 0.2 \times \left(\frac{32}{100}\right)^2 = 2.048 \times 10^{-4}$$
.

- 32. (c) $H_2SO_4 = H^+ + H^-SO_4 = H^+ + SO_4^-$ Because of it is completely ionised.
- **33.** (c) Colour of electrolyte depends on the nature of both ions.

e.g. $CuSO_4$ is blue because Cu^{2+} ions are blue.

- **34.** (c) Ionisation depends upon dilution, when dilution increases then ionisation is also increased.
- **35.** (a) More is K_a , lesser is $pK_a(pK_a = -\log K_a)$ more is acidic strength.

Acids and Bases

- **1.** (a) *CO* doesn't have a vacant *d*-orbital.
- 2. (d) $HClO_4 + H_2O = H_3O^+ + ClO_4^-$ Conjugate acid and base pair
- 3. (a) $FeCl_3 + 3H_2O = Fe(OH)_3 + 3HCl$. Strong acid and weak base.
- **4.** (c) $Na_2CO_3 + 2H_2O = 2NaOH + H_2CO_3$
- 5. (b) Those substance accept the proton are called Bronsted base and which is donate the proton are called Bronsted acid.

 $HCO_3^- + H^+ \rightleftharpoons H_2CO_3$ Bronsted base.

$$HCO_3^- \rightleftharpoons H^+ + CO_3^{--}$$
 Bronsted acid.

- **7.** (b) The value of pK_a for strong acid is less.
- **8.** (c) Because it is a salt of strong base and weak acid.
- 9. (b) Because it is conjugate base of weak acid. $CH_3COOH \Rightarrow CH_3COO^- + H^+.$
- 11. (a) Those compound which accept H^+ is called bronstad base NO_3^- accept H^+ and form HNO_3 . So it is a base.
- 13. (a) Larger the size of halogen atom less is the back donation of electrons into empty 2p orbital of B.
- **14.** (d) $H_2O + NH_3 = NH_4^+ + OH^-$
- **16.** (b) $NH_{2}^{-} = NH^{-2} + H^{+}$

Conjugate acid, base pair.

- **17.** (b) Those substances which lose proton are called acid.
 - e.g. strong acid have a strong tendency to donate a proton.
- 18. (d) Electron donating species called nucleophile. $N\!H_3$ have a lone pair of electron.
- **19.** (a) H_2O acts as acid as it provides H^+ to NH_3 .
- **20.** (b) $CH_3COOH + HF = CH_3COOH_2^+ + F^-$. HF gives H^+ to the CH_3COOH . So it is a conjugate base of HF.
- **22.** (b) $Ba(NO_3)_2$ does not undergo hydrolysis.
- **23.** (b) H_2SO_4 is a mineral acid.

- **24.** (c) Because it is a electron pair acceptor it's central atom have a vacant d-orbital.
- **25.** (d) $HClO_4$ is a acid and their conjugate base is ClO_4 .
- **26.** (c) It is completely ionised because their ionization is very high.
- 27. (c) $NaHCO_3$ in water is alkaline in nature due to hydrolysis of HCO_3^- ion. $NaCO_3 \Rightarrow Na^+ + HCO_3^-$
- **28.** (d) In this reaction H_2O acts as a acid.
- **29.** (b) The basic character of hydride decreases down the group.
- **30.** (b) Its ionization is very less.
- **32.** (c) Hydrolysis of Cu^{2+} produces H^+ ions in solution.

$$Cu^{2+} + 2H_2O \rightarrow Cu(OH)_2 + 2H^+$$

- **33.** (d) Both possess the tendancy to accept proton.
- **34.** (a) *HF* does not give proton easily.
- **35.** (a) In weak electrolyte the degree of dissociation is very small. So it increases with increasing dilution.
- **36.** (a) Because it is a electron pair acceptor.
- 37. (c) $H_3PO_4 \stackrel{\text{I step}}{\longleftarrow} H^+ + H_2PO_4^ H_2PO_4^- \stackrel{\text{II step}}{\longleftarrow} H^+ + HPO_4^{--}$ $HPO_4^- \stackrel{\text{III step}}{\longleftarrow} H^+ + PO_4^{--}$
- **38.** (c) Na_2HPO_4 on hydrolysis of HPO_4^{2-} ion produces free OH^- ion in solution.
- **39.** (c) $H_2SO_4 = H^+ + HSO_4^-$.
- **40.** (a) $Fe^{3+} + 3H_2O \rightarrow Fe(OH)_3 + 3H^+$
- **41.** (c) $H_2PO_4^- \rightleftharpoons H^+ + HPO_4^{2^-}$ action.
- **42.** (d) $H^+ + OH^- = H_2O$, it is a neutralization reaction.
- **43.** (c) It is a conjugate base of the strong acid.
- **44.** (a) Because those acid have higher pK_a value are weak acid.
- **45.** (a) Conjugate acid is obtained from the base by gain of H^+ .
- **46.** (c) CH_3COOH is weak acid shows dissociation equilibrium as $CH_3COOH = CH_3COO^- + H^+$
- **47.** (c) $pK_a = \log_{10} \frac{1}{K_a}$
- 48. (d) A weak acid and strong base.
- **49.** (a) In NaH_2PO_2 both hydrogen are bonded with 'P,' so it is not replaceable.
- **50.** (b) Aqueous solution of Na_2CO_3 is alkaline due to hydrolysis of CO_3^{--} .

- **51.** (b) Because they give CO_3^{--} in solution.
- **52.** (a) M.eq. of 0.2*M* $H_2SO_4 = \frac{2 \times 0.2M}{1000} \times 100 = 0.04$

m/l

M.eq. of .2M NaOH =
$$\frac{0.2}{1000} \times 100 = 0.02 \ m/l$$

left
$$[H^+] = .04 - .02 = .02$$
.

Total volume =
$$200 = \frac{.02}{200} = .0001 = 10^{-4} M$$

 $pH = 4$.

- **53.** (a) H_3BO_3 is a weak monobasic acid it does not act as a H^+ donor but behaves as a Lewis acid.
- **54.** (a) Because $SnCl_2$ is a electron acceptor according to Lewis concept.
- **55.** (d) *ROH* is a Lewis base because it has an lone pair of electron.
- **56.** (b) $H_2SO_4 + 2H_2O = 2H_3O^+ + SO_4^{--}$

$$NaOH \Rightarrow Na^+ + OH^-$$

1 mole of H_2SO_4 acid gives 2 moles of H_3O^+ ions. So 2 moles of OH^- are required for complete neutralization.

- 57. (ab) Diprotic solvents give $2H^+$ ions or OH^- ions.
- **58.** (a) $N_{NaOH} = 1 \times 1 = 1N$

$$N_{H_2SO_4} = 2 \times 10 = 20 N$$

M.eq. of $NaOH = 1 \times 100 = 100$

M.eq. of
$$H_2SO = 20 \times 10 = 200$$

Thus M.eq. of acid are left and therefore *pH*< 7, so the resulting mixture will be acidic.

- **60.** (d) PH_3 is a Lewis base.
- **61.** (a) Because of CH_3COONa is a salt of weak acid and strong base.
- **62.** (b) Acid $\xrightarrow{-H^+}$ conjugate base. Base $\xrightarrow{+H^+}$ conjugate acid.
- 63. (b) $HCl \rightarrow Cl^{-1}$
- **65.** (a) $HClO_4 > H_2SO_4 > HCl > HNO_3$.
- **66.** (a) Those substances which accept the H^+ are called conjugate base.
- **67.** (d) NH_3 is a Lewis base, which donate a lone pair of electron
- **69.** (a) $FeCl_3 + 3H_2O = Fe(OH)_3 + 3HCl$. Strong acid have less than 7 pH.
- **70.** (b) It donates their e^- pair.
- **71.** (b) The strength of the acid will depend upon the proton donation.

73. (b) Because it is a salt of strong acid and strong base.

$$H^{+}_{(aq)} + Cl^{-}_{(aq)} + Na^{+}_{(aq)} + OH^{-}_{(aq)} \Rightarrow$$

$$H_2O_{(1)} + Na^+_{(aq)} + Cl^-$$

- **74.** (d) CCl_4 is not a Lewis or bronsted acid. It does not contain H^+ .
- **75.** (b) $NH_4Cl + H_2O = NH_4OH + HCl_{Strong acid}$. So it is acidic in nature.
- **76.** (b) Cu(II) complexes are blue. The four water molecules are attached with secondary valencies of the metal atom e.g. $[Cu(H_2O)_4]SO_4 \cdot H_2O$.
- 77. (a) The species which can accept as well as donate H^+ can act both as an acid and a base. $HSO_4^- + H^+ = H_2SO_4$

$$HSO_4^- \Rightarrow SO_4^{2-} + H^+$$

- **78.** (a) NH_4^+ is the weakest acid. So its conjugate base is strongest.
- **79.** (b) Ag^+ is an electron deficient compound and hence is a Lewis acid.
- **80.** (a) $H_3 PO_4$ $= H^+ + H_2 PO_4^-$
- **81.** (d) $HS_2O_8^- \rightleftharpoons H^+ + S_2O_8^{--}$ Conjugate base
- **82.** (b) PH_3 donates electron pair to BCl_3 .
- **83.** (b) The conjugate base of weak acid is a strong base.
- **84.** (d) $OH^- \rightarrow O^{2-} + H^+$ Conjugate base of OH^-
- **85.** (bd) Presence of lone pair of electron and they donate two electron pairs.
- **86.** (a) On increasing oxidation number Acidic strength increases.
- **87.** (d) H_3PO_4 is shows +5 maximum oxidation state.
- **88.** (a) $C_2H_5^-$ is a strongest base.
- **89.** (d) *NaOCl* is a mixture of strong base and weak
- **90.** (c) NH_4OH gives minimum OH^- ion. So it is a weak base.
- **91.** (a) Solution become acidic and methyl orange act on acidic pH.
- **92.** (a) Larger is bond length, more is acidic nature (for halogen acids). *HF* bond length is small.
- **93.** (a) *HCl* is accepting proton in *HF* medium and acts as weak base.
- **95.** (b) For oxoacids of the same element, the acidic strength increases with increase in the oxidation number of that element.

$$\overset{+1}{HClO} < \overset{+3}{HClO_2} < \overset{+5}{HClO_3} < \overset{+7}{HClO_4}$$

- **96.** (c) Because their conjugate base and conjugate acids are strong.
- **97.** (b) *HCl* is a strong acid and their conjugate base is a very weak base.
- **100.** (c) $NH_3 = NH_2^- + H^+$
- **101.** (a) $H_2SO_4 = H^+ + HSO_4^- = H^+ + SO_4^{--}$ HSO_4^- is conjugate base. But it is also an acid because it lose H^+ .
- **102.** (a) BF_3 is a Lewis acid because 'B' has incomplete octet.
- **104.** (c) H_3O^+ , however it exists as $H_9O_4^+$.
- **105.** (a) $Al_2(SO_4)_3$ is a salt of weak base $Al_2(OH)_3$ and strong acid H_2SO_4 .
- **106.** (a) Al^{+++} of $AlCl_3$ undergoes hydrolysis.
- **107.** (d) $H_2SO_4 = H^+ + HSO_4^-$
- **109.** (c) Conjugate base of H_2SO_4 is HSO_4^- .
- 110. (d) Presence of lone pair.
- 111. (b) According to Bronsted principle HNO_3 is acid they give H^+ in aqueous solution and form NO_3^- .
- **112.** (c) $H_2O + H_2O = H_3O^+ + OH^-$.
- 113. (c) NH_{4}^{+} is a conjugate acid; $NH_{4}^{+} = NH_{3} + H^{+}$
- **114.** (a) $AlCl_3 + 3H_2O = Al(OH)_3 + \frac{3HCl_{Stron acid}}{Stron acid}$
- **116.** (d) HCl is a strong acid its conjugate base means Cl^- is a weak base.
- 117. (d) Hydrazoic acid (HN_3) is a Lewis acid.
- 118. (c) Smaller the pK_a value than. Stronger the acid.
- **120.** (c) BF_3 is acidic because due to Lewis concept it accept a lone pair of electron.
- 122. (d) Because it is a weak electrolyte.
- **126.** (c) $AlCl_3$ and SO_2 both are example of Lewis theory.
- **127.** (c) $Na_2CO_3 + 2H_2O = 2NaOH + H_2CO_3$. It is a strong base and weak acid so it is a basic.
- 129. (c) $H_2O+NH_3=NH_4^++OH^-$. In this reaction H_2O acts as acid because it donate a proton.
- **130.** (b) $H_2SO_4 + H_2O = H_3O^+ + HSO_4^-$ Conjugate acid and base
- **131.** (b) $Al_2(SO_4)_3 = 2Al^{3+} + 3SO_4^{2-}$

$$Al(OH)_3 + H_2SO_4$$

Weak base Strong acid

- **132.** (c) $NaOH + HCl = \frac{Neutralization}{Reaction} \qquad NaCl + H_2O$
- **133.** (a) Conjugate acid is obtained from the base by gain of H^+ .
- 134. (c) KClis a ionic compound.
- **135.** (a) $H_3BO_3 + H_2O = [B(OH)_4]^- + H^+$ H_3BO_3 is a weak monobasic acid if does not act as a H^+ donor but behaves as a Lewis acid.
- **136.** (c) Because it is not accept the proton.
- 137. (c) NH_4Cl is a salt of weak base (NH_4OH) and strong acid (HCl).
- 138. (b) Because it accept electron pair from the PH_3
- **139.** (b) $NH_4^+ \rightleftharpoons NH_3 + H_3^+$
- **141.** (b) Hydrolysis of Fe^{3+} $Fe^{3+} + 3H_2O \rightarrow Fe(OH)_3 + 3H^+$
- 142. (a) According to the Lewis concept.
- **143.** (b) Conjugate base is obtained from the acid by loss of H^+ .
- **144.** (a) BF_3 accept electron pair from NH_3 so it is Lewis acid.
- **145.** (a) CH_4 has almost no acidic nature and thus CH_3^- is strongest base.
- **146.** (a) $CuSO_4$ is a salt of weak base, $(Cu(OH)_2)$ and strong acid (H_2SO_4) .
- **147.** (b) Weak acid consists of highest pK_a value and strongest acid consist of less pK_a value.
- **149.** (c) Because it gain and also lose the proton $H_2O + H_2O = H_3O^+ + OH^-$
- **150.** (a) $H_2O + H_2O \Rightarrow H_3O^+ + OH^-$
- **151.** (c) $HBr + H_2O = H_3O^+ + Br^-$
- **152.** (c) Because both are strong acid and strong base.
- **153.** (d) $LiAlH_4$ is a nucleophilic and capable of donating electron pair, thus acts as a Lewis base.
- **154.** (c) The solvent which neither accept proton nor donates.
- **155.** (a) Because of F^- is a highly electronegative. So it is easily lose the electron and reaction occur rapidly.
- **156.** (b) Strong acid can be used titrate both strong and weak base.
- **159.** (b) For a weak acid value of pKa will be vary high but in case of strong acid value of pKa will be vary low.
- **160.** (d) Boron halides behave as Lewis acid because of their electron deficient nature *eg.*, as

$$F = \begin{cases} F \\ \text{(Deficiency of two electron for inert configuration)} \end{cases}$$

- **161.** (b) Gaseous HCl does not give H^+ but liquid HCl gives H^+ in aquous solution there for gaseous HCl is not a Arrhenius acid due to covalent bonding in gaseous condition.
- **162.** (d) $H_2O \rightarrow H^+ + OH^-$ [Acid due to donation of Acid

proton]

$$H_2O + H^+ \rightarrow H_3O^+$$
 [Basic due to gaining of Base

proton]

163. (c) F^- strongest conjugate base due to it smallest size in a group and gain proton due to most electronegative capacity.

$$H^+ + F^- \rightarrow HF$$

- **164.** (d) $H_2PO_4^- \rightarrow H^+ + HPO_4^{2-}$ Conjugate acid
- **165.** (a) $HSO_4^- \rightarrow H^+ + SO_4^{2-}$ Conjugate acid Conjugate base

Common ion effect, Isohydric solutions, Solubility product, Ionic product of water and Salt hydrolysis

- 1. (b) Solubility of $Al_2(SO_4)_3$ $Al_2(SO_4)_3 = 2Al^{+++} + 3SO_4^{--}$ $K_{sp} = [Al^{3+}]^2 [SO_4^{2-}]^3$
- 2. (c) Due to common ion effect.
- 3. (b) $MX_2 \Rightarrow M_S^{2+} + 2X_{2S}^{-}$ $K_{sp} = (2S)^2(S) = 4S^3$ $\Rightarrow S = 2\sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{4 \times 10^{-12}}{4}} = 1.0 \times 10^{-4} M.$
- 5. (b) $MX_2 = M_{(S)}^+ + 2X_{(2S)^2}^-$; $K_{sp} = 4S^3$ $S = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{1 \times 10^{-11}}{4}} = 1.35 \times 10^{-4}$
- **8.** (a) $Mg(OH)_2 = Mg^{++} + 2OH^{-}$ (X) $(2X)^2$

$$K_{sp} = 4X^3$$

9. (c) $BaSO_4 = Ba^{++} + SO_4^{--}$ ${(S)\atop (S)\atop (0.01)} {(S)\atop 5}$ $K_{sp} = S^2 = S \times S = 0.01 \times S$

$$S_{(SO_4^{2-})} = \frac{K_{sp}}{S_{(Ba^{++})}} = \frac{1 \times 10^{-9}}{0.01} = 10^{-7} \, mole/litre$$

10. (a)
$$AB_2 = A_{1 \times 10^{-5}}^+ + 2B_{2 \times 10^{-5}}^-$$

 $K_{sp} = [1 \times 10^{-5}][2 \times 10^{-5}]^2 = 4 \times 10^{-15}$

11. (b)
$$CaF_2 = Ca^{++} + 2F^-_{(S)}$$
; $K_{sp} = 4S^3$

- 12. (b) Due to common ion effect.
- 13. (a) $Ag_2CrO_4 = [2Ag^+] + [CrO_4^{--}]$ Hence $K_{sp} = [Ag^+]^2 [CrO_4^{--}]$
- **14.** (d) K_{sp} for $CaF_2 = 4s^3 = 4 \times [2 \times 10^{-4}]^3 = 3.2 \times 10^{-11}$.
- **15.** (d) The concentration of S^{2-} ions in group II is lowered by maintaining acidic medium in the presence of NH_4Cl . The ionization of H_2S is supressed due to common ion effect. So the ionic product is less than solubility product.
- **16.** (b) NH_4Cl is hydrolysed and give $[H^+]$ $NH_4Cl + H.OH \Rightarrow NH_4OH + HCl$ $NH_4^+ + H.OH \Rightarrow NH_4OH + H^+$
- 17. (c) $FeCl_3$ is a salt of weak base $(Fe(OH)_3)$ and strong acid (HCl).
- **18.** (c) For the precipitation of an electrolyte, it is necessary that the ionic product must exceed its solubility product.
- **19.** (d) $K_{sp} = [Ag^+]^2 [Cro_4^{--}] = [2S]^2 [0.01]$ = $4S^2 [0.01] = 4[2 \times 10^{-8}]^2 \times 0.01 = 16 \times 10^{-18}$.
- **20.** (c) Complex salts contain two different metallic elements but give test for only one of them. *e.g.* $K_4Fe(CN)_6$ does not give test for Fe^{3+} ions.
- 21. (d) $10^{-3} N$ KOH will give $[OH^{-}] = 10^{-2} M$ pOH = 2 $\therefore pH + pOH = 14$, pH = 14 - 2 = 12
- **22.** (d) It is $FeSO_4(NH_4)_2SO_4 \cdot 10H_2O$.
- 23. (d) Salt of a strong base with a weak acid.
- **24.** (b) NH_4CN is a salt of weak acid and weak base and thus for it
- **25.** (a) Because it is a salt of strong base with a weak acid.
- **26.** (d) Because CCl_4 is a organic solvent and $AgNO_3$ is insoluble in organic solvent.
- **27.** (a) $SnS_2 = Sn^{4+} + 2S^{2-}$ $\therefore K_{SD} = [Sn^{4+}][S^{2-}]^2$
- **28.** (d) It does not dissociate much or its ionization is very less.
- **29.** (b) *NaHCO*₃ has one replaceable hydrogen.
- **30.** (b) $CaOCl_2$ has two anions Cl^- and OCl^- along with Ca^{2+} ions.
- **31.** (a) $K_{sp} = 4S^3$, $S^3 = \frac{4 \times 10^{-9}}{4} = 10^{-9}$ $\therefore S = 10^{-3} M$.

- **32.** (d) $Be(OH)_2$ has lowest solubility and hence lowest solubility product.
- 33. (a) Because it <u>is a salt</u> of strong acid and strong base.
- 34. (c) $NH_4OH = NH_4 + OH^ NH_4Cl = NH_4 + CC$ common ion
- 35. (d) It is a less ionic, so that least soluble in water.
- **36.** (b) *pH* of 9 means the salt solution should be fairly basic.
- 37. (b) $CH_3COOH = CH_3COO^- + H^+$ On adding CH_3COONa , $[H^+]$ decreases.
- **38.** (c) 0.01 M $CaCl_2$ gives maximum Cl^- ions to keep K_{sp} of AgCl constant, decrease in $[Ag^+]$ will be maximum.
- 39. (b) Due to the common ion effect.
- **40.** (a) $K_{sp} = 4s^3$ $S = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{1.0 \times 10^{-6}}{4}} = 6.3 \times 10^{-3}.$
- **42.** (d) K_w increases with increase in temperature.
- **43.** (b) It contains two cations and one anion.
- **44.** (a) $HgSO_4$ of $K_{sp} = S^2$ $S = \sqrt{K_{sp}} \quad ; \quad S = \sqrt{6.4 \times 10^{-5}} \quad ; \quad S = 8 \times 10^{-3} \text{ m/l}.$
- **45.** (b) The solubility of $BaSO_4$ in g/litre is given 2.33×10^{-3}

: in mole/litre.
$$n = \frac{W}{m.wt} = 1 \times 10^{-5} = \frac{2.33 \times 10^{-3}}{233}$$

Because $BaSO_A$ is a compound

$$K_{sp} = S^2 = [1 \times 10^{-5}]^2 = 1 \times 10^{-10}$$

46. (d)
$$AgCl = Ag^{+} + Cl^{-}$$

$$a \qquad a \qquad a$$

$$NaCl = Na^{+} + Cl^{-}$$

$$0.02 \qquad 0.02 \qquad 0.02$$

$$K_{sp} AgCl = 1.20 \times 10^{-10}$$

$$K_{sp} AgCl = [Ag^+][Cl^-] = a \times [a+0.2] = a^2 + 0.2a$$

 a^2 is a very small so it is a neglected.

$$K_{sp}$$
 $AgCl = 0.2a$

$$1.20 \times 10^{-10} = 0.2a$$

$$a = \frac{1.20 \times 10^{-10}}{0.20} = 6 \times 10^{-10} \text{ mole}$$

47. (b) Solubility is decreased due to common ion effect.

$$AgI \Rightarrow Ag^{+} + I^{-}$$

$$NaI \Rightarrow Na^{+} + I^{-}$$
Common ion

- **48.** (c) K_{sp} of $BaSO_4 = 1.5 \times 10^{-9}$; $Ba^{++} = 0.01M$ $SO_4^{--} = \frac{1.5 \times 10^{-9}}{0.01} = 1.5 \times 10^{-7}$
- **49.** (c) $AgCrO_4 = 2Ag^+ + CrO_4^ (2S)^2 S$ $K_{SP} = 4S^3 \text{ given } 2S = 1.5 \times 10^{-4}$

$$K_{sp} = 45$$
 given $25 = 1.5 \times$

$$\therefore K_{sp} = (2S)^2 \times S$$

=
$$(1.5 \times 10^{-4})^2 \times \left(\frac{1.5 \times 10^{-4}}{2}\right) = 1.6875 \times 10^{-12}$$

50. (c) $PbCl_2 = Pb_S^{2+} + 2Cl_S^{-}$

$$K_{sp}$$
 of $PbCl_2 = [Pb^{2+}] \times [Cl^{-}]^2$; $K_{sp} = S \times (2S)^2$

$$K_{sp} = S \times 4S^2 = 4S^3$$
; $S^3 = \frac{K_{sp}}{4}$; $S = \sqrt[3]{\frac{K_{sp}}{4}}$

- **51.** (b) $AgCl = [Ag^+][Cl^-]$; $K_{sp} = S \times S$; $K_{sp} = S^2$ $S = \sqrt{K_{sp}} = \sqrt{1.44 \times 10^{-4}} = 1.20 \times 10^{-2} M.$
- **52.** (d) By formula $BA_2 \to B^+ + 2A^-$

$$K_{sp} = 4x^3$$

53. (a)
$$AgCrO_4 \rightarrow 2Ag^+ + CrO_4^{--}$$

$$K_{sp} = (2S)^2 S = 4S^3$$

$$S = \left(\frac{K_{sp}}{4}\right)^{\frac{1}{3}} = \left(\frac{32 \times 10^{-12}}{4}\right)^{\frac{1}{3}} = 2 \times 10^{-4} M.$$

- **54.** (d) Common ion effect is noticed only for weak electrolyte dissociation. H_2SO_4 is strong electrolyte.
- 55. (c) When we added barium ion in chromate ion solution we obtained yellow ppt of $BaCrO_4$.

$$BaCl_2 + K_2CrO_4 \rightarrow BaCrO_4 \downarrow + 2KCl$$
Yellow ppt.

56. (d) *AB* is a binary electrolyte.

$$S = \sqrt{K_{sp}} = \sqrt{1.21 \times 10^{-6}} = 1.1 \times 10^{-3} M$$

- **57.** (b) Precipitation occurs when ionic product > solubility.
- **58.** (c) For a binary electrolyte, so that

$$K_{sp} = S \times S = S^2$$

$$S = \sqrt{K_{sp}}$$
.

61. (b) CH_3COONa is a salt of weak acid and strong base. Hence its aqueous solution is alkaline.

- **62.** (b) $BaSO_4 = Ba^{2+} + SO_4^{--}$ Solubility constant $= S \times S$ $1.5 \times 10^{-19} = S^2$; $S = \sqrt{1.5 \times 10^{-19}}$; $S = 3.9 \times 10^{-5}$
- **65.** (d) $Ca(OH)_2 = Ca^{++} + 2OH^{-}_{(S)}$ $K_{SP} = 4S^3 = 4 \times \sqrt{3} \times \sqrt{3} \times \sqrt{3} = 12\sqrt{3}$
- **66.** (a) Due to common ion effect.
- **67.** (d) $PbCl_2 = Pb^{2+} + 2Cl_{(S)}^{-}$ $K_{SD} = 4S^3 = 4 \times (2 \times 10^{-2})^3 = 3.2 \times 10^{-5}$
- **68.** (a) $Ag_2S = 2Ag^+ + S^{--}$ $K_{sp} = 4S^3$ $S = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{3.2 \times 10^{-11}}{4}} = 2 \times 10^{-6}$
- **69.** (d) $CaCO_3 = Ca_s^{++} + CO_3^{--}$ Solubility product of $CaCO_3$ $K_{sp} = S^2$; $S = \sqrt{K_{sp}}$ It is a binary electrolyte.

$$S^2 = K_{sp}$$
; $(3.05 \times 10^{-4})^2 = K_{sp}$; $K_{sp} = 9.3 \times 10^{-8}$

- 71. (c) $PbCl_2 \rightarrow Pb_S^{++} + 2Cl_{2S}^ K_{sp} = S \times (2S)^2 = [6.3 \times 10^{-3}] \times [12.6 \times 10^{-3}]^2$.
- **72.** (d) A salt of strong acid and strong base cannot be hydrolysed. In this case the equilibrium cannot shifted towards the backward.
- 73. (d) If we mixed any substance into the solution. Then the value of pH is increased these substance is a salt of weak acid and strong base.
- 74. (d) It is a salt of strong base and weak acid.
- **75.** (a) $K_{sp} = 4s^3 = 4 \times [2.5 \times 10^{-2}]^3 = 62.5 \times 10^{-6}$.
- **76.** (c) $NaCl \Rightarrow \frac{Na^{+} + Cl^{-}}{S + S}$ $K_{sp} = S^{2}, S = \sqrt{K_{sp}} = \sqrt{36} = 6$.
- 78. (d) $PbI_2 = Pb^{++} + 2I^ K_{sp} = 4S^3 = 4 \times [2 \times 10^{-3}]^3 = 32 \times 10^{-9}.$
- **79.** (b) When ionic product is greater than K_{sp} then precipitation occur $K_{sp} < 10^{-2} M \ Ca^{2+} + 10^{-3} M \ F^-$
- **80.** (d) In IVth group the S^{2-} concentration increase when added the NH_4OH because

$$NH_4OH = NH_4^+ + OH^-$$

$$H_2S = 2H^+ + S^{2-}$$

 $OH^- + H^+ \Rightarrow H_2O$. So that S^{2-} is increased.

- **81.** (c) $BaSO_4 = Ba^{2+} + SO_4^{2-}$ $K_{sp} = S^2 \Rightarrow S = \sqrt{K_{sp}} ; K_{sp} = [Ba^{2+}] \times [SO_4^{2-}]$ $4 \times 10^{-10} = [1 \times 10^{-4}] \times [SO_4^{2-}]$ $[SO_4^{2-}] = \frac{4 \times 10^{-10}}{1 \times 10^{-4}} = 4 \times 10^{-6} .$
- **82.** (c) $AB_2 \rightleftharpoons A_{(S)}^{2+} + 2B_{(2S)^2}^{-}$ $K_{sp} = 4S^3$ $S = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{4 \times 10^{-12}}{4}} = 1 \times 10^{-4} \text{ gm.mol/litre}$
- **83.** (d) $[B] = \frac{K_{sp}AB}{[A]} = \frac{1 \times 10^{-8}}{10^{-3}} = 1 \times 10^{-5} M$ Where ionic product > K_{sp} , ppt formed

 $\therefore 8 \text{ should be more then } 10^{-5} M.$

- **84.** (c) $NaCl_{(s)} = Na_{(aq)}^+ + Cl_{(aq)}^ HCl = H^+ + Cl^-. \text{ The increase in } [Cl^-] \text{ brings in an increase in } [Na^+] [Cl^-] \text{ which will lead for backward reaction because}$ $K_{sp}(NaCl) = [Na^+] [Cl^-]$ means Ionic product $\geq K_{sp}$
- **85.** (d) $BaSO_4 = Ba^{++}_{(S)} + SO_4^{--}_{(S)}$ $K_{sp} = S^2; S = \sqrt{K_{sp}} = \sqrt{1.3 \times 10^{-9}}$ $= 3.6 \times 10^{-5} \quad mol / litre$
- 87. (b) Alkaline, $CH_3COONa + H_2O \ \ \rightleftharpoons \ \ CH_3COOH + \underset{\text{Weak acid}}{NaOH} + \underset{\text{Strong base}}{NaOH}$
- 88. (c) Because it is a strong base.
- **89.** (b) For pure water $[H^+] = [OH^-]$, $\therefore K_w = 10^{-12} \text{ s}$
- **90.** (a) $MX_2 = M_{(S)}^{2+} + 2X_{(2S)^2}^{-}$; $4S^3 = 4 \times (0.5 \times 10^{-4})^3$ = 5×10^{-13}
- **91.** (a) Solubility coefficient = $[Pb^{2+}][Cl^{-}]^{2}$
- **92.** (a) Solubility of $Al(OH)_3$ is lesser than $Zn(OH)_2$.
 - $HCl \Rightarrow H^+ + Cl^-$ The increase in $[Cl^-]$ brings in an increase in $[Na^+]$ $[Cl^-]$ which will lead for backward reaction because K_{sp} $NaCl = [Na^+]$ $[Cl^-]$.
- **94.** (c) Common ion effect.

93. (c) $NaCl_{(s)} = Na^{+}_{(aq)} + Cl^{-}_{(aq)}$

95. (a) $CaF_2 = Ca^{++} + 2F^{-}_{(2S)^2}$

$$K_{sp} = 4S^3$$

$$S = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{3.2 \times 10^{-11}}{4}} = 2 \times 10^{-4} \text{ m/l.}$$

96. (d) In aqueous solution following euilibrium is exist. $H_2S = H^+ + HS^-$

While adding the dilute HCl solution $(HCl = H^+ + Cl^-)$ equilibrium is shift to the left side in $H_2S = H^+ + HS^-$

97. (d)
$$M_2 X_3 = 2M_{(2y)^2}^{+++} + 3X_{(3y)^3}^{--}$$

Solubility product $K_{sp} = 108 y^5 mol \frac{d}{m^3}$

98. (b) Solubility is directly proportional to the K_{sp} .

99. (b)
$$PbCl_2 = Pb^{++}_S + 2Cl^-_{(2S)^2}$$

$$K_{sp} = S \times (2S)^2 = 4S^3$$

$$S = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{1.5 \times 10^{-4}}{4}} = 3.34 \times 10^{-2}.$$

- **101.** (d) $AlCl_3$ on hydrolysis gives weak base and strong acid among all.
- **102.** (c) Fe^{3+} ions are hydrolysed to develop acidic nature.

103. (c)
$$K_h = \frac{K_w}{K_a \times K_b}$$

- 104. (a) KCN is salt of strong base and weak acid.
- **105.** (c) Sulphides of Group-II radicals have low solubility product.
- 106. (c) Because NH_3 acts as Lewis acid and they give electron pair to $H_3O^+{\rm ion}$. $H_3O^+{\rm is}$ a Lewis base. Which accept the electron pair from NH_3 .
- 107. (c) Due to common ion effect.

108. (a) For
$$Ag_2SO_4 \rightarrow 2Ag^+ + SO_4^-$$

$$K_{sp} = (2x)^2.x \; ; \; K_{sp} = 4x^3 \; ; \; K_{sp} = 4 \times (2.5 \times 10^{-2})^3$$

$$K_{sp} = 62.5 \times 10^{-6}$$

109. (b) For
$$AgCl \rightarrow Ag^+ + Cl^-$$

$$x \qquad x$$

$$K_{sp} = x^2; \qquad x = \sqrt{K_{sp}},$$

$$\sqrt{1 \times 10^{-6}} = 1 \times 10^{-3} \, mole \, / \, litre$$
.

110. (b) $AgCl \rightarrow Ag^{=} + Cl^{-}$

After *NaCl* is added $x = x + 1 \times 10^{-4}$ That is why Ag^+ will be less.

111. (b) Because of ionic product of AgI >> solubility product of its.

112. (a)
$$AX_2 \to A + 2X \\ x = 2x$$
 ; $x = \sqrt[3]{\frac{3.2 \times 10^{-11}}{4}}$;

 $x = 2 \times 10^{-4}$ mole/litre.

113. (c)
$$C_6H_5COONH_4 \rightarrow C_6H_5COO^- + NH_4^+$$

 $0.5 - \frac{.25}{100} \quad \frac{.25}{100} \quad \frac{.25}{100}$

According to Ostwald dilution law.

$$K = \frac{\alpha^2 C}{1 - \alpha}$$

$$K = \alpha^2 C$$

$$K = \frac{.25}{100} \times .5$$

$$K = \frac{.25}{100} \times .5$$

$$K = 3.125 \times 10^{-6}$$

$$(\because 1 - \alpha = \text{Very small})$$

114. (a)
$$Sb_2S_3 \rightarrow 2Sb^{+2} + 3S^{--} ; K_{sp} = (2x)^2 . (3x)^3$$

 $K_{sp} = 108 x^5 ; K_{sp} = 108 \times (1 \times 10^{-5})^5 = 108 \times 10^{-25} .$

- **115.** (b) When increasing the temperature the value of ionic product also increases.
- **116.** (a) Hydrolysis constant $h = \frac{K_w}{K_a}$

Hydrogen ion concentration - pH scale and Buffer solution

- **1.** (a) *pH* of blood does not change because it is a buffer solution.
- 2. (c) 0.001 *M* of *NaOH* means $[OH^{-}] = .001$ = $10^{-3} M \Rightarrow pOH = 3$ $pH + pOH = 14 \Rightarrow pH = 14 - 3 = 11$
- 3. (d) $[H_3O^+]$ means $[H^+] = 6.2 \times 10^{-9} \ mol \ / l$ $pH = -\log{(6.2 \times 10^{-9})} = 8.21$

4. (b)
$$CH_3NH_2 + HCl \longrightarrow CH_3NH_3^+Cl^-$$

0.1 0.08 0
0.02 0 0.08
(Basic buffer solution)
 $pOH = pK_b + \log \frac{0.08}{0.02}$
 $= pK_b + 0.602$
 $= 3.30 + 0.602 = 3.902$
 $\therefore pH = 10.09$

5. (b)
$$pH + pOH = pK_w$$

6. (d)
$$pH = -\log[H^+]$$

 $5.4 = -\log[H^+]$; $[H^+] = 3.98 \times 10^{-6}$.

7. (a) $KCN + H_2O = KOH + HCN \cdot KOH$ is a strong base and HCN is a weak acid.

 $[H^+] = 7.99 \times 10^{-11} \approx 8 \times 10^{-11} M$

8. (c)
$$[H^+] = 10^{-3} M$$
, $pH = -\log[10^{-3}]$, $pH = 3$

9. (b)
$$[H^+] = [OH^-]$$

 $K_w = [H^+] [OH^-] = 10^{-14}$
 $\therefore [H^+] = 10^{-7}, pH = -\log[H^+] = 7.$

10. (d)
$$pH = 5$$
 means $[H^+] = 10^{-5}$
 $pOH = 14 - pH = 14 - 5 = 9$
 $[OH^-] = 10^{-pOH} = 10^{-9}$

11. (a)
$$pH = -\log [H^+]$$
; $[H^+] = 0.01 N$
 $pH = -\log [10^{-2}]$; $pH = 2$

12. (d)
$$BOH \longrightarrow B^+ OH^-$$
 On O At eq. $C - C\alpha$ $C\alpha$

 $C\alpha$

$$K_b = \frac{C^2 \alpha^2}{C(1-\alpha)} = C\alpha^2$$
 assuming $\alpha << 1$; $1-\alpha \simeq 1$
 $10^{-12} = 10^{-2} \times \alpha^2$; $\alpha^2 = 10^{-10}$; $\alpha = 10^{-5}$
 $[OH^-] = C\alpha = .01 \times 10^{-5} = 10^{-7}$

- **13.** (c) pH = 4 means; $[H^+] = 10^{-4}$ mol
- **14.** (a) Buffer solution is a mixture of weak acid and its conjugate base.
- **15.** (b) Adding Na_2CO_3 to water makes the solution basic and hence a pH increases from 7.
- **16.** (d) $NaClO_4$ is a salt of strong acid $HClO_4$. So it is a strong acid salt.
- 17. (b) NaOH is a base, so that its pH > 7
- **18.** (c) It is a strong base. 1 M NaOH has maximum $[OH^-]$ and minimum $[H^+]$ and maximum pH.
- **19.** (c) When pH = 7 means neutral, pH < 7 means acidic, pH > 7 means basic.
- **20.** (d) As the solution is acidic, pH < 7. This is because $[H^+]$ from $H_2O[10^{-7}M]$ cannot be neglected in comparison to $10^{-10}~M$
- **22.** (c) It is a strong acid and they lose proton in a solution.

23. (a)
$$[OH^{-}] = 10^{-2} M$$
; $pOH = 2$
 $pH + pOH = 14$; $pH = 14 - pOH$
 $pH = 14 - 2 = 12$

24. (d) Order of acidic strength is $H_2Te > H_2Se > H_2S > H_2O$ $Na_2O \text{ is a salt of NaOH} + H_2O \text{ and } H_2O \text{ is least acidic among given acids hence } pH \text{ in this case will be } \max^m.$

25. (b) *pH* of the solution
$$A = 3$$
 $[H^+]_A = 10^{-3} M$. *pH* of the solution $B = 2$ $[H^+]_B = 10^{-2} M$

$$[H^+] = 10^{-3} + 10^{-2} = 10^{-3} + 10 \times 10^{-3} = 11 \times 10^{-3}.$$

 $pH = -\log(11 \times 10^{-3}) = 3 - \log 11$
 $= 3 - 1.04 = 1.95$

- **26.** (a) $CN^- + H_2O \rightarrow HCN + OH^-$ Because OH^- concentration is increased.
- **27.** (a) On dilution the pH of acid A increases while pH of base B decreases.
- **28.** (d) CH_3COONa is a salt of weak acid. (CH_3COOH) and strong base (NaOH).
- **29.** (b) The equilibrium will shift in the backward direction.

30. (b)
$$K_a = 10^{-5}$$
; $pH = 6$
$$pH = -\log K_a + \log \frac{[Salt]}{[Acid]}$$
; $6 = -\log 10^{-5} + \log \frac{[Salt]}{[Acid]}$
$$6 = 5\log 10 + \log \frac{[Salt]}{[Acid]}$$
; $6 = 5 + \log \frac{[Salt]}{[Acid]}$
$$\log \frac{[Salt]}{[Acid]} = 6 - 5 = 1$$
; $\frac{[Salt]}{[Acid]} = \frac{10}{1}$

- 31. (d) All are true (a) is true for acid buffer, (b) for basic buffer, (c) is called buffer solution.
- 32. (b) $\frac{N}{100} = 0.01 \ N \ HCl \ ; [H^+] = 10^{-2} \ M \ ; \ pH = 2$ $[OH] = 10^{-2} \ M \ for \ NaOH$ $pH + pOH = 14 \ ; \ pH = 14 2 \ ; pH = 12$
- **34.** (a) It is a buffer solution of strong acid and its weak conjugate base.
- **35.** (c) $HA = H^+ + A^ [H^+] = 0.1 M; [H^+]^2 = K_a \times C$ $[H^+] = \sqrt{K_a \times C} = \sqrt{1 \times 10^{-5} \times 0.1} = \sqrt{10^{-6}}$ $[H^+] = 10^{-3} M; pH = 3$
- **36.** (c) As the solution is acidic, pH < 7. This is because $[H^+]$ from H_2O cannot be neglected in comparison to 10^{-8} .
- 37. (c) Human body contain buffer solution. Its pH= 6.8
- **38.** (a) It is a neutral solution and its pH = 7
- 39. (a) pH = 5, means $[H^+] = 10^{-5} M$. After dilution $[H^+] = 10^{-5} / 100 = 10^{-7} M$ $[H^+]$ from H_2O cannot be neglected. Total $[H^+] = 10^{-7} + 10^{-7} = 2 \times 10^{-7}$ pH = 7 - 0.3010 = 6.6990 = 7 (neutral).
- **40.** (d) $[H^+] = \alpha.C = \frac{2}{100} \times .02$; $[H^+] = 4 \times 10^{-4} M$ $pH = -\log [H^+] = 4 - \log 4$; pH = 3.3979

41. (a)
$$pH = p K_a + \log \left[\frac{\text{salt}}{\text{acid}} \right]$$

= 9.30 +
$$\log \left[\frac{0.2}{0.1} \right]$$
 = 9.30 + 0.3010 = 9.6.

42. (a)
$$pH = pK_a + \log \frac{[Salt]}{[Acid]}$$

$$pH = -\log(1.8 \times 10^{-5}) + \log\frac{[10]}{[100]}$$

$$=-\log 1.8 + 5 + \log 10^{-1}$$

$$=-0.2553 + 5 - 1 = 3.7447$$
 or $= 4$

43. (b) 20 *ml.* of 0.1 *NHCl* =
$$\frac{0.1}{1000} \times 20 g$$
 eq. = $2 \times 10^{-3} g$ eq.

20*ml*. of 0.001 *KOH* =
$$\frac{0.001}{1000} \times 20 \text{ gm}$$
 eq.

$$= 2 \times 10^{-5} g eq.$$

$$\therefore$$
 HCl left unneutralised = $2(10^{-3} - 10^{-5})$

$$=2\times10^{-3}(1-0.01) = 2\times0.99\times10^{-3} = 1.98\times10^{-3} geq.$$

Volume of solution = 40 ml.

$$\therefore [HCl] = \frac{1.98 \times 10^{-3}}{40} \times 1000 M = 4.95 \times 10^{-2}$$

$$\therefore pH = 2 - \log 4.95 = 2 - 0.7 = 1.3.$$

45. (b)
$$10^{-7} M \ NaOH$$
 means $[OH^-] = 10^{-7}$; $pOH = 7$
 $pH = 14 - 7 = 7$

46. (a)
$$[H^+] = c \times \alpha = 0.1 \times \frac{30}{100} = 0.03 M$$

48. (a) The pH of buffer solution never changed.

49. (c)
$$[H^+] = \frac{10^{-14}}{10^{-1}} = 10^{-13} \text{ mol / litre } pH = 13.$$

50. (a)
$$pH = -\log[H^+]$$
; $7.4 = -\log[H^+]$; $[H^+] = 4 \times 10^{-8} M$

51. (a) The pH of 0.1M HCl = 1 Ionization of H_2SO_4 takes place in two steps.

$$H_2SO_4 = H^+ + HSO_4^-$$
; $HSO_4^- = H^+ + SO_4^{--}$

52. (c) 1*N NaOH* solution have highest
$$pH$$
 [OH^-] = 1; pOH = 0; pH + pOH = 14 pH = 14 - 0 = 14

53. (c)
$$H_2O = [H^+][OH^-]$$

$$HCl \rightleftharpoons [H^+][Cl^-]$$

Total
$$[H^+] = [H^+]_{H_2O} + [H^+]_{HCI} = 10^{-7} + 10^{-8}$$

$$=10^{-7} [1+10^{-1}]$$

$$[H^+] = 10^{-7} \times \frac{11}{10}$$

$$pH = -\log[H^+] = -\log\left(10^{-7} + \frac{11}{10}\right)$$
; $pH = 6.958$

54. (c)
$$pK_a = -\log K_u$$
, $pK_b = -\log K_b$

$$pH = -\frac{1}{2}[\log K_a + \log K_w - \log K_b]$$

$$= -\frac{1}{2} [-5 + \log(1 \times 10^{-14}) - (-5)]$$

$$=-\frac{1}{2}[-5-14+5]=-\frac{1}{2}(-14)=7$$

55. (d) BaO, CaO and Na_2O are shows more than 7 pH because of their basic nature.

56. (a)
$$MgCl_2 + 2H_2O = Mg(OH)_2 + 2HCl$$

57. (c) H_2SO_4 ionized in two step.

58. (b)
$$pH = pK_a + \log \frac{[Salt]}{[Acid]}$$

$$5.8 = 4.8 + \log \frac{\text{[Salt]}}{\text{[Acid]}} \text{ or } \log \frac{\text{[Salt]}}{\text{[Acid]}} = 1.0$$

$$\frac{[Salt]}{[Acid]} = antilog 1.0 = 10$$

$$\therefore \frac{[Acid]}{[Salt]} = \frac{1}{10} = 0.1$$

59. (b) It contains replacable H atom.

60. (c) (i) 20 ml of 0.5 N HCl

 $0.5N \Rightarrow 1000 \text{ ml } 0.5 \text{ mole HCl}$ is present in 20 ml

$$=\frac{20\times0.5}{1000}=1.0\times10^{-2}$$

(ii) 35 ml of 0.1 N NaOH

 $0.1N \Rightarrow 1000 \, ml$ of 0.1 mole NaOH is 35 ml

$$=\frac{35\times0.1}{1000}=0.35\times10^{-2}$$

Total = $20 + 35 = 55 \, ml$.

 \Rightarrow (1.0-0.35)10⁻²=0.65 × 10⁻²mole *HCl*

$$HCl = H^+ + Cl^-$$

$$\Rightarrow$$
 [HCl] = [H⁺]+[Cl⁻]

55 ml contains 0.65×10^{-2} mole of H^+ ions

$$1000 \ ml - \frac{0.65 \times 10^{-2} \times 10^{3}}{55} = \frac{6.5}{55}$$

$$pH = -\log[H^+] = -\log(6.5/55)$$

$$= \log 55 - \log 6.5 = 0.92$$

Due to acidic nature of solutions the colour of phenolphthalein becomes pink.

61. (b)
$$[H^+] = 2 \times 10^{-2} M$$

:
$$pH = -\log [2 \times 10^{-2}]$$
;

pH = 1.7 i.e. in between 1 and 2.

63. (b)
$$pH = 4$$
, $(H^+) = 10^{-pH} = 10^{-4} M$

65. (c)
$$NaOH \Rightarrow Na^+ + OH^-$$

$$[OH^{-}] = 10^{-5} M ; [H^{+}] [OH^{-}] = 10^{-14}$$

$$[H^+] = \frac{10^{-14}}{10^{-5}}$$
; $[H^+] = 10^{-9} M$; $pH = 9$.

67. (b)
$$pH = pK_a + \log \frac{\text{[Salt]}}{\text{[Acid]}}$$
; $pH = 4.75 + \log \frac{0.1}{0.1}$
 $pH = 4.75 + \log 1$; $pH = 4.75$

- **68.** (d) A weak acid and its salt with a strong base maintain *pH* 4 5
- **69.** (a) $NaOH = Na^+ + OH^- = [OH^-] = 10^{-8} M$.
- **70.** (c) $[OH^-] = 0.0001 \ N$, pOH = 4, pH + pOH = 14pH = 14 - pOH = 14 - 4 = 10
- 71. (d) 0.001 *M KOH* solution $[OH^{-}] = 0.001 M = 1 \times 10^{-3} M$ $[H^{+}] \times [OH^{-}] = 1 \times 10^{-14}$ $[H^{+}] = \frac{1 \times 10^{-14}}{[OH^{-}]}$ $[H^{+}] = \frac{1 \times 10^{-14}}{1 \times 10^{-3}} = 1 \times 10^{-14} \times 10^{+3}$ $[H^{+}] = 10^{-11} M$

pH = 11

72.

- (a) An acid buffer solution consists of solution of weak acid with strong base of its salt.
- **73.** (b) An acid buffer solution consists of a weak acid and its salt with strong base. *i.e.* $CH_3COOH + CH_3COONa$
- 74. (a) $pOH = pK_b + \log \frac{\text{[salt]}}{\text{[base]}}$ = $5 + \log \frac{0.02}{0.2} = 5 + \log \frac{1}{10} = 5 + (-1) = 4$ pH = 14 - pOH = 14 - 4 = 10
- 75. (b) [Salt]= 0.1 M, [Acid]= 0.1 M $K_a = 1.8 \times 10^{-5} ; pH = -\log K_a + \log \frac{\text{[Salt]}}{\text{[Acid]}}$ $= -\log 1.8 \times 10^{-5} + \log \frac{0.1}{0.1} = -\log 1.8 \times 10^{-5}$ pH = 4.7 .
- **76.** (a) NH_4Cl and NH_4OH is a buffer solution (weak base and salt of strong acid).
- 77. (a) pH + pOH = 14; pH = 14 pOH $\therefore [OH^{-}] = 10^{-7}$ pOH = 7 $\therefore pH = 14 - 7 = 7$.
- 78. (c) 0.01 M $Ba(OH)_2 = 0.02 N$ $Ba(OH)_2$ $N_1V_1 = N_2V_2$ $[0.02 N] \times [50 \text{ } ml] = N_2 \times 100 \text{ } ml$ $N_2 = \frac{0.02 \times 50}{100} = 10^{-2} N \text{ ; } [OH^-] = 10^{-2} N$ pOH = 2 or pH = 12
- **79.** (b) $pH = -\log [H^+]$.

- **80.** (a) Na_2CO_3 is a mixture of weak acid and strong base, so it is a base.
- **81.** (b) $10^{-7} N HCl$ means $(H^+) = 10^{-7} M$ $pH = -\log(H^+)$, pH = 7
- **82.** (c) pH = 2; $pH = -\log [H^+]$; $2 = -\log [H^+]$ $[H^+] = 10^{-2} = 0.01 N$
- **83.** (b) *pH* does not change on addition of some concentration of *HCl*.
- **84.** (b) Solution of CH_3COONa on addition to acid shows a decrease in dissociation of acid due to common ion effect. To decrease in $[H^+]$ or increase pH.
- **85.** (c) pH + pOH = 14; pH = 14 pOH; pH = 14 6 = 8.
- **86.** (b) $[H^+]_{\rm I} = 10^{-5} \ [H^+]_{\rm II} = 10^{-2}$ Thus increase in $[H^+] = \frac{10^{-2}}{10^{-5}} = 1000$ times
- **87.** (a) The HCl is a strong acid and they lose easily H^+ in solution.
- **88.** (a) $X^- + H_2O \Rightarrow OH^- + HX$ $K_b = \frac{[OH^-][HX]}{[X^-]}$

$$HX = H^+ + X^-$$

$$K_a = \frac{[H^+][X^-]}{[HX]}$$

$$K_a \times K_b = [H^+] [OH^-] = K_w = 10^{-14}$$

Hence $K_a = 10^{-4}$

Now as $[X^{-}] = [HX]$, $pH = pK_a = 4$.

- **90.** (d) Buffer solution is formed. So the *pH* will not change.
- **91.** (b) Na_2CO_3 when react with water form strong base and weak acid. So its aqueous solution is basic.
- **92.** (c) $K_w = [H_3 O^+][OH^-]$

Concentration of H_3O^+ in distilled water = 1×10^{-6} mol/l.

Now
$$[H_3O^+] = [OH^-]$$

$$K_w = [1 \times 10^{-6}] \times [1 \times 10^{-6}] = 1 \times 10^{-12}$$
.

- **93.** (a) $[OH^-] = 10^{-1}M$; pOH = 1pH + pOH = 14; pH = 14 - 1 = 13.
- **94.** (a) Maximum *pH HClO* is a weak acid all of these. So that the salt of weak acid is also weak.
- **95.** (c) As the solution is acidic pH < 7. This is because $[H^+]$ from $H_2O[10^{-7}]$ cannot be neglected in comparison to $10^{-12}~M$.
- **96.** (b) [Normal salt + acidic salt] is a buffer solution.

- **97.** (b) 100 ml of $\frac{M}{10}NaOH = 50ml$ of $\frac{M}{5}NaOH$. They exactly neutralise 50 ml $\frac{N}{5}HCl$. Hence pH of resulting solution = 7.
- **98.** (b) $M_1 = 6.0 \, M$ of HCl; $V_1 = ?$ $M_2 = 0.30 \, M \text{ is } H^+ \text{ concentration in solution.}$ $V_2 = 150 \, ml \text{ of solution.}$ $M_1 V_1 = M_2 V_2; \ 6.0 \times V_1 = .30 \times 150$ $V_1 = \frac{.30 \times 150}{6} = 7.5 \, ml.$
- **99.** (b) pH = 3, $[H^+] = 10^{-3} M$ $\therefore [H^+] = \sqrt{K \times c}$ $[10^{-3}]^2 = K \times c ; \frac{[10^{-6}]}{0.1} = K = 10^{-5}$
- **100.** (b) When ratio of concentration of acid to salt is increased *pH* decrease.
- **101.** (c) For NH_4OH . $[OH^-] = C \cdot \alpha \; \; ; \; C = \frac{1}{10}M \; , \; \; \alpha = 0.2$ $[OH^-] = \frac{1}{10} \times 0.2 = 2 \times 10^{-2}M$ $pOH = -\log [OH^-] = \log [2 \times 10^{-2}] \; ; \; pOH = 1.7$ $pH = 14 pOH = 14 1.7 = 12.30 \; .$
- **102.** (c) $pH = pK_a + \log \frac{[Salt]}{[Acid]}$. For small concentration of buffering agent and for maximum buffer capacity $\frac{[Salt]}{[Acid]} \approx 1$.
- **103.** (a) $[H^+]$ = increased ten fold means pH of solution decreased by one. $pH = \log \frac{1}{[H^+]}$
- **104.** (a) Because the pH of buffer are not changed.
- **105.** (c) $pH = pK_a + \log \frac{[\text{Salt}]}{[\text{Acid}]}$; $5.5 = 4.5 + \log \frac{[\text{Salt}]}{[0.1]}$ $\log \frac{[\text{Salt}]}{0.1} = 5.5 4.5 = 1$ $\frac{[\text{Salt}]}{0.1} = \text{antilog } 1 = 10 \text{ ; } [\text{Salt}] = 1$
- **106.** (a) Moles of $H_2SO_4 = \frac{0.49}{98} = 5 \times 10^{-3}$ moles of H_2SO_4 present per litre of solution (molarity) = $\frac{.005}{1} = .005 \ M$. $H_2SO_4 + 2H_2O = 2H_3O^+ + SO_4^-$ one mole of H_2SO_4 give 2 moles of H_3O^+ ions.

$$H_3O^+ = 2 \times (H_2SO_4) = 2 \times 0.005 = 0.01 M$$

 $[H^+] = 10^{-2} M$; $pH = 2$

- **107.** (c) CH_3COONH_4 is a simple buffer and called salt of weak acid.
- **108.** (c) N.eq. for $HCl = \frac{0.4}{1000} \times 50 = 0.02$ N.eq. for $NaOH = \frac{0.2}{1000} \times 50 = 0.1$ Now $[OH^{-}]$ left = 0.1 - 0.02 $[OH^{-}] = .08 = 8 \times 10^{-2} M$

$$pOH = -\log 8 \times 10^{-2} M$$
; $pOH = 1.0$
109. (d) Buffer is mixture of weak base and its acid

- salt. 110. (b) [NaOH] = 0.4/40 mole/l. = 0.1 M
- $[OH^{-}] = 10^{-1} M$, $[H^{+}] = 10^{-13} M$, pH = 13
- **111.** (d) pH + pOH = 14, pH = 4, $H^+ = 10^{-4}$ mole/litre.
- 112. (d) Buffer solution have constant pH. When we add the water into this buffer solution. So no effect on it.
- **113.** (b) $Ba(OH)_2 \Rightarrow Ba^{2+} + 2OH^{-1}$

One molecule on dissociation furnishes $2OH^-$ ions.

So,
$$[OH^{-}] = 2 \times 10^{-4} N$$

 $N = M \times 2$; $M = \frac{N}{2} = \frac{2 \times 10^{-4}}{2} = 10^{-4}$
 $pOH = -\log[OH^{-}] = -\log(1 \times 10^{-4}) = -4$
 $pH + pOH = 14$; $pH = 14 - 4 = 10$.

114. (a) M.eq. of 0.10 M $HCl = \frac{0.10}{1000} \times 40 = 0.004 M$

M.eq. of 0.45 M NaOH = $\frac{0.45 \times 10}{1000}$ = 0.0045 M

Now left $[OH^-] = 0.0045 - 0.004 = 5 \times 10^{-4} M$ Total volume = 50 ml.

$$[OH^{-}] = \frac{5 \times 10^{-4}}{50} \times 1000$$
 ; $[OH^{-}] = 1 \times 10^{-2}$
 $pOH = 2$; $pH = 14 - pOH = 12$.

- **115.** (c) 0.001 M $HCl = 10^{-3}$ $M[H^+]$, pH = 3.
- **116.** (d) $[NaOH] = \frac{0.4}{40} = 0.01M; [OH^-] = 10^{-2}M$ $[H^+] = 10^{-12}, pH = -\log[H^+] = 12$
- 117. (b) Those substance which give a proton is called Bronsted acid while CH_3COO^- doesn't have proton so it is not a Bronsted acid.

120. (c)
$$pH = -\log [H^+]$$

121. (d)
$$pH + pOH = 14, pH = 4.0$$

 $pOH = 14 - pH$; $pOH = 14 - 4.0 = 10.0$

- **122.** (b) pH = 0 means $[H^+] = 10^o = 1M$. Hence solution is strongly acidic.
- **123.** (c) As the solution is acidic, pH < 7. This is because $[H^+]$ from $H_2O(10^{-7}M)$ cannot be neglected in comparison to $10^{-10} M HCl$.

124. (d)
$$H_3O^+ = OH^- + H_2$$

 $pOH + pH = 14$; $7 + 7 = 14$; $[H^+] + [OH^-] = 10^{-14}$
 $10^{-7} + 10^{-7} = 10^{-14}$; $[OH^-] = 10^{-7}$ am ion/l.

126. (b) When
$$pH = 2$$
, $[H^+] = 10^{-2} M$

127. (a)
$$[OH^{-}]$$
ion conc. = $0.05 \frac{mol}{l} = 5 \times 10^{-2} \frac{mol}{l}$
 $pOH = -\log [OH^{-}] = -\log [5 \times 10^{-2}]$
 $pOH = 1.30$; $pH + pOH = 14$
 $pH = 14 - pOH = 14 - 1.30 = 12.7$

- **128.** (c) When pH = 3, then $[H^+] = 10^{-3} M$ after that we increased the pH from 3 to 6 then $[H^+] = 10^{-6} M$ means reduced 1000 times.
- **129.** (b) CO_2 is acidic oxide which on dissolution in water develops acidic nature.
- **130.** (d) If pH of any solution is 2. Then $[H^+] = 10^{-2} M$ If pH of any solution is just double then pH = 4 and $[H^+]$ will be 10^{-4} .
- 131. (c) A strong acid is not used to make a buffer.

132. (d)
$$pH = 1$$
 means $[H^+] = 10^{-1} M$
Hence $[H_2SO_4] = \frac{10^{-1}}{2} = \frac{1}{20} = 0.05 M$

- **133.** (c) The pH of blood is 7.4 due to presence of bicarbonates ions
- **134.** (c) As the solution is acidic, pH < 7. This is because $[H^+]$ from $H_2O[10^{-7}]$ cannot be neglected in comparison to 10^{-8}
- **135.** (a) pH will decrease because $[OH^-]$ increased due to this pOH is decreased.

136. (c)
$$[H^+] = 6 \times 10^{-4} M$$

 $pH = -\log [H^+] = -\log [6 \times 10^{-4}] = 3.22$.

- **137.** (c) $0.01 M HCl = 10^{-2} M [H^+], pH = 2$.
- **138.** (c) Because buffer solution have a constant pH.

139. (c)
$$10^{-6} M HCl = 10^{-8} M [H^+]$$
. Also from H_2O
$$[H^+] = 10^{-7} M$$
 Total $[H^+] = 10^{-7} + 10^{-8} = 10^{-7} [1 + 0.1] = 10^{-7} [1.1]$ Hence $pH = 7 - 0.0414 = 6.96$.

140. (b) $10^{-10} M HCl = 10^{-10} M [H^+]$. But $pH \ne 10$ because solution is acidic. This is because H^+ from $H_2O(10^{-7} M)$ cannot be neglected.

Total
$$[H^+] = 10^{-7} + 10^{-10}$$

= $10^{-7} + (1 + 10^{-3}) = 10^{-7} (1.001)$

That is why pH = 7 (slightly less than 7)

141. (b)
$$[H^+] = 1.00 \times 10^{-6}$$
 mole/litre $pH = -\log [1.00 \times 10^{-6}]$; $pH = 6$.

- **142.** (a) $[H^+]$ is in moles per litre.
- **143.** (d) As the solution is acidic, pH < 7. This is because $[H^+]$ from $H_2O = (10^{-7}M)$ cannot be neglected in comparison to 10^{-8} .
- **145.** (b) pH of 0.001 M $HCl = 10^{-3} M[H^+]$, pH = 3.
- **146.** (d) Because it can furnish H^+ ions in solutions.
- **147.** (c) Because it is a strong acid. $H^+ = 10^{-1}$ $pH = -\log [H^+] = -\log [10^{-1}] \; ; pH = 1 \; .$
- **148.** (b) Buffer solution is a combination of weak acid and conjugate base. *NaCl* is a salt and *NaOH* is the base.

149. (a)
$$[H^+] = \sqrt{Kc} = \sqrt{10^{-5} \times 0.1} = 10^{-3}, pH = 3$$
.

- **150.** (d) In $\frac{N}{10}$ *NaOH* have $[OH^{-}] = 10^{-1}$ *M* means pOH = 1 and then pH + pOH = 14 pH = 14 pOH = 13.
- **151.** (b) Borate ions are hydrolyzed to develop alkaline nature in solution.
- **152.** (d) Less the pH, more acidic is the solution.
- 154. (b) The equal conc. of salt and acid.

155. (c)
$$pH = -\log K_a + \log \frac{[KCN]}{[HCN]}$$

 $pH = -\log [5 \times 10^{-10}] + \log \left(\frac{0.15}{1.5}\right) = 8.302$

157. (c)
$$pH = pK_a + \log \frac{\text{[Salt]}}{\text{[Acid]}}$$
 equimolar means
$$\frac{\text{[Salt]}}{\text{[Acid]}} = 1; \quad pH = 4.74 + 0 = 4.74$$

- **158.** (a) Because of *NaCl* is a salt of strong acid and strong base. So that it is neutral.
- **159.** (c) When strong acid and strong base are react neutral salt are formed. So that *NaCl* is a neutral salt.
- **162.** (d) $pH = -\log K_b + \log \frac{[Salt]}{[Acid]}$ $pH = -\log [1.8 \times 10^{-5}] + \log \frac{[Salt]}{1.0}$ $9 = 4.7 + \log \frac{[Salt]}{1.0}$; $\log \frac{[Salt]}{1.0} = 4.7 - 9 = -4.3$ $\frac{[Salt]}{1.0} = \text{Antilog} \frac{1}{4.3}$; [Salt] = 1.8
- **163.** (b) $pH = -\log K_b + \log \frac{[\text{salt}]}{[\text{acid}]}$ $5 = -\log 10^{-4} + \log \frac{[\text{salt}]}{[\text{acid}]}$ $\log \frac{[\text{salt}]}{[\text{acid}]} = 1$ $\frac{[\text{salt}]}{[\text{acid}]} = \text{antilog } 1 = 10:1$
- **164.** (a) 1 *M KOH* show highest *pH* value because it is a strong base.
- **165.** (d) NH_4OH is a weak acid and NH_4Cl is a strong base salt.
- **166.** (a) pH = 13.6 pOH = 14 13.6 = 0.4 $[OH^-] = \text{Antilog } (-0.4) = 0.3979$. So the value of $[OH^-]$ between $0.1 \ M$ and $1 \ M$
- **167.** (d) Aspirin is a weak acid. Due to common ion effect it is unionised in acid medium but completely ionised in alkaline medium.
- **168.** (b) $[H^+][OH^-] = 10^{-14}$; $(10^{-7})(10^{-7}) = 10^{-14}$
- **169.** (c) $HCl = 10^{\circ} M$ has pH = 0. The value of pH decreases as concentration further increases.
- 170. (a) Because pure water has a 7 pH.
- **171.** (c) When concentration of $[H^+]$ increased then the value of pH is decreases.

$$pH = \log \frac{1}{[H^+]}$$

- **172.** (c) The concentration of $[H^+] = 10^{-2}$ mole/litre $pH = -\log[H^+] = -\log[10^{-2}]$; pH = 2
- 173. (d) Due to common ion effect.
- 174. (b) In water solution.

$$NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$$

concentration of OH^- is increased so that solution become more basic and the pH is increased.

- **175.** (a) Na_2CO_3 is basic in nature. So its pH is greater than 7.
- **176.** (c) It is not a mixture of weak acid or base and their strong salt.
- **177.** (a) $[H^+]$ = Antilog(-4.58); $[H^+] = 2.63 \times 10^{-5} \text{ moles / litre}$
- **178.** (c) $10^{-2} M NaOH$ will give $[OH^{-}] = 10^{-2}$ ∴ pOH = 2, Also pH + pOH = 14∴ pH = 12.
- **179.** (a) $pH = pK_a + \log \frac{[\text{Salt}]}{[\text{Acid}]} = -\log 2 \times 10^{-5} + \log \frac{10 \times 1}{50 \times 2} = 4$.
- **180.** (b) 0.001 *M NaOH* means $[OH^{-}] = 10^{-3}$; pOH = 3 pH + pOH = 14; pH = 14 3 pH = 11; $[H^{+}] = 10^{-11}$ mole-litre⁻¹
- **181.** (c) $[H^+] = C \cdot \alpha$ $[H^+] = 0.1 \times \frac{1}{100} = 10^{-3}$ $pH = -\log[H^+] = -\log 10^{-3} = 3$
- **182.** (b) pH = 4 pH + pOH = 14 ; pOH = 14 - pHpOH = 14 - 4 = 10 ; $[OH^{-}] = 10^{-10} M$
- **183.** (b) $pH = \log \frac{1}{[H^+]} = \log \frac{1}{[3 \times 10^{-3}]} = 2.523$
- **185.** (c) It is a strong base.
- **186.** (b) $[H^+]$ Concentration in 0.01M HCl is $10^{-2} M$ because 0.01 M HCl have only H^+ $HCl = H^+ + Cl^-$.
- **187.** (b) The value of H_3O^+ ions will not changed. $CH_3COOH + H_2O \ \ \rightleftharpoons \ \ CH_3COO^- + H_3O^+ \ .$
- **188.** (a) H_2O_2 (Hydrogen peroxide) is a corrosive volatile liquid. It is slightly acidic in nature. Its pKa value is approximately 10^{-12} .
- **192.** (b) $pH = \log \frac{1}{H^+}$; $pH = \log \frac{1}{10^{-3}}$; pH = 3.
- **193.** (b) NH_3 is Lewis base because of one lone pair of electron.
- **194.** (b) $Ba(OH)_2 \rightarrow Ba^{+2} + 2OH^ .05M + 2 \times 0.5M$ $pOH = \log \frac{1}{[OH]^-} = \log \frac{1}{.1} = 1$ pH + pOH = 14; pH + 1 = 14; pH = 14 - 1 = 13
- **195.** (a) If concentration of acid is increases ten times in a buffer then pH of the solution is increase by one.
- **198.** (b) pH > 7 = Basic

It means contain more hydroxide ions than carbonate ions.

- **199.** (a) At 7pH the concentration of OH^- and H^+ are equal.
- **200.** (a,d) M.eq. of 0.01 M $HCl = \frac{.01 \times 100}{1000} = 1 \times 10^{-3}$ pH = 3

M.eq. of .02
$$M H_2 SO_4 = \frac{.04 \times 50}{1000} = 2 \times 10^{-3}$$

M.eq. of .02 M NaOH =
$$\frac{0.02 \times 50}{1000} = 1 \times 10^{-3}$$

Left
$$[H^+] = 2 \times 10^{-3} - 1 \times 10^{-3} = 1 \times 10^{-3}$$
; $pH = 3$

- **202.** (a,b,c) Because buffer solution are mixture of weak acid or weak base and their salt.
- **203.** (c) Because pH = 8 is basic nature but HCl is a strong acid.
- **204.** (c) $H_2SO_4 = 0.05 \times 2$ $\therefore [H^+] = 0.1$ and pH = 1
- **205.** (b) $Mg(OH)_2 = Mg^{2+} + 2OH^ K_{sp} = [Mg^{2+}][OH^-]^2$ $1 \times 10^{-12} = 0.01[OH^-]^2$ $[OH^-]^2 = 1 \times 10^{-10} \implies [OH^-] = 10^{-5}$ $[H^+] = 10^{-14} / 10^{-5} = 10^9$ $pH = -\log[H^+] = -\log[10^{-9}] = 9$
- **206.** (b) $[OH^-] = 1 \times 10^{-5}$ $pOH = -\log[OH^-] = 5$ $pH + pOH = 14 \Rightarrow pH = 14 - 5 = 9$.

Critical Thinking Questions

- 1. (b) K_{sp} of $AgI = 1.5 \times 10^{-16}$ $10^{-8} \ M \ Ag^+$ and $10^{-8} \ M \ I^-$ Ionic product = 10^{-16} K_{sp} = Ionic product
- **2.** (a) HClO is the weakest acid. Its conjugate base ClO^- is the strongest base.
- 3. (b) $B(OH)_3$ not have H^3
- **4.** (a) $h = \frac{k_w}{k_a} = \frac{1 \times 10^{-14}}{4.5 \times 10^{-10}} = 2.22 \times 10^{-5}$
- 5. (d) $MX_4 o M_S + 4X_S$; $K_{sp} = (4s)^4 s$; $K_{sp} = 256 s^5$ $s = \left(\frac{K_{sp}}{256}\right)^{1/5}.$
- **6.** (a) Lewis acid are electrophiles because they accept election pairs.

7. (c) $_{\text{Initial}} \ \ ^{2}HI = H_{2} + I_{2} \ \ ^{0}$

At equilibrium
$$2-\alpha$$
 $\frac{\alpha}{2}$ $\frac{\alpha}{2} = 2-\alpha + \frac{\alpha}{2} + \frac{\alpha}{2} = 2$.

- **8.** (a) Because they have vacant *d*-orbital in central atom.
- **9.** (a) Energy has to be spent for the total dissociation of weak acid.
- **10.** (a) pK_a of acid A = 4; pK_a of acid B = 5We know that $pK_a = -\log K_a$

$$\therefore$$
 Acid $A K_a = 10^{-4}$

Acid B
$$K_a = 10^{-5}$$

Hence A is ten times stronger than that of B.

11. (b)
$$\frac{\alpha_1}{\alpha_2} = \sqrt{\frac{K_{a_1}}{K_{a_2}}} = \sqrt{\frac{3.14 \times 10^{-4}}{1.6 \times 10^{-5}}} = 4:1$$

- 12. (d) It is a salt of weak acid and weak base.
- 13. (c) $HA = H^+ + A^-$; $K_a = \frac{[H^+][A^-]}{[HA]}$ (i)

neutralization of the weak acid with strong

$$HA + OH^- \Rightarrow A^- + H_2O$$

$$K = \frac{[A^{-}]}{[HA][OH^{-}]}$$
(ii)

dividing (i) by (ii) $\frac{K_a}{K} = [H^+][OH^-] = K_w = 10^{-14}$

$$K = \frac{K_a}{K} = \frac{10^{-5}}{10^{-14}} = 10^9$$
.

14. (d) NH_4Cl undergoes cationic hydrolysis hence pH is >7 because the solution due to cationic hydrolysis in acids.

NaCN undergoes anionic hydrolysis hence pH is >7.

HCl is strong acid and NaCl is neutral solution.

Hence the pH of given solutions will increases.

$$HCl < NaCl < NaCN < NH_{4}Cl$$

- **15.** (c) It is a $HClO_4$
- **16.** (d) Smaller the ${}_{n}K_{a}$ value, strong the acid.
- **17.** (d) It involves gain and loss of electron pair (Lewis concept).
- **18.** (b) $H^{-}_{(aq.)} + H_2 O_{(l)} \rightarrow OH^{-} + H_2$.
- **19.** (b) $K_H = \frac{K_a}{K_w} = \frac{10^{-4}}{10^{-14}} = \frac{1}{10^{-10}} = 10^{10}$.

- **20.** (d) Acidity is directly proportional to oxidation number. As the O.No. of S, P and Cl in H_2SO_3, H_3PO_3 & $HClO_3$ is +4, +3 & +5 respectively so decreasing order of acidity will be III > I > II.
- **21.** (a) A substance which can donate a proton is known as acid so NH_4^+ will be a acid.
- **22.** (b) Acetic acid is a weak acid.
- **23.** (a) Because it is a acidic oxide.
- **24.** (b) $[Ca^{2+}][F^-]^2 = \left[\frac{10^{-2} \times V}{2V}\right] \times \left[\frac{10^{-3} \times V}{2V}\right]^2 = 1.25 \times 10^{-9}$.
- **25.** (a) The degree of hydrolysis of a salt of weak acid and weak base is independent of concentration of salt.
- **26.** (c) C = 0.1M; $\alpha = 1\%$; $(H^+) = C \times \alpha$ = $0.1 \times \frac{1}{100} = 10^{-3}$; $(H^+) = 10^{-3}$; pH = 3.
- **27.** (d) $HClO_4$ is a strong acid, because its oxidation no is + 7.
- **28.** (d) Acceptor of electron pair is known as lewis acid. S, : CH_2 , $(CH_3)_3B$ all can accept an electron pair so answer is (d).
- **29.** (b) $Mg(OH)^2 \Rightarrow Mg^{2+} + 2OH^-$ (s) $K_{sp} = 4S^3 \Rightarrow S = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{1.2 \times 10^{-11}}{4}}$ $S = 8.16 \times 10^{-4}$
- **30.** (d) $K_a = \frac{[H^+][CN^-]}{[HCN^-]}$ $6.2 \times 10^{-10} = \frac{[H^+][0.02]}{[0.01]}$ $[H^+] = \frac{6.2 \times 10^{-10} \times 0.01}{0.02} = 3.1 \times 10^{-10}$
- **31.** (b) NH_3 presence of lone pair of electrons.
- 32. (a) $C_{K_{sp}}^{uBr} = C_{(S)}^{u^{+}} + B_{r}^{-}$ $K_{sp} = S^{2} = (2 \times 10^{-4})^{2} = 4 \times 10^{-8} \frac{mol^{2}}{l^{2}}$
- **33.** (c) $Na_2SO_4 = 2Na^+ + SO_4^{2-}$ (0.004 - x) Since both the solution are isotonic 0.004 + 2x = 0.01

$$\therefore x = 3 \times 10^{-3}$$

 $\therefore \text{ Percent dissociation} = \frac{3 \times 10^{-3}}{0.004} \times 100 = 75\% .$

- **34.** (a) $Cr(OH)_3 \rightarrow Cr_x^{+3} + 3OH_3^ K_{sp} = x.(3x)^3 = 27x^4$ $x = \sqrt[4]{\frac{K_{sp}}{27}}$; $x = \sqrt[4]{\frac{2.7 \times 10^{-31}}{27}}$ $x = 1 \times 10^{-8}$ mole/litre.
- 35. (a) $H^+ = c \cdot \alpha = \sqrt{K_a \cdot c}$ $pH = -\log(\sqrt{K_a \cdot c})^{1/2} = \frac{1}{2} [-\log K_a \log c]$ $= \frac{1}{2} [4.74 \log 10^{-2}] = \frac{1}{2} [4.74 + 2] = 3.37$.
- 36. (b) $Ag_2SO_4 = 2Ag^+ + SO_4^{--}$ $K_{sp} = 4S^3; K_{sp} = 2 \times 10^{-5}$ $S = \sqrt[3]{\frac{2 \times 10^{-5}}{4}} = 0.017 \ m/l = 1.7 \times 10^{-2}$ $Ag BrO_3 = Ag^+ + BrO_3^ S = \sqrt[3]{\frac{2 \times 10^{-5}}{4}} = 0.5 \times 10^{-5}$ $S = \sqrt{5.5 \times 10^{-5}} = 7.4 \times 10^{-3} \ m/l.$
- OH Phenol are more acidic than ethanol because of stabilization of phenoxide as compare to ethoxide ion.
- **38.** (b) $X^- + H_2O \Rightarrow HX + OH^ K_h = \frac{10^{-14}}{10^{-5}} \text{ so } h = \sqrt{\frac{10^{-9}}{10^{-1}}} = 10^{-4}$ $100 \times 10^{-4} = 10^{-2}$ So, 0.01%.

39. (a) $K_a = 1.0 \times 10^{-5}$

- K_h = hydrolysis constant $K_h = \frac{K_w}{K_a} = \frac{10^{-14}}{10^{-5}} = 10^{-9}$ degree of hydrolysis (h) = $\sqrt{\frac{K_h}{C}}$ $= \sqrt{\frac{10^{-9}}{0.001}} = \sqrt{10^{-6}} = 10^{-3}; h = 10^{-3}$
- **40.** (b) Basic radicals of group II & IV are precipitated by H_2S in the form of their sulphides. IInd group in acidic medium & IV group in alkaline medium. They precipitate when ionic product increases than solubility product.

- **41.** (a) After mixing $[Ag^+][Cl^-] > K_{sp}$
- **42.** (a) $K_{sp} > \text{ionic product } 1 \times 10^{-10} > 5 \times 10^{-11}$
- 43. (a) 1 litre of water contains 1000/18 mole.

So degree of ionization
$$=\frac{10^{-7} \times 18}{1000} = 1.8 \times 10^{-7} \%$$
.

44. (a)
$$AgCl\ K_{sp} = 1.2 \times 10^{-10}$$

$$S = \sqrt{1.2 \times 10^{-10}}$$
; $S = 1.09 \times 10^{-5}$

AgBr
$$K_{sp} = 3.5 \times 10^{-13}$$

$$S = \sqrt{3.5 \times 10^{-13}} = 5.91 \times 10^{-6}$$

So that S of AgBr is less than that of AgCl.

45. (a)
$$K_{sp} = 4S^3$$

$$4S^3 = 3.2 \times 10^{-8}$$
; $S = 2 \times 10^{-3} M$.

46. (c)
$$\frac{2.8 \times 10^{-10}}{0.1} = 2.8 \times 10^{-9} ML^{-1}$$
.

47. (b)
$$AB = A^+ + B^-$$
; $K_{sp} = S^2$

$$S = \sqrt{K_{sp}} = \sqrt{4 \times 10^{-10}} = 2 \times 10^{-5}$$

48. (b)
$$S = 1.435 \times 10^{-3} g/l$$
, $= \frac{1.435 \times 10^{-3}}{143.5} = 10^{-5} M$

$$K_{sp} = S \times S = 10^{-10}$$

49. (b)
$$pKa = 5$$
, so $Ka = 1 \times 10^{-5}$

$$\alpha = \sqrt{\frac{Ka}{C}} = \sqrt{\frac{1 \times 10^{-5}}{0.1}} = 1 \times 10^{-2}$$

- **50.** (c) Presence of common ion decreases the solubility of salt.
- **51.** (d) $Ag_2S > CuS > HgS$.

Solubility of
$$CuS = \sqrt{10^{-31}} = 3.16 \times 10^{-16} \ mol / lit.$$

Solubility of Ag_2S

$$=\sqrt[3]{\frac{K_{sp}}{4}}=\sqrt[3]{\frac{10^{-42}}{4}}=6.3\times10^{-5}$$
 mole / litre

Solubility of
$$HgS = \sqrt{K_{sp}} = \sqrt{10^{-54}} = 10^{-27} \ mol \ / \ litre.$$

52. (c)
$$pH = 3.82 = -\log[H^+]$$

$$|H^+| = 1.5 \times 10^{-4}$$
 mole/litre.

53. (b)
$$pH = pK_a + \log \frac{[\text{salt}]}{\text{acid}} = 4.57 + \log \frac{0.10}{0.03} = 5.09$$

54. (c) For a monobasic acid

$$[H^+] = C\alpha$$

= $\frac{1}{10} \times 0.001 = 10^{-4} \implies pH = 4$

55. (a)
$$K_{sp} = [As^{3+}][S^{2-}], S = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$= \sqrt[5]{\frac{2.8 \times 10^{-72}}{108}} = 1.09 \times 10^{-15}$$

56. (d) Dissociation constant of $HA = 10^{-9}$

$$HA \rightleftharpoons H^+ + A^-$$

$$[H^+] = \sqrt{\frac{K_a}{C}} = \sqrt{\frac{10^{-9}}{0.1}}$$
; $[H^+] = 10^{-4}$

$$\therefore pH = 4$$

$$\therefore pH + pOH = 14$$

$$pOH = 14 - pH = 14 - 4$$
; $pOH = 10$

57. (d)
$$\alpha = 1.9 \times 10^{-9}$$
; $C = \frac{1000}{18}$

$$K = \frac{[H^+][OH^-]}{(H_2O)} = C\alpha^2$$

=
$$1.9 \times 10^{-9} \times 1.9 \times 10^{-9} \times \frac{1000}{18} = 2.0 \times 10^{-16}$$
.

58. (c)
$$K = Ka_1 \times Ka_2 = 4.5 \times 10^{-3} \times 1.7 \times 10^{10}$$

$$H^{+} = \sqrt{Kc} = \sqrt{4.5 \times 10^{-3} \times 1.7 \times 10^{-10} \times .01}$$
$$= .87 \times 10^{-7}$$

$$pH = -\log 0.87 \times 10^{-7} = 7 - 0.93 = 6.07$$
.

59. (a) Given that

Concentration of solution =.1

Degree of ionisation =
$$2\% = \frac{2}{100} = .02$$

Ionic product of water = 1×10^{-14}

Concentration of $[H^+]$ = Concentration of solution X degree of ionisation = $.1 \times .02 = 2 \times 10^{-3} M$

Concentration of
$$[OH^-] = \frac{\text{Ionic prod uct of water}}{[H^+]}$$

$$= \frac{1 \times 10^{-14}}{2 \times 10^{-3}} = 0.5 \times 10^{-11} = 5 \times 10^{-12} M.$$

60. (a)
$$HgSO_4 \to Hg^{++} + SO_4^{--}$$

$$K_{sp} = x^2$$
; $x = \sqrt{K_{sp}}$; $x = \sqrt{6.4 \times 10^{-5}}$

$$x = 8 \times 10^{-3}$$
 mole/litre.

61. (a)
$$K = c\alpha^2 = 0.1 \times \left(\frac{1.34}{100}\right)^2 = 1.8 \times 10^{-5}$$
.

62. (c)
$$[H^+] = 1 \times 10^{-4} M \Rightarrow [H^+] [OH^-] = 1 \times 10^{-14}$$

$$\therefore [OH^{-}] = \frac{1 \times 10^{-14}}{0.5 \times 10^{-4}} = 2 \times 10^{-10} M$$

- **63.** (d) Because *HClO*₄ is a strong acid. While buffer is a mixture of weak acid and their salt.
- **64.** (b) Initial concentration = 0.006 M \Rightarrow $K_a = 6 \times 10^{-5}$

equilibrium reaction.

$$\begin{array}{ccc} C_6H_5COOH = C_6H_5COO^- + & H^+ \\ & & C & O & O \\ C(1-\alpha) & Ca & Ca & Ca \end{array}$$

$$K_{\alpha} = C\alpha^2$$
 (:: 1 – $\alpha \approx 1$) for weak electrolyte

$$\alpha = \sqrt{\frac{K_a}{C}}$$
; $\alpha = \sqrt{\frac{6 \times 10^{-5}}{0.006}}$; $\alpha = 10^{-1}$

$$::[H^+] = C\alpha = 0.006 \times 10^{-1} = 6 \times 10^{-4} M.$$

65. (a)
$$pOH = pKb + \log \frac{[Salt]}{[Base]}$$

 $14 - 9.35 = -\log(1.78 \times 10^{-5}) + \log \frac{[Salt]}{100}$
 $[Salt] = 79.9 \Rightarrow \frac{w}{132} \times 1000 = 79.9 \Rightarrow w = 10.56$

66. (a)
$$pH = 6$$
 means $[H^+] = 10^{-6}M$

$$pH = 3 \text{ means } [H^=] = 10^{-3}M$$
After mixing,
$$Total \ [H^+] = \frac{(10^{-6} + 10^{-3})}{2} = \frac{1.001 \times 10^{-3}}{2}$$

$$=5.005 \times 10^{-4}$$

 $pH = 4 - \log 5.005$; $pH = 3.301$.

67. (b)
$$[H^+] = \sqrt{K \times C}$$

$$[H^+] = \sqrt{4 \times 10^{-10} \times 1} \; ; \; [H^+] = 2 \times 10^{-5} \; mole/litre$$

- **68.** (b) Moles of $[OH^{-}] = M \times V$ Number of $NaOH = 0.3 \times 0.005 \times 2 = 0.0030$
- **69.** (d) $[H^+][OH^-] = 10^{-13.26}$ $\therefore [H^+] = [OH^-], \therefore [H^+]^2 = 10^{-13.26}$ $[H^+] = 10^{\frac{-13.26}{2}}$ pH = 6.63.

70. (b)
$$pH = pKa + \log \frac{[Salt]}{[Acid]}$$

 $pH = pKa$
 $Ka = 0.1 \times (10^{-3.5})^2 = 0.1 \times 10^{-7} = 10^{-8} \implies pH = 8$

71. (a)
$$pH = -\log K_a + \log \frac{\text{[Salt]}}{\text{[Acid]}}$$

 $[\text{Salt}] = \frac{0.2 \times 50}{1000} = 0.01 \; ; \; [\text{Acid}] = \frac{0.5 \times 40}{1000} = 0.02$

$$pH = -\log (1.8 \times 10^{-4}) + \log \frac{0.01}{0.02}$$

$$pH = 4 - \log (1.8) + \log 0.5$$

$$pH = 4 - \log (1.8) - 0.301$$

$$pH = 3.4$$

- **72.** (c) HCO_3^- and H_2O
- 73. (a) $[H^+] = C \times \alpha = 0.1 \times 0.1 = 10^{-2} M$ pH = 2; pOH = 12; $[OH^-] = 10^{-12} M$.
- **74.** (c) Decreasing order of acidic character is $H_2SO_4 > CH_3COOH > H_2CO_3$
- **75.** (c) The acidic nature increases in the order. $NaNO_2 < NaCl < H_2S < H_2SO_4$

76. (a)
$$[OH^{-}] = 0.05 = 5 \times 10^{-2} M$$

 $pOH = 2 - \log 5 = 1.3$
 $pH + pOH = 14$
 $pH = 14 - 1.3 = 12.7$

- 77. (b) Na_2O form NaOH. So that it is basic oxide.
- 78. (a) $CH_3COO^- + H_2O = CH_3COOH + OH^ \therefore [OH^-] = c \times h; \quad h = \sqrt{\frac{K_w}{K_a} \times c} = \sqrt{\frac{10^{-14}}{1.8 \times 10^{-5}} \times 1}$ $= 2.35 \times 10^{-5}$ $\therefore pOH = 4.62 \; ; \quad pH = 9.38 \approx 9.4$

Assertion & Reason

- 1. (c) HCl is a strong electrolyte since it will produce more H^+ , comparison than that of CH_3COOH . Hence assertion is true but reason false
- 2. (b) For sparingly soluble salts, reason is not a correct explanation. Hence both assertion and reason are true but reason is not a correct explanation of assertion.
- **3.** (a) Aq. solution of $FeCl_3$ on standing produce brown ppt. Due to hydrolysis it produce ppt. of $Fe(OH)_3$ which is of brown colour. Hence both are correct and reason is a correct explanation.
- **4.** (a) Barium carbonate is more soluble in HNO_3 than in water become carbonate is a weak base and reacts with the H^+ ion of HNO_3 causing the barium salt to dissociate.

$$BaCO_3 + HNO_3 \rightarrow Ba(NO_3)_2 + CO_2 + H_2O$$

- 5. (a) The conjugate base of $CHCl_3$ is more stable than conjugate base of $CHF_3(CF_3)$. CCl_3 stabilized by -I effect of chlorine atoms as well as by the electrons. But conjugate base of $CH_3(CH_3)$ is stabilized only by -I effect of flourine atoms. Here both assertion and reason are true and reason is correct explanation of assertion.
- **6.** (c) Ionic product of AgBr is greater than that of AgCl in comparison with there solubility product AgBr will precipitate. First rather than that of AgCl.
- 9. (e) It is fact that ionic reactions are instantaneous due to the fact that oppositely charged ions exert strong forces and combine immediately.