DATABASE TEST 2

Number of Questions: 35

Directions for questions 1 to 35: Select the correct alternative from the given choices.

- 1. If the database operations in a transaction do not update the database but only retrieve data, what is that transaction called?
 - (A) Write-only operation (B) Read-only operation
 - (C) Named data item (D) Granularity
- **2.** Consider the 2 interleaved transactions T_1 and T_2 :

<i>T</i> ₁	T ₂
r ₁ (x)	
<i>w</i> ₁ (<i>x</i>)	
	r ₂ (x)
r ₁ (y)	
w ₁ (y)	
	r ₂ (y)
<i>C</i> ₁	
	C ₂

Which of the following is schedule for the above?

- (A) $r_1(x), r_2(x), w_1(x), r_1(y), w_1(y), r_2(y), C_1, C_2$
- (B) $r_1(x), w_1(x), r_2(x), r_1(y), w_1(y), r_2(y), C_1, C_2$
- (C) $r_1(x), w_1(x), r_2(x), r_1(y), w_1(y), r_2(y), C_2, C_1$
- (D) $r_1(x), w_1(x), r_2(x), r_1(y), r_2(y), w_1(y), C_1, C_2$
- 3. Two operations in a schedule are said to have conflict if
 - I. They belong to different transactions.
 - II. They access the same data item.
 - III. Atleast one of the operations is write operation.
 - IV. Atleast one of the operations is Read operation. Which of the following is TRUE?
 - (A) I and II only (B) II and III only
 - (C) I, II and III only (D) II, III and IV only
- 4. A Non recoverable schedule must contain which of the following conflict?
 - (A) RR conflict (B) RW conflict
 - (C) WR conflict (D) WW conflict
- 5. Consider the given schedule:

<i>T</i> ₁	<i>T</i> ₂
<i>r</i> ₁ (<i>x</i>)	
<i>w</i> ₁ (<i>x</i>)	
<i>r</i> ₁ (<i>y</i>)	
<i>C</i> ₁	
	r ₂ (x)
	<i>w</i> ₂ (<i>x</i>)
	<i>C</i> ₂

The given schedule is

- (A) Cascadeless schedule
- (B) strict schedule

- (C) Non-serial schedule
- (D) Non-Recoverable schedule
- **6.** In a schedule, transactions can neither read nor write an item 'X' until the last transaction that wrote X has committed or Aborted, what is that schedule?
 - (A) Cascadeless schedule (B) Strict schedule
 - (C) Recoverable schedule (D) Non serial schedule
- 7. Consider the given schedule

<i>T</i> ₁	<i>T</i> ₂
R(x)	
x = x - N	
w(x)	
	<i>r</i> (<i>x</i>)
	w(x)
r(y)	

What is the number of WR conflicts present in the given schedule?

(A)	0	(B)	1
(C)	2	(D)	3

8. Which of the following protocol is based on locking data items to prevent concurrent transactions from interfering with one another, and enforcing an additional condition that guarantees serializability?

(A)	1 PL	(B)	2 PL
(C)	3 PL	(D)	4 PL

- **9.** In Random access, for accessing a disk block on a disk, what is the Rotational delay if disk rotates at 10000 rpm (rotations per minute)?
 - (A) 6 m/sec (B) 9 m/sec
 - (C) 3 m/sec (D) 12 m/sec
- **10.** Whenever 2 independent 1:*N* relationships *A*:*B* and *A*:*C* are mixed in the same relation, then which of the following is TRUE?
 - (A) A Transitive Dependency may arise
 - (B) A Partial Dependency may arise
 - (C) A Multi-valued Dependency may arise
 - (D) None of the above
- 11. Which of the following is TRUE about 2NF?
 - (A) A relation schema *R* is in 2 NF, if every non prime attribute *A* in *R* is not partially dependent on any key of *R*.
 - (B) If the primary key contains a single attribute, the test need not be applied at all.
 - (C) Test for 2NF involves testing for functional dependencies whose left-hand side attributes are part of the primary key.
 - (D) All the above

Section Marks: 30

3.118 | Database Test 2

12. Consider the following *FD*'s:

 $X \rightarrow Y$

 $WY \rightarrow Z$

If pseudo transitive rule is applied on given *FD*'s, what is the result?

- (A) $X \rightarrow Z$ (B) $XW \rightarrow Z$ (C) $XY \rightarrow Z$ (D) $XWY \rightarrow YZ$
- 13. What is the average time to access a specific Record in a file using sequential scan (Linear search) on unordered file? (Assume that there are 'b' blocks)
 - (A) b/2 (B) b
 - (C) $\log_2 b$ (D) 2b
- 14. In which hashing technique, a type of directory, an array of 2^{d} bucket addresses is maintained, where 'd' is called the global depth of the directory?
 - (A) Internal Hashing (B) Extendible Hashing
 - (C) Separate Chaining (D) Static Hashing
- **15.** Assume that, a primary index is built on a file with 45 blocks, what is the number of block accesses required to search for a specific Record in a file (Using Binary search)?
 - (A) 45 (B) 23
 - (C) 6 (D) 7
- **16.** Consider the given 2 schedules:
 - $S_a: r_1(x), w_1(x), r_2(x), w_1(x), w_2(x), r_1(y), C_1, C_2$ $S_b: r_1(x), w_1(x), r_2(x), w_2(x), r_1(x), C_1, C_2$
 - Which of the following is TRUE?
 - (A) Both are conflict serializable
 - (B) Only S_a is conflict serializable
 - (C) Only S_b is conflict serializable
 - (D) Both are not conflict serializable
- 17. Consider the given transaction T_1 , that follows 2-phase Locking protocol:

T ₁
1. Read – Lock(X)
2. Read – item (X)
3. Write – Lock(Y)
4. Unlock(X)
5. Read – item(Y)
6. Y = X + Y
7. Write – item(Y)
8. Unlock(Y)

Which of the following is TRUE?

- (A) Record 1 to Record 3 is Growing phase
- (B) Record 4 to Record 8 is shrinking phase
- (C) Record 1 to Record 4 is Expanding phase
- (D) Both (A) and (B)
- **18.** Consider a disk with track size 70 Kbytes and it rotates at 3600 rpm, what is the transfer rate in bytes/m sec?
 - (A) 3500 (B) 3600
 - (C) 4200 (D) 4500

- **19.** What is the time required to transfer consecutively '*k*' non contiguous blocks that are on the same cylinder, where '*S*' is seek time, '*rd*' is rotational delay and '*btt*' is block transfer time?
 - (A) S + (k * (rd + btt)) msec
 - (B) (S + rd + btt) msec
 - (C) S + rd + (k * btt) msec
 - (D) S + (k * rd) + btt msec
- **20.** What is the estimate for transferring consecutive blocks (include interblock gap), the disk manufacturer provides a bulk transfer rate (btr) that takes the gap size into account when reading consecutively stored blocks (B), and the gap size is *G* bytes?
 - (A) btr = (B/(B+G)) * tr bytes/msec
 - (B) btr = (B/(B+G)) bytes/msec
 - (C) btr = (B + G) + tr bytes/msec
 - (D) btr = ((B + G)/B) + tr bytes/msec
- **21.** Match the following:
 - I. 1 NF
 - II. 2 NF
 - III. 3 NF
 - P. No Non key attribute should be functionally dependent on a part of the primary key.
 - Q. Relation should have no nonatomic attributes or nested relations.
 - R. Relation should not have a non key attribute functionally determined by another non key attribute.
 - (A) I–P, II–Q, III–R
 - (B) I–Q, II–P, III–R
 - (C) I–Q, II–R, III–P
 - (D) I–R, II–Q, III–R
- **22.** Consider the given Relation EMP and given functional dependencies:
 - $F = (E \rightarrow N)$
 - $P \rightarrow A, L$
 - $E P \rightarrow H$

Which of the following is Incorrect closure set with respect to *F*?

- (A) $E^+ = \{E, N\}$
- (B) $P^+ = \{P, A, L\}$
- (C) $\{EP\}^+ = \{E, N, P, A, L, H\}$
- (D) ${EH}^+ = {E, N, H, P, A}$
- **23.** Consider the functional dependencies given in the above question, EMP Relation is in which Normal Form?
 - (A) 1 NF (C) 3 NF (D) BCNF
- 24. Consider the given 2 tables: Person

Name	Mobile
Anil	9848463
	9440072
Raj	9004432

Student

SName	Project		
	P No.	Hours	

Which of the following is TRUE?

- (A) Both tables are in 1 NF
- (B) Both tables are not in 1 NF
- (C) Person is in 1 NF but not student
- (D) Person is in 2 NF and student is in 1 NF
- **25.** Consider the schema R(ABCDE) and functional dependencies $A \rightarrow BE$, $C \rightarrow D$, then the decomposition of R into $R_1(ABE)$, $R_2(CD)$ is
 - (A) Dependency preserving and lossless join.
 - (B) Dependency preserving and not lossless join.
 - (C) Lossless join but not dependency preserving.
 - (D) Not Dependency preserving and Not lossless join.
- **26.** Consider a relation *R*(*A*, *B*, *C*, *D*, *E*) with the following Dependencies:
 - $A \rightarrow C$
 - $BCD \rightarrow E$
 - $DE \rightarrow B$

Identify the candidate keys from the following options? (A) *AD*, *ADB* (B) *ADB*, *ADC*

- $\begin{array}{c} (1) & ADB, ADE \\ (C) & ADB, ADE \\ \end{array} \qquad (D) & ADC, ADE \\ \end{array}$
- 27. Consider the Functional Dependencies given in the above question, which of the following are "Prime Attributes"?
 (A) ABCD
 (B) ABCE

(A)	ADCD	(D)	ADCL
(C)	ABDE	(D)	ACDE

28. Consider a file with fixed length records, one sample record is given below,

	Name	E No	Salary		Department	
1	14		18	22	2 32	

The file contains 32000 records, and it is stored on a disk with block size 1024 Bytes, what is the blocking factor?

(A)	16	(B)	32
(C)	64	(D)	128

29. Consider a file with Fixed length Records, one sample record is given below.

Name	E No	Salary	Department	Remarks	Total
1	14	18	22	32	64

The file contains 30000 records, what is the number of blocks required to store the file, on a disk with block size 2048 bytes?

(A)	648	(B)	840
(C)	938	(D)	968

- **30.** Construct a B-tree with 6, 4, 5, 9, 7, 2 values, order of B-tree is *P* = 3, what is the maximum number of node splits?
 - (A) 1 (B) 2 (C) 3 (D) 4
- **31.** Consider a disk with block size B = 512 bytes, number of tracks per surface is 400, this disk pack consists of 16 double sided disks, How many cylinders are there? (A) 100 (B) 200
 - (C) 400 (D) 800

Common Data Questions 32 and 33:

Consider the given schedules

- $S_1: \quad r_1(P), r_2(R), r_1(R), r_3(P), r_3(Q), w_1(P), C_1, w_3(Q), \\ C_3, r_2(Q), w_2(R), w_2(Q), C_2$
- $$\begin{split} S_2: \quad r_1(P), \ r_2(R), \ r_1(R), \ r_3(P), \ r_3(Q), \ w_1(P), \ w_3(Q), \\ r_2(Q), \ w_2(R), \ w_2(Q), \ C_1, \ C_2, \ C_3. \end{split}$$
- 32. Which of the following is/are Recoverable schedule(s)?(A) Only S₁(B) Only S₂
 - (C) Both S_1 and S_2 (D) Neither S_1 nor S_2
- **33.** Which of the following is/are "cascadeless" schedules(s)?
 - (A) Only S_1
 - (B) Only S_2
 - (C) Both S_1 and S_2
 - (D) Neither S_1 nor S_2

Linked Answer Questions 34 and 35:

Consider the given table:

Student

Sname	Course	Department
Arun	<i>C</i> ₁	<i>D</i> ₁
Arun	C ₂	<i>D</i> ₁
Arun	<i>C</i> ₁	D ₂
Arun	C ₂	D ₂

- **34.** Student table has multivalved dependencies, which of the following is correct 4 NF Decomposition?
 - (A) Student 1 (Sname, course)
 - Student 2 (Course, Department)
 - (B) Student 1 (Sname, Department)
 - Student 2 (course, Department)
 - (C) Student 1 (sname, course)Student 2 (sname, Department)
 - (D) Student 1 (sname, course)Student 2 (sname, Department)Student 3 (Course, Department)
- **35.** Which of the following is TRUE, for the above identified correct answer?
 - (A) student 1 is student 2, returns student table
 - (B) student 1 X student 2 returns student table
 - (C) student 1 is student 2 returns student table
 - (D) None of the above

Answer Keys									
1. B	2. B	3. C	4. B	5. A	6. B	7. B	8. B	9. C	10. C
11. D	12. B	13. A	14. B	15. D	16. D	17. D	18. C	19. A	20. A
21. B	22. D	23. A	24. B	25. B	26. C	27. C	28. B	29. C	30. B
31. C	32. A	33. A	34. C	35. A					

HINTS AND EXPLANATIONS

- 1. Read only operation do not update the database but only retrieves data. Choice (B)
- 2. Correct schedule is: $r_1(x), W_1(x), r_2(x), r_1(y), w_1(y), r_2(y), C_1, C_2$ Choice (B)
- **3.** Two operations in a schedule are said to have conflict if they satisfy I, II and III.

Choice (C)

 Recover ability can be decided by the presence of 'RW' conflict in a schedule.

Choice (B)

- 5. A schedule is said to be cascadeless, if every transaction in the schedule reads only items that were written by committed transactions. Choice (A)
- 6. More restrictive type of schedule is called a strict schedule, in which transactions can neither read nor write an item 'X' until the last transaction that wrote 'X' has committed or aborted.

Choice (B)

7.
RW

$$r_1(x), w_1(x), r_2(x), w_2(x), r_1(y)$$

WR
WW

- \therefore One WR conflict is present. Choice (B)
- 8. 2 PL (2 phase Locking protocol) ensures serializability. Choice (B)
- **9.** If the speed of disk rotation is '*P*' revolutions per minute (rpm), then the average rotational delay 'rd' is given by

$$rd = (1/2) * (1/P) \min = (60 * 1000)/(2 * P) \operatorname{msec}$$

 $rd = 3 \operatorname{msec}$ Choice (C)

- If 2 independent 1:N relationships A:B and A:C are mixed in the same Relation, a multi valued Dependency may arise. Choice (C)
- 11. All the statements are TRUE.

12. $X \rightarrow Y$ $WY \rightarrow Z$ $XW \rightarrow Z$ Choice (B)

- 13. The average access time in block accesses to find a specific record in a file with 'b' blocks on unordered file is 'b/2'. Choice (A)
- 14. Hashing Technique that allows Dynamic File expansion is extendible hashing, Choice (B)
- **15.** First search will be conducted on primary index. By using binary search,

$$\Rightarrow \left| \log^{45} \right| \cong 6 \text{ block accesses}$$

7 block accesses.

6 block accesses in primary index + 1 block access in original file.

16.
$$S_a$$
: $r_1(x)$, $w_1(x)$, $r_2(x)$, $w_1(x)$, $w_2(x)$, $r_1(y)$, C_1 , C_2

Precedence Graph:

...

 \therefore 'S_a' is not conflict serializable, since cycle is present in Precedence graph.

$$S_{b}$$
: $r_{1}(x), w_{1}(x), r_{2}(x), w_{2}(x), r_{1}(x), C_{1}, C_{2}$

Precedence Graph:

- \therefore S_b is not conflict serializable, since cycle is present in precedence graph. Choice (D)
- Expanding or growing phase: During which new locks on items can be acquired but none can be released.
 Shrinking phase: During which existing locks can be released but no new locks can be acquired.

Choice (D)

18. Transfer rate =
$$(70 \times 1000)/(60 \times 1000/3600)$$

$$\frac{70 \times 1000}{1000} = \frac{70 \times 60 \times 1000}{1000} = 4200 \text{ bytes/msec}$$

Choice (C)

19. To transfer consecutively 'k' non contiguous blocks that are on the same cylinder, we need approximately, S + (k * (rd + btt)) msec. Choice (A)

20. Transferring consecutive blocks (including inter block gap)

 \Rightarrow btr = (B/(B + G)) * tr bytes/msec Choice (A)

21. I - Q, II - P, III - R is correct match. Choice (B)

22. ${EH}^+$ cannot determine *P* and *A*. Choice (D)

- 23. The key for EMP is {EP} and the functional Dependencies. E → N
 P → A, L are partial dependencies.
 ∴ EMP is not in 2NF i.e., it is in 1 NF. Choice (A)
- 24. Both tables are not in 1 NF, person table has multiple values under mobile column for one name, In student relation, there is another relation project, A relation

within a Relation is not allowed in 1 NF. Choice (B)

25. It is Dependency preserving, $A \rightarrow BE$ is in R_1 and $C \rightarrow D$ is in R_2 .

Checking for loss less join:

	А	В	С	D	E
R ₁ (ABE)	*	*			*
R ₂ (CD)			*	*	

It is Not Loss Less JOIN.

26. $A \rightarrow C$

 $BCD \to E$ $DE \to B$

$${AD}^+ = {ADC} ADB^+ = {ADBCE} ADC^+ = {ADC} ADE^+ = {ADCB}$$
 Choice (C)

- 27. Candidate keys are: *ADB*, *ADE* Prime Attributes are part of any candidate key, *ABDE* Choice (C)
- **28.** Blocking factor is defined as, the number of records stored on one block.

$$Bfr = \left\lfloor \frac{1024}{32} \right\rfloor = \left\lfloor \frac{2^{10}}{2^5} \right\rfloor = 2^5 = 32 \text{ Records}$$

Choice (B)

29. Blocking Factor

$$= \left\lfloor \frac{2048}{64} \right\rfloor = \left\lfloor \frac{2^{11}}{2^6} \right\rfloor = 2^5 = 32 \text{ records/block}$$

Number of blocks required: 1 block ------ 32 records

$$x = \left\lceil \frac{30000}{32} \right\rceil = \left\lceil 937.5 \right\rceil = 938 \text{ blocks} \qquad \text{Choice (C)}$$

30. Order
$$P = 3$$

- **31.** Cylinders = Number of tracks that is 400 Choice (C)
- **32.** $S_1: r_1(P), r_2(R), r_1(R), r_3(P), r_3(Q), W_1(P), C_1, w_3(Q), C_3, r_2(Q), w_2(R), w_2(Q), C_2$

To check recoverability, search for RW conflict. There is one RW conflict, T_3 is performing write operation so it has to commit first.

 $\therefore S_1 \text{ is Recoverable.} \\S_2: r_1(P), r_2(R), r_1(R), r_3(P), r_3(Q), w_1(P), \\w_3(Q), r_2(Q), w_2(R), w_2(Q), C_1, C_2, C_3.$

 T_3 has to commit first but T_2 has committed first.

$$\therefore$$
 S_2 is not a recoverable schedule. Choice (A)

<i>T</i> ₁	<i>T</i> ₂	<i>T</i> ₃
r ₁ (P)		
	r ₂ (<i>R</i>)	
r ₁ (<i>R</i>)		
		r ₃ (P)
		r ₃ (Q)
w ₁ (P)		
<i>C</i> ₁		
		w ₃ (Q)
		<i>C</i> ₃
	r ₂ (Q)	
	w ₂ (<i>R</i>)	
	w ₂ (Q)	
	C_2	

 S_1 is cascadeless, because, data is taken from committed transactions.

3.122 | Database Test 2

*S*₂:

<i>T</i> ₁	<i>T</i> ₂	<i>T</i> ₃
r ₁ (P)		
	r ₂ (R)	
r ₁ (<i>R</i>)		
		r ₃ (P)
		r ₃ (Q)
w ₁ (P)		
		w ₃ (Q)
	r ₂ (Q)	
	w ₂ (R)	
	w ₂ (Q)	
<i>C</i> ₁		
	<i>C</i> ₂	
		<i>C</i> ₃

T₃ should commit before T₂
∴ S₂ is not cascadeless schedule.
Choice (A)
34. Multi valued dependencies: Sname → → Course, Sname → → Department 4NF decomposition is as follows Student 1(Sname, course) Student 2(Sname, Department)
Choice (C)
35. Student 1 ⋈ student 2 returns student table. Choice (A)