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CHAPTER HIGHLIGHTS

Fluid Kinematics
The description of the motion of fl uids (or fl uid fl ows) with-
out necessarily considering the forces and moments that 
cause the motion is called  fl uid kinematics. The fl ow of fl uid 
can be described by two ways: 

 1. Lagrangian description

 2. Eulerian description.

Lagrangian Description 
of Fluid Flow 
Here, individual fl uid particles are identifi ed (usually by 
specifying their initial spatial position of a given time) and 
the motion of each particle is observed as a function of 

time. Let the position of a fl uid particle identifi ed by r0
→

.  
The position vector at any time ‘t’ shall be 

� �
r r r t= ( , ),0

Where 
�
r is the position vector of the fl uid particle with 

respect to a fi xed reference point at time t. Considering car-
tesian coordinates,

We have,

      
�
r x i y j z k0 0 0 0= + +ˆ ˆ ˆ

and = + + = + +
�

. .0 0 0
ˆ ˆˆ ˆ ˆ ˆ( , ) ( , ) ( , )r x r t i y r t j z r t k xi yj zk

Here, ˆ, ˆ ˆi j and k are unit vectors along the x, y, z directions 
respectively and r0 denotes the point (x0, y0, z0).

The velocity vector 
�
v  having the scalar components u, 

v and w in the x, y and z directions respectively are given as 
follows:

�
�

v
r

t r

=
∂
∂

0

    = ˆ ˆ ˆi
x

t
j

y

t
k

z

tr r r

∂
∂

+
∂
∂

+
∂
∂

0 0 0

= ui vj wkˆ ˆ ˆ+ +

The acceleration vector a
�

 having the scalar components ax, 
ay and az in the x, y and z directions respectively are given 
as follows:

�
�

a
r

t
r

=
∂
∂

2

2
0

    = ˆ ˆ ˆi
x

t
j

y

t
k

z

t
r r r

∂
∂

+
∂

∂
+

∂
∂

2

2

2

2

2

2
0 0 0

    = a i a j a kx y z
ˆ ˆ ˆ+ +
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Eulerian Description 
of Fluid Flow 
In Eulerian method any point in the space, occupied by the 
fluid is selected and observations are made.

It is a average approach, as our concentration is on a par-
ticular space, point or section and all the particles passing 
from it are analysed as a bulk simultaneously.

The major advantage of the method is it consumes less 
time and computation required is also very less.

Scalar, Vector and Flow Fields 
A scalar field is a region where at every point, a scalar func-
tion (scalar field variable) has a defined value.

Example: Pressure field of a fluid flow. 

A vector field is a region where at every point, a vector func-
tion (vector field variable) has a defined value. 

Example: Velocity field of a fluid in motion.

A flow field is a region in which the flow properties, i.e., 
velocity, pressure, etc., are defined at each and every point 
at any time instant. Two basic and important vector field 
variables of a flow are the velocity and acceleration fields.

Velocity Field 
For a general three-dimensional fluid flow in Cartesian 
coordinates, the velocity vector is given by,

� �
v v x y z t= ( , , , )

u(x, y, z, t) i
�
+ + ˆˆ( , , , ) ( , , , )v x y z t j w x y z t k

The speed of the fluid,

v = 
�
v u v w= + +2 2 2

X

Y

Z

u

v

w

k̂

î

ĵ

v


A point in the fluid flow field where the velocity vector is 
zero is called a stagnation point.

Fluid Acceleration
Acceleration Field
For a general three-dimensional fluid flow in Cartesian 
coordinates, if 

�
v is the velocity field, then the acceleration 

field is given by:

	
�

� � � �
a x y z t

v

t
u

v

x
v

v

y
w

v

z
( , , , ) =

∂
∂
+

∂
∂

+
∂
∂

+
∂
∂

� (1)

The scalar components of the acceleration vector are:

ax = 
∂
∂
+

∂
∂

+
∂
∂

+
∂
∂

u

t
u

u

x
v

u

y
w

u

z

ay = 
∂
∂
+

∂
∂

+
∂
∂

+
∂
∂

v

t
u

v

x
v

v

y
w

v

z

az = 
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

w

t
u

w

x
v

w

y
w

w

z

Magnitude of the acceleration vector,

�
a  = a a ax y z

2 2 2+ +

Eq. (1) can be rewritten as

	    
�

�
� � �

�
a x y z t

v

t
v v

Dv

Dt
( , , , ) ( )=

∂
∂
+ ⋅∇ = � (2)

The gradient (or del) operator, 
�
∇ = ˆ ˆi

x
j

y
k

z

∂
∂

+
∂
∂

+
∂
∂

 and 

the operator ( ) .
� �
v

u

x

v

y
w

z
⋅∇ =

∂
∂

+
∂
∂

+
∂
∂

The components of the acceleration vector in cylindrical 
coordinates are:

ar = 
∂
∂

+
∂
∂

+
∂
∂

− +
∂
∂

v
v

v v

r

v v

r
v

vr

t
r

r

r

r
z

r

z

θ θ

θ

2

aq = 
∂
∂

+
∂
∂

+
∂
∂

+
v

v
v v

r

v

t
r

r

θ θ θ θ

θ
v v

r
v

dvr
z

θ θ

θ
+

∂

az = 
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

vz

t
v

vz

r

v

r

vz
v

vz

z
r z

θ

θ

Local and convective derivative In Eq. (2), the operator 
D

Dt
 = 

∂
∂
+ ⋅∇

t
v( )
� �

 is called as the total (of material) or sub-

stantial derivative. The operator 
∂
∂t

is called the local or 

temporal or unsteady derivative, while the operator ( )
� �
v ⋅∇ is 

called the convective derivative. The local derivative repre-
sents the effect of unsteadiness while the convective deriva-
tive represents the variation due to the change in position of 
the fluid particle as it moves through a field with gradient 
(spatial change).

Local, Convective and Total Acceleration 

In Eq. (2), the term 
∂
∂

�
v

t
is called the local or temporal or 

unsteady acceleration whereas the term ( )
� � �
v v⋅∇  is called 

the convective (adjective) acceleration. Eq. (2) elucidates 
that fluid particles experience acceleration due to:

	 1.	 Change in velocity with time (local acceleration) 

	 2.	 Change in velocity with space (convective acceleration). 
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The acceleration vector 
�
a  is called as the total or material 

acceleration.

Total acceleration = Local acceleration + Convective 
acceleration

Solved Examples

Example 1
The velocity field of a two-dimensional flow is given by 
�
v xti ytj= +2 2ˆ ˆ, where t is in seconds. At t = 1 second, if 
the local and convective accelerations at any point (x, y) are 
denoted by

� �
a al cand  respectively, then

(A)	
� �
a al c= 2 	 (B)	

� �
a ac l=

(C)	
� �
a ac l= = 0 	 (D)	

� �
a ac l= 2

Solution
From the velocity field description

u = 2xt
v = 2yt

x-component of the local acceleration, al, x = 
∂
∂

=
u

t
x2

y-component of the local acceleration,

al, y = 
∂
∂

=
v

t
y2

 = +
�

, ,
ˆ ˆ

l l x l ya a i a j

      = 2 2xi yjˆ + � (1)

x-component of the convective acceleration,

ac, x = 
u u

x

v u

y

∂
∂

+
∂
∂

       = 2xt × 2t + 2yt × 0 = 4xt2

y-component of the convective acceleration,

ac, y = u 
∂
∂

+
∂
∂

v

x
v

v

y

       = 2xt × 0 + 2yt × 2t
       = 4yt2

= +
�

,
ˆ ˆ,c c ca a xi a yj

       = 4xt2 ˆ ˆi yt j+ 4 2

at t = 1 second, 

                                    �a xi yjc = +4 4ˆ ˆ � (2)

From Eqs. (1) and (2), we have

		         
� �
a ac l= 2 . �

Hence, the correct answer is option (D).

Example 2
A two-dimensional velocity field is given by 

�
v xyi xtj= +ˆ ˆ,3  

where x and y are in metres, t is in seconds and 
�
v is in metres 

per second. The magnitude of the acceleration at x = 1 m, 
y = 0.5 m and t = 2 seconds is 
(A)	 6.25 m/s2	 (B)	 8.663 m/s2

(C)	 12.25 m/s2	 (D)	 6 m/s2

Solution
From the velocity field description,

u = xy
  v = 3xt

Now,	 ax = 
∂
∂
+

∂
∂

+
∂
∂

u

t
u

u

x
v

u

y

	 = 0 + xy × y + 3xt + x
	 = xy2 + 3x2t

Now,	 ay = 
∂
∂
+

∂
∂

+
∂
∂

v

t
u

v

x
v

v

y

	 = 3x + xy × 3t + 3xt × 0
	 = 3x + 3xyt

at x = 1 m, y = 0.5 m and t = 2 seconds,

	 ax = 1 × (0.5)2 + 3 × 1 × 2 = 6.25 m/s2

	 ay = 3 × 1 + 3 × 1 × 0.5 × 2 = 6

Magnitude of the acceleration,

�
a a ax y= +2 2

     = ( . )6 25 62 2+ = 8.663 m/s2.

Hence, the correct answer is option (B).

Tangential and Normal Acceleration 
Consider a fluid particle moving along a path as shown in 
the following figure:

•

r

P′

P
Path

Fluid particle

S

c

Let S denote the distance travelled by the particle along the 
path line relative to the reference point P′, t denote time and 
V velocity.

V = f (s, t) denote the speed of the particle. Let t̂  be a 
unit vector tangential to the path at point P and let n̂  be 
a unit vector normal to the path at point P and pointing 
inward towards the centre of curvature C. Let r denote the 
radius of curvature at point P.

The acceleration vector,
�
a a t a nt n= +ˆ ˆ

   =
∂
∂
+
∂
∂







 +v

v

s

v

t
t

v

r
nˆ ˆ

2
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•
an

P at

c

n

t

ˆ

ˆ

The tangential component of the acceleration vector, at 

= v
v

s

v

t

∂
∂
+
∂
∂







 and the normal component, an =

v

r

2

.

The component an is also called as the centripetal 
acceleration. The component an will be present anytime a 
fluid particle is moving on a curved path (velocity direction 
is changing) while the component at will be present when-
ever the fluid particle is changing speed (velocity magni-
tude is changing)

Fluid Flow Scenario 
(Only Steady Flows)

Tangential 
Acceleration or 
Deceleration

Normal 
Acceleration or 
Deceleration

Flow in a straight con-
stant diameter pipe

Not present Not present

Flow in a straight non-
constant diameter pipe

Present Not present

Flow in a curved con-
stant diameter pipe

Not present Present

Flow in a curved non-
constant diameter pipe

Present Present

Translation, Deformation and Rotation 
of a Fluid Element 
When a fluid element moves in space, several things may 
happen to it. Surely the moving fluid element undergoes 
translation, i.e., a linear displacement from one location to 
another. The fluid element in addition may undergo rotation, 
linear deformation or angular deformation.

Y

X

a

b

c

d

c′

d′

Angular deformation

Y

X

a

b

c

d

c′

d′

a′

  

Y

X

a

b
b′

a′

c

d

d′

c′

translation

In a two-dimensional flow field in cartesian coordinates, 
translation without deformation and rotation is possible if 

the velocity components u and v are neither a function of x 
nor of y. When a velocity component is a function of only 
one space coordinate along which that velocity component 
is defined, e.g., u = u(x) and v = v(y), then translation with 
linear deformation is possible. When u = u(x, y) and v = v(x, y), 
translation with angular and linear deformations is possible. 
It is also observed that when u = u(x, y) and v = v(x, y), 
rotation and angular deformation of a fluid element exists 

simultaneously. When 
∂
∂

=
−∂
∂

v

x

u

y
,  no angular deformation 

takes place and the situation is known as pure rotation. When 
∂
∂

=
∂
∂

v

x

u

y
,  the fluid element has angular deformation but no 

rotation about the Z-axis

Types of Fluid Flow 
	 1.	 Steady and unsteady flow: In a steady fluid flow, fluid 

properties (such as density, pressure, etc.) and the 
flow characteristics (such as velocity, acceleration, 
etc.) at any point in the flow do not change with 
time. In a steady flow, the local derivative of the 
fluid property or fluid characteristic f is zero, i.e., 

∂
∂

=
φ
t

0.

Local acceleration is zero for steady flows

		  Fluid flow through a pipe at a constant rate of 
discharge is a steady flow. 

		    In an unsteady fluid flow, some of the fluid 
properties or flow characteristics at any point in the 
flow changes with time. Fluid flow through a pipe at 
a varying rate of discharge is an unsteady flow.

	 2.	 Uniform and non-uniform flows: In a uniform fluid 
flow, the fluid properties or flow characteristics at 
any given time do not change with respect to space, 
i.e., from one point to another in the flow. Since for 
a uniform flow, there is no gradient (spatial change) 
the convective derivative of any fluid property of flow 

characteristic f is zero, i.e., ( ) .
� �
v ⋅∇ =ϕ 0

		  Convective acceleration is zero for uniform flows

		  In uniform flows, the streamlines are straight and 
parallel.

		  Fluid flow through a straight pipe of constant diameter 
is a uniform flow. 

		    In a non-uniform fluid flow, some of the fluid 
properties or flow characteristics at any given time 
changes with respect to space. Flow through a straight 
pipe of varying diameter is a non-uniform flow.

Total acceleration is zero for steady uniform flows.
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Flow Combinations

Type Example

Steady uniform flow Flow at a constant rate through 
a constant diameter pipe

Steady non-uniform flow Flow at a constant rate through 
a non-constant diameter pipe

Unsteady uniform flow Flow at a varying rate through a 
constant diameter pipe

Unsteady non-
uniform flow

Flow at a varying rate through a 
pipe of varying cross-section

	 3.	 One–, two–, and three–dimensional flows: A flow 
is said to be one–, two–, or three-dimensional if 
one, two or three spatial dimensional are required 
to describe the velocity field.

	 4.	 Inviscid and viscous flow: A fluid flow in which the 
effects of viscosity (frictional effects) are absent is 
called as inviscid (non-viscous) fluid flow, whereas if 
the viscosity effects are present, then the fluid flow is 
called a viscous  fluid flow. Flow of ideal fluids are 
inviscid flows while flow of real fluids are viscous 
flows.

	 5.	 Rotational and irrotational flows: A fluid flow is 
said to be rotational if the fluid particles while moving 
in the direction of flow rotate about their mass centres.  
If the fluid particle do not rotate, then the fluid flow 
is called as irrotational fluid flow. Fluid flow in 
a rotating tank is a rotational flow while fluid flow 
above a wash basin or drain hole of a stationary tank 
is an irrotational flow

		  For an irrotational flow, the curl of the velocity 
vector is zero, i.e., 

� �
∇× v  = 0 or curl ( )

�
v = 0

	 6.	 Compressible and incompressible flows: If for a 
fluid flow, the density remains constant throughout 

the flow, i.e., 
∂
∂

=
ρ
t

0,  then the fluid flow is an 

incompressible  fluid flow else it is a compressible 
fluid flow.

	 7.	 Laminar and turbulent flow: A flow is said to be 
laminar when the various fluid particles move in 
layers with one layer of fluid sliding smoothly over an 
adjacent layer, while in a turbulent flow fluid particles 
move in an entirely haphazard or disorderly manner, 
that results in a rapid and continuous mixing of the 
fluid leading to momentum transfer as flow occurs.

Example 3
The velocity field of a two-dimensional irrotational flow is rep-

resented by, 
�
v

x y
x my i px y

x y
j=

−
+ −









 + − −











2 3 3 2

3
2 2

3
ˆ ˆ,  

where P and m are constants. If the value of P is equal to one, 
then the value of m for a streamline passing through the point 
(1, 2) is

(A)	
−2

3
	 (B)	 0

(C)	 3	 (D)	 –1

Solution
From the velocity field relationship,

	 u = 
−

+ −
x y

x my
2 3

3
2

	 v = Px y
x

y− −2
3

3
2

Since the flow is irrotational
� �
∇× =v 0

i.e.,			 
∂
∂

=
∂
∂

v

x

u

y

or P – x2y2 = –x2 y2 – m
or m = –P = –1.
Hence, the correct answer is option (D).

Description of Flow Pattern 
Streamline 
A streamline is a curve that is everywhere tangent to the 
instantaneous local velocity vector. At a given instant of 
time, the tangent to a streamline at a particular point gives 
the direction of the velocity at that point. The fluid flow 
will always be along the streamlines and never cross it. At non- 
stagnation points, a streamline cannot interest itself nor can 
two streamlines cross each other. However, the two scenarios 
can be present at stagnation points.

The differential equation of a streamline in a three- 

dimensional flow = + +
� ˆˆ ˆ( )v ui vj wk  is:

dx

u

dy

v

dz

w
= =

For a two-dimensional flow = +
� ˆ ˆ( ),v ui vj  the slope of the 

streamline is given as:

dy

dx

v

u
=

The pattern of streamline will be fixed in space for steady 
flows but need not be in the case of unsteady flows.

Stream Tube
An imaginary passage through which fluid flows and which 
is bounded by a bundle of streamline is called a stream tube. 
Fluid can enter or leave a streamline only through its ends 
but never across the stream tube’s surface. At any instant in 
tube, the mass flow rate passing through any cross-sectional 
cut of a given stream tube will always be the same.
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On steady flows, the shape and position of a stream tube 
does not change.

•

Stream tube

Streamline
P

v (instantaneous
velocity at point P)



Streak Line
It is the locus of the fluid particles that have passed sequen-
tially through a chosen point in the flow. It is also the curve 
generated by a tracer fluid, such as a dye, continuously 
injected in the flow field at the chosen point. An example of 
a streak line is the continuous smoke emitted by a chimney.

Path Line
It is the path followed by a fluid particle in motion. A path 
line can intersect with itself or two path lines can intersect 
with each other.

Streamline indicates the motion of bulk mass of fluid 
whereas the path line indicates the motion of a single 
fluid particle. A streak line indicates the motion of all the 
fluid particle along its length.

In a steady flow, the streamline, streak line and path 
line coincide if they pass through the same point.

Example 4
For a three-dimensional flow, if the velocity field is given 
by 
�
v xi yj zk= + −4 6 10ˆ ˆ ˆ,  then an equation for a streamline 

passing through the point (1, 4, 5) is

(A)	 xyz = 
5

4
	 (B)	 xyz = 

1

20

(C)	 xyz = 
4

5
	 (D)	 xyz = 20

Solution
From the velocity field representation, we have 

u = 4x
v = 6y

w = –10z

For a streamline, 
dx

u

dy

v

dz

w
= =

Taking 
dx

u

dy

v
= ,  we have 

dx

x

dy

y4 6
=

Integrating, we get 
x6 4/  = y × C1, where C1 is an integration constant.

Considering the point (1, 4, 5), we get 

( )1 6 4/  = 4 × C1

i.e.,			       C1 = 
1

4

\		                 x
y6 4

4
/ = � (1)

Taking 
d

u

d

w
x z= ,  we have 

dx

x

dz

z4 10
=
−

,

Integrating, we get 

zx C
10 4

2
/ = ,  where C2 is an integration constant.

Considering the point (1, 4, 5), we get 5 × ( )1 10 4/  = C2
That is, C2 = 5

\			   zx
10 4

5
/ = � (2)

Substituting Eq. (1) in Eq. (2), we get zxy = 20 as the equa-
tion of the streamline.
Hence, the correct answer is option (D).

Basic Principles of Fluid Flow
There are three basic principles used in the analysis of the 
problems of fluid in motion as noted below:

	 1.	 Principle of conservation of mass

	 2.	 Principle of conservation of energy

	 3.	 Principle of conservation of momentum

Principle of conservation of mass states that mass can nei-
ther be created nor destroyed.

Principle of conservation of energy states that energy can 
neither be created nor destroyed.

Principle of conservation of momentum or impulse 
momentum principle states that the impulse of the resultant 
force, or the product of the force and time increment dur-
ing which it acts, is equal to the change in momentum of the 
body.

Continuity Equation
The continuity equation is actually mathematical statement 
of the principle of conservation of mass.

Fixed region

Mass of fluid leaving
the fixed region

Mass of fluid entering
the fixed region

Min
•

Mout
•

It may be stated that the rate of increase of the fluid mass 
contained within the region must be equal to the difference 
between the rate at which the fluid mass enters the region 
and the rate at which the fluid mass leaves the region. 
However if the flow is steady the rate of increase of fluid 
mass within the region equals zero.
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Continuity Equation in Cartesian Coordinates 

δρ
δ

δ ρ
δ

δ ρ
δ

δ ρ
δt

u

x

v

y

w

z
+ + + =

( ) ( ) ( )
0

Where u, v, w are the velocity components in x, y, and z 
directions ρ  is the mass density of the fluid.

In vector notation the continuity equation can be 
expressed as

D

Dt
v

ρ
ρ+ ∇ = 0

D

Dt t
u

x
v

y
w

z

ρ δρ
δ

δρ
δ

δρ
δ

δρ
δ

= + + +

Ψ . v = div v = 
δ
δ

δ
δ

δ
δ

u

x

u

y

w

z
+ +

Continuity Equation in Cylindrical 
Polar Coordinates 

δρ
ρ

δ ρ
δ

δ ρ
δθ

δ ρ
δ

θ

t

v r

r r

v

r

v

t
r z+ + + =

( ) ( ) ( )
0

Vr, Vq, Vz are the components of velocity V in the directions 
of r, q, z at a point. ρ  is the mass density of fluid.

Continuity Equation in Spherical Polar  
Coordinates 

δρ
δ

ρ
ρ

ρ
θ
δ
δθ

ρ θ

θ
δ
δ

ρ

θ
t r

v r
r

v

r w
v

r
r

w

+ +

+ =

1 1

1
0

2
2( )

sin
( sin )

sin
( )

Rotational Parameters
Angular Velocity
It is the rotational component about any axis. It may be 
defined as the average angular velocity of any two infini-
tesimal linear elements in the particle that are perpendicular 
to each other and to the axis of rotation.

For example, Z-axis: 

ω
δ
δ

δ
δz

v

x

u

y
= −











1

2

  ω ω ω ω
��
= + +x y zi j kˆ ˆ ˆ

 ω ω ω ω= + +x y z
2 2 2

  ω = ∇×
1

2
v

Vorticity ( ( ) )Ω or ξ  
It is a vector quantity and gives us the actual measure of 
rotation of a fluid.

Vorticity vector is equal to twice the rate of rotation of 
angular velocity vector 

�
ω

⋅Ω
��

 = 2ω
��

Circulation (G) 
It is defined as the counter clockwise line integral of veloc-
ity vector along a closed loop.

dx
x
v

V
δ
δ+

dy
y
uu

δ
δ+

u

v
v

rd

G = ⋅ ∫ v dr� .  (or) dr v⋅∫ cosθ

In two-dimensional steady flow,

                v ui vj= +ˆ ˆ

               dr = dxi dyjˆ ˆ+

                G = + +∫ ˆ ˆ ˆ ˆ( ).( )ui vj dxi dyj

                    = udx vdy+∫

   G = udx +∫ v
v

x
dx dy u

u

y
dy dx vdy+






 − +









 − ∫∫∫

δ
δ

δ
δ

                              G = 
δ
δ

δ
δ

v

x

u

y
dxdy−











                              G = Vorticity × Area

\               
δ
δ

δ
δ

v

x

u

y
− =W

                         dxdy = A

Velocity Potential Function 
The velocity potential (f) is defined as a scalar function of 
space and time such that its negative derivative with respect 
to any direction gives the fluid velocity in that direction.

 f = f(x, y, z, t)

U = –
δφ
δ x

; v = –
δφ
δ y

; w = –
δφ
δ z

For an incompressible fluid, if flow is steady then equation 
of continuity is given by,

δ
δ

δ
δ

δ
δ

u

x

v

y

w

z
+ + = 0

Substituting values of u, v, w in terms of f, we get

δ φ
δ

δ φ
δ

δ φ
δ

2

2

2

2

2

2x y z
+ +  = 0

\ ∇2 f = 0, this equation is known as Laplace equation.
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Physical Significance of Velocity Potential  If ∇2f = 0, 
f exists. If Δ2f ≠ 0, f does not exists but flow exists.

We know the rotational component along Z-axis is 

ω
δ
δ

δ
δz

v

x

u

y
= −











1

2
.

Substituting values for u, v in terms of f, we get

ω
δ φ
δ δ

δ φ
δ δz

x y x y
= −











1

2

2 2

= 0

\	             ωz = 0

If ωz = 0 and when f exists, it represents irrotational fluid 
flow.

If ωz ≠ 0 it represents rotational flow and also it denotes 
f does not exists.

Equation of Equipotential Function Line 

dy

dx

u

v
=
−

Stream Function
The stream function Y (Greek ‘Psi’) is defined as a scalar 
function of space and time, such that its partial derivative 
with respect to any direction gives the velocity component 
at right angles (in the centre clockwise direction) to this 
direction.

Mathematically stream function may be defined as Y = 
f(x, y, t) for unsteady flow.

Y = f(x, y) for steady flow.

 U = −
δψ
δ y

  V = 
δψ
δ x

In cylindrical polar coordinates

 vr = –
δψ
δθr

Vq = 

δψ
δ r

Cauchy–Rieman Equation 
δφ
δ

δψ
δx y

= − =
δφ
δ

δψ
δy x

In polar coordinates,

  
δφ
δ

δψ
δθr r

=

δφ
δθ

δψ
δr r

= −

Streamline Equation and Flow Net 

Streamline equation is given by 
dy

dx

v

u
= .

Discharge per unit width between two streamlines is given by

Q = Y2 – Y1

Streamlines and equipotential lines intersect each other 
orthogonally at all points of intersection.

A grid obtained by drawing a series of streamlines and 
equipotential lines is known as flow net. A flow net may be 
drawn for a two-dimensional irrotational flow and it pro-
vides a simple, yet valuable indication of flow pattern.

c1=ψ

c3=ψ

c2=ψ

c4=ψ

c1=φ

c2=φ

c3=φ

c4=φ

Y

X

Elements of a flow net

[Potential function exists for irrotational flow only. The stream 
function applies to both rotational and irrotational flow]

Energy Equations 
Forces Acting on Fluid in Motion  
The various forces that may influence the motion of a fluid 
are due to gravity, pressure, viscosity, turbulence, surface 
tension and compressibility.

If a certain mass of fluid in the motion is influenced by 
all the above mentioned forces, then according to Newton’s 
second law of motion the following equation of motion may 
be written as

	    Ma = Fg + Fp + Fv + Ft + Fs + Fe� (1)

In most of the problems of the fluids in motion the surface 
tension forces and compressibility forces are not significant. 
Hence these forces may be neglected.

So, Eq. (1) can be written as,

	            Ma = Fg + Fp + Fv + Ft� (2)

Eq. (2) is known as Reynolds’s equations of motion which is 
useful in analysis of turbulent flows.

Further for laminar or viscous flows the turbulent forces 
also become less significant and hence may be neglected.

		  Ma = Fg + Fp + Fv� (3)

Part III_Unit 8_Chapter 03.indd   626 5/31/2017   3:13:56 PM



Chapter 3  ■  Fluid Kinematics  and Dynamics  |  3.627

Eq. (3) is known as Navier–Stokes equation which is useful 
in analysis of viscous flow.

Further if the viscous forces are also of little signifi-
cance, we may have

		  Ma = Fg + Fp� (4)

Eq. (4) is known as Euler’s equation of motion.

Euler’s Equation of Motion
Consider a point P(x, y, z) in a flowing mass of fluid at which 
let u, v and w be the velocity components in the directions x, 
y, and z respectively, r be the mass density of the fluid and p 
be the pressure intensity. Further, let x, y and z be the com-
ponents of the body force per unit mass at same point, then:

Euler’s equation of motion can be written as,

 X - 
1

ρ
δρ
δ

δ
δ

δ
δ

δ
δ

δ
δx

u

t
u

u

x
v

u

y
w

u

z
= + + +

Y - 
1

ρ
ρ

δ
δ
δ

δ
δ

δ
δ

δ
δ

d

y

v

t
u

u

x
v

v

y
w

u

z
= + + +

 Z - 
1

ρ
δρ
δ

δ
δ

δ
δ

δ
δ

δ
δz

w

t
u

w

x
v

w

y
w

w

z
= + + +

Integration of Euler’s Equations 
Euler’s equations of motion can be integrated to yield 
energy equation.

The assumptions used are:

	 1.	 Flow is streamlined

	 2.	 Equation is applied where 
� �
∇× v  = 0

	 3.	 Inviscid flow, Fviscous = 0

	          
dp

ds v
v

s

v

tρ
δ
δ

δ
δ

+ +





+ gdz = 0� (1)

ds

ds

pdA
dt

Flow element

Enlarged view

Flow
direction

θ

(p + d)dA

Eq. (1) represents Euler’s momentum equation for stream-
lined flow.

In case of steady flow, 
δ
δ

v

t
= 0

We get, 
dp

v g dz
ρ
+ + ∫∫∫∫ = 0� (2)

Eq. (2) represents Euler’s momentum equation for steady 
streamlined flow.

		
dp v

gz c
ρ
+ + =∫

2

2
� (3)

Eq. (3) is known as Bernoulli’s equation, which is applica-
ble for steady irrotational flow of compressible fluids.

If the flowing fluid is incompressible, since the mass 
density is independent of pressure, then Eq. (3) becomes,

ρ
ρ
+ +

v
gz

2

2
= c

Bernoulli’s Theorem—Various Forms 
First form:

p + 
1

2
 rv2 + rgz = Constant.

This is energy per unit volume basis.

Second form:

p

g

v

g
z

ρ
+ +

2

2
= Constant. This is in the form of energy per 

unit weight basis.

p

gρ
= Pressure head

v

g

2

2
= Velocity head

 Z = Datum head

It is representation of energy in terms of height of liquids 
column.

P

g
z

ρ
+









 is known as piezometric head.

Bernoulli’s Equation 
Bernoulli’s equation is stated as follows:

P v
gz C

ρ
+ + =

2

2

Where C is a constant. This equation is applicable only for 
a steady incompressible flow along a streamline and only 
in the inviscid regions (regions where viscous or frictional 
effects are negligibly small compared to inertial, gravita-
tional and pressure effects) of flow. For point 1 and 2 along 
the same streamline, Bernoulli’s equation can be written as:

p v
gz

p v
gz1 1

2

1
2 2

2

2
2 2ρ ρ

+ + = + +

Bernoulli’s equation is not applicable in a flow section 
that involves a pump, turbine, from or any other machine 
or impeller since these devices destroy streamlines and 
transfer or extract energy to or from the fluid particles.  
This equation should also not be used for flow sections 
where significant temperature changes occur through heat-
ing or cooling sections.
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For a fluid flow, in general, the value of the constant C 
is different for different streamlines. However, if the flow 
is irrotational, constant C has the same value for all the 
streamlines in the flow. In other words, for irrotational 
flows, Bernoulli’s equation becomes applicable across 
streamlines, i.e., between any two points in the flow region.

NOTE

Bernoulli’s equation and conservation of mechanical 
energy

The mechanical energy of a flowing fluid expressed on a 
unit-mass basis is,

e
P v

gzmech = + +
ρ

2

2

Where, 
P

ρ
is the flow or pressure energy, 

v2

2
is the kinetic 

energy and gz is the potential energy of the fluid, all per unit 
mass.

From Bernoulli’s equation the following equation can be 
written

Emech Constant=

Where, Emech is the mechanical energy (sum of the kinetic, 
potential and flow energies) of a fluid particle is constant 
along a streamline in a steady, incompressible and inviscid 
flow. Hence, Bernoulli’s equation can be taken as a ‘conser-
vation of mechanical energy principle’.

It is to be noted that the mechanical energy remains con-
stant in an irrotational flow field.

Liquid discharge from a large tank.
A large tank open to the atmosphere is filled with a liquid 
to a height of h metres from the nozzle as shown in the fol-
lowing figure.

h

•

•

(1)

(2)

∇

The flow is assumed to be incompressible and irrotational. 
The draining of the water is slow enough that the flow can 
be assumed to be steady (quasi-steady). Any losses in the 
nozzle are neglected. Point 1 is taken to be at the free sur-
face of water and so P1 = Patm and point 2 is taken to be at 
the centre of the outlet area of the nozzle and so P2 = Patm.

If A1 and A2 are the cross-sectional areas of the tank and 
nozzle respectively, then from the continuity equation, we have

		  A1V1 = A2V2� (1)

Since the tank is very large compared to the nozzle, we have 
A1>>>>A2. Hence from Eq. (1), we have 

V1 ≈ 0

From the Bernoulli’s equation, we have

P V
gz

P V
gz1 1

2

1
2 2

2

2
2 2ρ ρ

+ + = + +

Or		            V2
2 = 2g(z1 – z2)

Or		        V gh2 2= � (2)

Eq. (2) is called the Torricelli equation.

Example 5
Section A of the pipeline, shown in the figure below, has 
a diameter of 20 cm and a gauge pressure (PA) of 40 kPa. 
The section is at an elevation of 120 m. The section B of 
the pipeline has a diameter of 40 cm and is at an elevation 
of 125 m. The volumetric flow rate of the liquid (density = 
1100 kg/m3) through the pipeline is 70 lit/s. If the frictional 
losses in the pipeline can be neglected and if PB denotes the 
pressure of section B, then,
(A)	 flow is from B to A and PA –PB = 51.395 kPa
(B)	 flow is from A to B and PA – PB = 51.395 kPa
(C)	 flow is from A to B and PA – PB = 28.605 kPa
(D)	 flow is from B to A and PA – PB = 28.605 kPa

section A

section B

pipeline

Solution
At section A, velocity of flow,

vA = 
Q

AA

     = 

70

1000

4

20

100

2π
×







 = 2.228 m/s

At section B, velocity of flow,

vB = 
Q

AB

=

×







70

1000

4

40

100

2π
 = 0.557 m/s

Assuming the flow to be steady, Bernoulli’s equation applica-
tion between the two sections gives,

	
P v

gz
P v

gzA A
A

B B
Bρ ρ

+ + = + +
2 2

2 2
� (1)

Here PA = 40 × 103 Pa (gauge pressure)

zA = 120 m
zB = 125 m
 r = 1100 kg/m3
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Hence Eq. (1) gives,

40 10

1100

2 228

2
9 81 120

3 2×
+ + ×

( . )
.

= 
PB

1100

0 557

2
9 81 125

2

+ + ×
( . )

.

Or PB = –11.395 kPa (gauge pressure)
Since, PA > PB, flow is from A to B and

PA – PB = 40 – (–11.395)
             = 51.395 kPa.

Hence, the correct answer is option (B).

Example 6
A vertical jet of liquid (density = 850 kg/m3) is issuing 
upward from nozzle of exit diameter 70 mm at a velocity of 
15 m/s. A flat plate weighing 250 N is supported only by the 
jets impact. If all losses are neglected then the equilibrium 
height h of the plate above the nozzle exit is

h

plate

nozzle

jet
liquid

(A)	 11.468 m	 (B)	 6.434 m
(C)	 9.682 m	 (D)	 10.145 m

Solution
Mass flow rate, m

�
 = rAv

= 850 × 
π
4

70

1000
15

2

×





 ×

= 49.068 kg/s

h

•

(1)

(2)

Applying Bernoulli’s equation between points (1) and (2), 
we get

P v
gz

P v
gz1 1

2

1
2 2

2

2
2 2ρ ρ

+ + = + +

Here P1 = P2 = Patm and z2 – z1 = h

\	           v2 = v gh1
2 2−

= ( ) .15 2 9 812 − × ×h

Control

Applying the linear momentum balance equation for the 
control volume shown above, we get

–250 = m v
�

( )0 2−
(momentum correction factor is assumed to be unity)

= –49.068 × ( ) .15 2 9 812 − × ×h

                 h = 10.145 m.

Hence, the correct answer is option (D).

Types of Head of a Fluid in Motion 
The Bernoulli’s equation can be rewritten as:

p

g

v

g
z

ρ
+ + =

2

2
Constant

Each term on the LHS of the above equation has the dimen-
sion of length and represents some kind of head of a flowing 
fluid.

	 1.	 Pressure head: It is the term 
p

gρ
and it represents 

the height of a fluid column that is needed to produce 
the pressure p.

	 2.	 Velocity head: It is the term 
v

g

2

2
and it represents the 

elevation needed for the fluid to reach the velocity v 
from rest during a frictionless free fall.

	 3.	 Elevation head: It is term z and it represents the 
potential energy of the fluid.

The sum of the pressure head and the elevation head, i.e., 
p

g
z

ρ
+ , is known as the piezometric head.

Static, Dynamic, Hydrostatic, Total 
and Stagnation Pressures 
The Bernoulli’s equation can be rewritten as:

p + 
ρ

ρ
v

gz
2

2
+  = Constant

Each term on the LHS of the above equation has the units of 
pressure and represents some kind of pressure.

	 1.	 Static pressure: It is the term p and it represents 
the actual thermodynamic pressure of the fluid as it 
flows.

	 2.	 Dynamic pressure: It is the term 
ρv2

2
and it 

represents the pressure rise when the fluid is brought 
to a stop isentropically.
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	 3.	 Hydrostatic pressure: It is the term rgz. It is actually 
not a pressure although it does represent the pressure 
change possible due the potential energy variation of 
the fluid as a result of elevation changes.

Total pressure = Static + Dynamic + Hydrostatic 
pressures

Stagnation pressure = Static + Dynamic pressure

Stagnation pressure (pstag) represents the pressure at a point 
where the fluid is brought to a complete stop isentropically.

pstag = p + 
ρv2

2

static pressure, P

dynamic pressure
piezometer

pitot tube

stagnation pressure pstag

2
v2

•

Stagnation point

ρ

Example 7
A two-dimensional irrotational flow has the velocity filed: 

�
v ayi bxj= +ˆ ˆ.

The angle made by the velocity vector at the point (1, 1) 
with the horizontal is
(A)	 0°	 (B)	 45°
(C)	 30°	 (D)	 60°

Solution
From the velocity field representation, we have u = ay, v = bx

Since the flow is irrotational, 
∂
∂

=
∂
∂

v

x

u

y
That is, b = a� (1)
Let the angle made by a velocity vector at point (x, y) is 

the flow field be q.

\ tanq = 
v

u
(from slope of streamline)

	 	 	 = 
bx

ay
� (2)

Substituting Eq. (1) in Eq. (2), we get

tanq = 
x

y

At point (1, 1), tanq = 
1

1
1=

\ q = 45°.

Hence, the correct answer is option (B).

Force Exerted by Flowing Fluid 
on a Pipe Bend 
As per impulse-momentum theorem, the impulse of a 
force on a body is equal to the change in linear momentum 
of the body in the duration of time for which the force acts.

That is, Fdt dp d mv= = ( ) .
This can also be applied to forces acting on fluids. 

Consequently, F
dp

dt

d

dt
mv= = ( ) = Rate of change of linear 

momentum. 
For fluids, rate of change of linear momentum, 

dp

dt

d

dt
mv m dv= = •

( ) ( )

= Mass per second × (Change of velocity)
= (Density × Discharge) × Change of velocity

= ρQ dv( ); F Qdv= ρ
This equation can be used to determine the net force exerted 
by a flowing fluid on a pipe bend.

θ

O

Fy

Y

Fx

(1)

(2) V2, A2

V2 cos

V2 sin

θ

θ

XV1, A1

p1 A1

p2 A2

Consider a reducing elbow as shown in the figure. At the inlet 
section (1), pressure intensity = P1, velocity of flow = V1, along 
x-direction, area of cross-section = A1, At the exit section (2), 
pressure intensity = Pp2, velocity of flow = V2 at an angle q 
with X-axis and area of cross-section A2. Let F be the force 
exerted by the flowing fluid on the bend, which can be resolved 
as Fx and Fy  along the x and y directions respectively. As per 
Newton’s third law of motion, the bend exerts an equal and 
opposite force −F on the fluid, which can be resolved as −Fx

and −Fy in the x and y directions. The minus (-) sign shows 
that the direction of force exerted by the bend on fluid is oppo-
site to corresponding force exerted by fluid on bend.

Along the x and y-directions, the forces on the fluid due to 
pressure of fluid and force exerted by bend, can be equated 
to the rate of change of momentum in that direction.

θp1 A1

p2 A2

Fy (due to bend)

Fx (due to bend)O

X

Y
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Forces on Fluid due to Pressures 
and Due to Bend 
Net force on fluid is x direction is (let us call this Px)

Px = p1A1 - p2A2 cos q - Fx

Net force on fluid in y-direction (let us call this Py)

Py = - p2A2 sin q - Fy

V2m•

V1m•

X

Y

θ

O

Linear Momentum of Fluid at Inlet 
and Outlet 
Time rate of change of linear momentum of fluid along 
X-axis,

   = mV mV
• •

−2 1cosθ

   = m V V
•

−( cos )2 1θ

   = rQ (V2 cosq - V1) [Q = discharge in m3/s

r = density in kg/m3]

Time rate of change of linear momentum of fluid along 
Y-axis,

= mV
• −2 0sinθ

= mV
•

2 sinθ
= rQ V2 sin q

Equate the net force on fluid in the x-direction to the time 
rate of change of linear momentum in the x-direction 

\  Px = P1A1 - P2 A2 cos q - Fx= rQ (V2 cosq - V1)

⇒  Fx = P1 A1 - P2 A2 cos q - rQ (V2 cos q - V1)

⇒  Fx = P1A1 - P2A2cosq - rQ (V1 - V2 cos q)

Therefore, Fx = P1A1 - P2A2cosq - rQ (V1 - V2 cos q)  is the 

x-component of the force exerted by fluid on bend.
Similarly, equating the net force on fluid is the y-direction 

to the time rate of change of linear momentum is the 
y-direction,

    Py = - P2A2 sin q - Fy = rQ V2 sin q
\                  Fy = - P2 A2 sin q - rQ V2 sin q

         = -(P2A2 + rQV2) sinq

\ Fy = -(P2A2 + rQV2) sinq is the y-component of the force 

exerted by fluid on bend.

The net force (F) exerted by fluid on bend is given by, 

F F Fx y= +2 2 .

The angle (a) mode by the net force exerted by fluid on 
bend is given by,

tanα =
F

F
y

x

Direction for solved examples 8 and 9:
The volumetric flow rate of a liquid of density 900 kg/m3, 
flowing through a bent pipe, as shown in the figure, is 400 
litres per second at the inlet of the pipe. The pipe which is 
bend by an angle q has a constant diameter of 500 mm. The 
liquid is flowing in the pipe with a constant pressure of 500 
kN/m2. The horizontal component of the resultant force on 
the bend has a magnitude of 148325.358 N.

Example 8
The value of the angle q is approximately
(A)	 60°	 (B)	 120°
(C)	 30°	 (D)	 45°

Solution
Let the subscripts 1 and 2 denote the inlet and outlet of the 
pipe respectively.

Diameter of the pipe, d = 0.5 m
Density of the fluid, r = 900 kg/m3

Cross-sectional areas of the pipe,

A1= A2= 
π πd2 2

4

0 5

4
=

× ( . )
= 0.1963 m3

Given, pressures p1 = p2

= 500 × 103 N/m2

Let
�
R be the reaction force exerted by the bend on the con-

trol volume.
Now

�
R  would be equal and opposite in direction to the 

resultant force exerted in the bend. Let RH and Rr be the 
magnitude of the respective horizontal and vertical compo-
nents of 

�
R.  

Given, RH = 148325.358 N
Now, mass flow rate,

m
�

 = r Q1 = 900 × 0.4 = 360 kg/s

The flow is assumed to be steady flow. Also the weight of 
the pipe and the water in it is neglected. From the continuity 
equation, we can write

A1v1 = A2v2

Where v1 and v2 are velocities assuming uniform flow at 
inlet the (incompressible) liquid average and outlet. Given, 
volumetric flow rate

Q1 = A1V1 = 0.4 m3/s

\                            V1 = V2 = 
0 4

0 1963

.

.
 = 2.0377 m/s
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The change in momentum in the direction of flow can be 
equated to 

P1A1 + P2A2 cos(180° – q) –RH

\ Therefore it becomes
P1A1 + P2A2  cos(180° – q) – RH

= (–v2cos (180° – q) –v1) m
�

\ cos (180°– q) = (148325.358 – 360 × 2.0377 – 500 × 103 
× 0.1763)

∴ °− = (
− × − × ×

×

cos( ) . )

. .

(

180 148325 358

360 2 0377 500 10 0 1963

500 10

3

θ

33 0 1963 360 2 0377× + ×. . )

i.e., cos (180° – q) = 0.5
or		       cos 180° – q = 60°
		                         q = 120°.

Hence, the correct answer is option (B).

Example 9
The magnitude of the resultant force on the bend is 
(A)	 148325.358 N	 (B)	 85633. 17 N
(C)	 0 N	 (D)	 171270.11 N

θ

Solution
Now cos(180° – q) = 0.5

       sin(180° – q) = 1 1802− °−cos ( )θ
                                 = 0.8660

The linear momentum equation in the y-direction

		  F my =∑
�

(V2,y – V1, y)� (2)

Here,		      v1, y = 0
		      V2, y = V2sin(180° – q)

                 Fy =∑  –P2A2sin(180° – q) + Rv

\ Eq. (2) becomes

Rv – P2A2 sin(180°– q) 

= m
�

v2sin(180° – q)

or,		  Rv = 360 × 2.0377 × 0.8660 

		  + 500 × 103 × 0.1963 × 0.8660
	 	      = 85633.17 N

\ Magnitude of the resultant force,
�
R R RH V= +2 2

      = 148325 358 85633 172 2. .+
      = 171270.11 N.

Hence, the correct answer is option (D).

Example 10
A 3.57 m diameter jet of liquid (density = 1100 kg/m3/ from 
a nozzle steadily strikes a flat plate, inclined at an angle of 
30° to the horizontal, as shown in the following figure.

plate

30°

liquid jet

If a horizontal force of 275.27 kN is applied on the plate to hold it 
stationary than the velocity of the liquid jet is
(A)	 9.52 m/s	 (B)	 3.37 m/s
(C)	 90.63 m/s	 (D)	 4.76 m/s

Solution
Let F be the force applied normally on the plate to hold it 
stationary. Let Fx be the horizontal component of the force F.

Given Fx = 275.27 × 103 N
Linear momentum equation in the 

plate

θ

Control 
volume

v

F

Fx
Y

X

direction normal to the plate yields:

 –F = m
�

 (0 – vcos(90 – q))

or 		  F = m
�

vsinq
	 	     = rAv2sinq� (1)

Now here,

		  Fx = Fcos(90 – q) = Fsinq� (2)

Comparing Eqs. (1) and (2), we get Fx = rAv2sin2q

So 275.27 × 103 = 1100 × ⋅

π
4

 × (3.75)2 × V 2 × (sin30°)2
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\			   V = 9.52 m/s.

Hence, the correct answer is option (A).

Moment of Momentum Principle 
The resulting torque acting on a rotating fluid is equal to the 
rate of change of moment of momentum.

Angular Momentum Equation 
The general form of the angular momentum (or moment 
of momentum) equation that applies to a fluid, moving or 
deforming control volume is

          
� � � � � � �
m

t
r v dv r v v n dA

cv cs

r=
∂
∂

× + × ⋅∑ ∫ ∫( ) ( ) ( )ρ ρ � (1)

Here, 
� � �
m r F∑ ∑

−
= ×( ) is the vector sum of the moment of 

all the forces acting on the control volume.

The term 
∂
∂

×∫
t cv

r v dv( )
� ρ represents the time rate of 

change of the angular momentum of the contents of the 

control volume and the term ( ) ( )
� � � �
r v v n dA

cs

× ⋅∫ ρ represents 

the net flow rate of angular momentum out of the control 
surface by mass flow. For a fixed and non-deforming control 
volume, the angular momentum equation is,

� � � � � � �
m

t
r v dv r v v n dAr

cscv

=
∂
∂

× + × ⋅∫∫∑ ( ) ( ) ( )ρ ρ

An approximate form the angular momentum equation 
written in terms of average properties becomes,

� � � � � � �� �
m

t
r v dv r m v r m v

cv

=
∂
∂

× + ×








 − ×









∑∫∑ ( )ρ avg

out
avg

iin
∑

� (2)

For a steady flow, Eq. (2) reduces to

	
� � � � ��
m r mv r m v= × − ×









∑∑ ∑( )avg

out
avg

in
� (3)

Note that the term ⋅∑ �m also represents the net torque act-
ing on the control volume.

If the significant forces and momentum flows are in the 
same plane, then they would give rise to moments in the 
same plane. For such cases, Eq. (3) can be expressed in a 
scalar form as:

m r mv r mv= −∑∑ ∑
� �

out in

Where r represents the average normal distance between the 
point about which moments are taken and the line of action 

of the force or velocity provided that the same convention 
is followed for the moments. Moments in the counter clock-
wise position are positive and moments in the clockwise 
direction are negative.

Example 11
The sprinkler, shown in the following figure, has a friction-
less shaft with equal flow in both the nozzles. If the water 
jets from the nozzles have a velocity of 10 m/s relative to the 
nozzles then the sprinkler rotates at an r p m of
(A)	 32.19	 (B)	 318.31
(C)	 139.48	 (D)	 73.46

Solution

0.5 m 0.8 m

Given, rA = 0.5 m

rB = 0.8 m

Relative velocities, vr,A = 10 m/s and

Vr, B = 10 m/s

Let w be the angular velocity of the sprinkler.
Absolute fluid velocity of A,

va,A = vr, A + w rA = 10 + 0.5w
Absolute fluid velocity of B,

va, B = vr, B – w rB = 10 – 0.8w.

The jets of water coming out from the nozzle will exert a 
force in the opposite direction. So torque at B will be in 
the anticlockwise direction and torque at A will be in the 
clockwise direction. Since torque at B is greater than the 
torque at A, hence the sprinkler, if free, will rotate in 
the anticlockwise direction.

NOTE

Since, there is no friction and no external torque is applied 
on the sprinkler, m =∑ 0.

Since, the moment of momentum of the water entering 
the sprinkler is zero,

r m v
in

�
∑ = 0

\ Similarly at exit it becomes,

   r m v
�

out
∑ = 0

or	 – m r vA A a A

�
, + m r vB B a B

�

. = 0

given,			       m mA B

� �
=
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\ –0.5 (10 +0.5 w) + 0.8 (10 –0.8w) = 0
Or w = 3.3708 rad/s.
If N is the speed of rotation of the sprinkler in rpm, then

2

60
10

πN
=  or N = 

60 3 3708

2

×
×
.

π
	 	     = 32.19 rpm.

Hence, the correct answer is option (A).

Flow Through Orifices 
A small opening of any cross-section, made on the bottom 
or sidewall of a tank through which a fluid can flow, is called 
an orifice.

Classification of Orifices 
The various basis for classification of orifices are:

	 1.	 Based on size of orifice:

	 (a)	 Small orifice: If the head of liquid from the 
centre of orifice is more than five times the depth 
of orifice.

	 (b)	 Large orifice: If the head of liquid from the 
centre of orifice is less than five times the depth 
of orifice.

	 2.	 Based on shape of cross-sectional area:

	 (a)	 Circular orifice

	 (b)	 Triangle orifice

	 (c)	 Square orifice

	 (d)	 Rectangular orifice

	 3.	 Based on shape of upstream edge of orifice:

	 (a)	 Sharp edged orifice

	 (b)	 Bell-mouthed orifice

	 4.	 Based on nature of discharge:

	 (a)	 Free discharging orifices

	 (b)	 Drowned or submerged orifices, which are 
further classified as fully submerged orifices and 
partially submerged orifices.

When a jet of fluid flows out of a circular orifice, the area 
of cross-section of the jet keeps on decreasing and becomes 
a minimum at the vena contracta and beyond that the 
jet diverges. The location of minimum cross-sectional area 
(i.e., vena contracta) is approximately at a distance of half 
the diameter of the orifice from the tank. If the flow through 
the orifice is steady at a constant head H and the cross- 
sectional area of the tank is very large when compared to 
the cross-sectional area of the jet, it can be shown using 
Bernoulli’s theorem that the theortical velocity of flow at the 

vena contracta V gHT = 2 ,  where g = acceleration due to 

gravity. The actual velocity of flow (V) at the vena contracta 
is less than this theoretical value, i.e., V < VT.

The ratio 
V

V
C

T
V= = Coefficient of velocity. 

Hence coefficient of velocity (CV) is defined as the ratio 
of the actual velocity of flow at the vena contracta to the 
theoretical velocity of flow at the same location.

\	 	 C
V

V

V

gH
V

T

= =
2

The value of CV varies from 0.95 to 0.99 for various orifices 
and this value depends on:

	 1.	 Shape of orifice 

	 2.	 Size of orifice and

	 3.	 On the head under which the flow takes place.

\			   CV < 1
Coefficient of contraction (CC) is defined as the ratio of 
area of cross-section of the jet at the vena contracta (ac) to 
the cross-sectional area of orifice (a).

\	 	              C
a

a
C

c= <1

The value of CC varies from 0.61 to 0.69 for various orifices 
and depends upon the same factors on which CV depends.

Coefficient of discharges (Cd) is defined as the ratio of 
actual discharge from an orifice to the theoretically possible 
discharge through the orifice.

\		  C
Q

Q
d = actual

theoretical

=
Actual cross-sectional area  Actual velocity

Theoretical cr

×
ooss-sectional area Theoretical velocity×

    = a V

a V
C Cc

T
C V

×
×

= ×

\	 C C Cd C V= ×

The value of Cd varies from 0.61 to 0.65 for different ori-
fices and depends on shape and size of orifice and the head 
under which the flow occurs.

Time for emptying a tank of uniform cross-sectional 
area through an orifice at its bottom:

Tank of cross−
sectional area A

Orifice of area a

H

At time t = 0, the height of liquid above orifice is H.
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Using Bernoulli’s equations, it can be shown that the the-
oretical time required for completely emptying the tank is,

T
A

a

H

g
= 







2
.

It may be noted that 
2H

g
is the time needed for free fall 

from rest from a height of H.
If Cd is the coefficient of discharge through the nozzle, 

T
A

a C

H

gd
ACTUAL = 








1 2
.  is the actual time taken for 

emptying the tank.
Also, the time needed for emptying the same tank from 

an initial height of liquid H1 above orifice to a final height 
of liquid H2 above orifice is given by,

T
A

a C g
H H

d

= 





 −

1 2
1 2. ( )

Time for emptying a hemispherical tank through an 
orifice at the bottom:

Hemispherical tank of radius R

Orifice if cross-
sectional area a

R
H = initial height of 
liquid above orifice

If Cd is the coefficient of discharge through the orifice, it 
can be shown that the actual time needed for emptying the 
hemispherical tank is,

T
C a g

RH H
d

actual
/ 5/= −





π
2

4

3

2

5
3 2 2

Where
R = Radius of hemispherical tank
H = Initial height of liquid above orifice
a = Cross-sectional area of orifice
g = Acceleration due to gravity 

If initial height of liquid above orifice is H1 and final height 
of liquid above orifice is H2, then time needed for emptying 
the hemispherical tank is

T
C A g

R H H H H
d

= −( ) − −( )





2

2

2

3

1

51
3 2

2
3 2

1
5 2

2
5 2π / / / /

Time for emptying a circular horizontal tank through 
an orifice at its bottom:

H

Orifice of cross-
sectional area a 

R

L

R

Cylindrical tank of
 radius R and length 
L

H = initial length 
of liquid  
above orifice 

A horizontal cylindrical tank of radius R and length L is 
fitted with an orifice of cross-sectional area a at its bottom. 
The height of liquid above the nozzle is H. The coefficient 
of discharge through the nozzle is Cd.

Time for emptying the horizontal cylindrical tank is,

T
L

C a g
R R H

d

= − − 
4

3 2
2 23 2 3 2( ) ( )/ /

If initial height of liquid above orifice is H1 and final height 
of liquid above orifice is H2, time required for decreasing 
the liquid level from H1 to H2 (i.e., emptying through ori-
fice) is,

T
L

C a g
R H R H

d

= − − − 
4

3 2
2 22

3 2
1

3 2( ) ( )/ /

Discharge through large rectangular orifice:
In a large rectangular orifice, there is a considerable varia-
tion of effective pressure head over the height of the orifice. 
Hence the velocity of liquid particles through the orifice is 
not constant.

b

d

H1
H2H

dh

h

Consider a large rectangular orifice of with b and height d, 
fitted to one vertical side of a large tank, discharging freely 
into atmosphere, under a constant H as shown in the figure.

Where
H1 = Height of liquid above top edge of orifice

H2 = Height of liquid above bottom edge of orifice

\Height of orifice, d = H2 - H1
b = Width of orifice
Cd = Coefficient of discharge of orifice
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Area of a strip of orifice of height dh at a depth h below the 
free surface of liquid in the tank is dA = bdh

V �= Theoretical velocity of flow through this strip 
= 2gh

\Discharge through the strip, dQ
= Cd × Area of strip × Velocity

= Cd (bdh) 2gh

= Cd b 2gh dh

\Total discharge through orifice,

Q dQ C b gh dhd

H

H

= = ∫∫ 2
1

2

⇒  Q C b g H Hd= − 
2

3
2 2

3 2
1
3 2/ /

is the actual discharging through the large orifice.

Velocity of approach is the velocity with which the liquid 
approaches the orifice. In the above expression for dis-
charge Q over the rectangular orifice, velocity of approach 

Va is taken as zero. If Va ≠ 0, then H H
V

g
a

1 1

2

2
eff = +









  

and H H
V

g
a

2 2

2

2
eff = +









 .  In the expression for Q, H1 and 

H2 will get replaced to H1 eff and H2 eff. 

NOTE

Practical Applications of Bernoulli’s Equation 
Venturimeter 
It consists of two conical parts, the convergent part and the 
divergent part, with a small portion of uniform cross-section 
(with the minimum area), called the throat, in between the 
parts. The venturimeter is always used so that the upstream 
part of the flow takes place through the convergent part 
while the downstream part of the flow takes place through 
the divergent part.

In the convergent part, the velocity increases in the flow 
direction while the pressure decreases, with the velocity being 
maximum and pressure being is minimum at the throat. In the 
divergent part, velocity decreases while pressure increases.

∆h

Z1

Z2

th
ro

at di
ve

rg
en

t
pa

rt

C
on

ve
rg

en
t

pa
rt

•

•

1

2

From the Bernoulli’s equation and the continuity equation, 
the velocity at the throat is obtained as follows:

V
A

A A
g h h2

1

1
2

2
2

1 22=
−

−( )* *

Where, h1
* and h2

*  are the piezometric heads at section 1 and 
2 respectively and are given by: 

h
p

g
z1

1
1

* = +
ρ

  h
p

g
z2

2
2

* = +
ρ

The theoretical discharge or flow rate is given by, 

Q A V
A A

A A
g h h= =

−
−2 2

1 2

1
2

2
2

1 22 ( )* *

Here, h h h m
1 2 1* * ,− = −









∆

ρ
ρ

 where rm is the density of the 

manometric fluid. 
The actual discharge or flow rate is given by,

Qactual = CD × Q

= ×
−

−








C

A A

A A
g hD

m1 2

1
2

2
2

2 1∆
ρ
ρ

Where, CD is the coefficient of discharge or coefficient of 
venturimeter. CD is always less than unity and lies between 
0.95 and 0.98. The coefficient of discharge is introduced to 
account for the fact that the measured values of Dh for a real 
fluid will always be greater than that assumed for an ideal 
fluid due to frictional losses.

Example 12
A venturimeter with a throat diameter of 50 mm is used to 
measure the velocity of water in a horizontal pipe of 200 
mm diameter. The pressure at the inlet of the venturimeter 
is 20 kPa and the vacuum pressure at the throat is 10 kPa. 
If frictional losses are neglected, then the flow velocity is
(A)	 28 cm/s	 (B)	 24.2 cm/s
(C)	 14 cm/s	 (D)	 48.5 cm/s

Solution
Given p1 = 20 × 103 Pa

p2 = –10 × 103 Pa

Since, the venturimeter would be horizontal, z1  = z2

Now h h
p

g
z

p

g
Z1 2 1

2
2

* *− = + − −
ρ ρ

=
× + ×

×
(20 10 10 10

1000

3 3

g
 = 

30

g

The flow velocity, V
A V

A
1

2 2

1

=

=
−

× −
A

A A
g h h2

1
2

2
2

1 22 ( )* *
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Here, A1

2

4

200

1000
= 








π

  A2

2

4

50

1000
= 








π

∴ =
−

×V1

2

4 4

50

200 50
60

= 48.5 cm/s.

Hence, the correct answer is option (D).

Orificemeter
An orificemeter is a thin circular plate with a sharp edged 
concentric circular hole in it.

Vena 
Contracta

∆h

• •1 2

The flow through the orificemeter from an upstream sec-
tion contracts until a section downstream, where the vena 
contracta is formed, and then expands to fill the whole pipe. 
One of the pressure tappings is usually provided at the 
upstream of the orifice plate where the flow is uniform and the 
other is provided at the vena contracta. At the vena contracta, 
streamlines converge to a minimum cross-section.

The velocity of flow at the vena contracta,

V C

g h

A

A

v

m

2
2
2

1
2

2 1

1

=
−











−

ρ ρ
ρ

∆

Where, rm is the density of the manometric liquid and CV is 
the coefficient of velocity.

CV is always less than unity. The coefficient of velocity is 
introduced to account for the fact that the pressure drop for 
a real fluid is always more due to friction that assumed for 
an inviscid flow.

The volumetric flow rate is given by Q = A2 V2

If the coefficient of contraction, Cc is defined as Cc = 
A

A
2

0

,  
where A0  is the area of the orifice, then

Q C A

g h

C
A

A

d

m

c

=
−











−
0

2 0
2

1
2

2 1

1

ρ
ρ

∆

Where, the coefficient of discharge,

Cd = Cc

The coefficient of discharge of an orificemeter lies between 
0.6 and 0.65.

Pitot Tube 
It works on the principle that if the velocity of flow at a 
point becomes zero, the increase in the pressure at the point 
is due to conversion of kinetic energy into pressure energy. 
A pilot tube provides one of the most accurate methods for 
measuring the fluid velocity.

P S

h0

hs

g2
V 2

• •

Liquid flow

Pipe

Pitot tubePiezometer

Point S is a stagnation point while point P is a point in the 
undisturbed flow both being at the same horizontal plane.

h
p

g
0

0=
ρ

; h
p

g
s

s=
ρ

Where, p0 is the pressure at point P, i.e., static pressure and 
ps is the stagnation pressure at point S.

               
p

g

V

g

p

g
s0

2

2ρ ρ
+ =

                h
V

g
hs0

2

2
+ =

V g h h g hs= − =2 20( ) ∆

Where, Dh is the dynamic pressure head which is equal to 
the velocity head. It is to be noted that the pitot tube meas-
ures only the stagnation pressure and so the static pressure 
must be measured separately by using a piezometer. A pitot 
static tube however measures both static and stagnation 
pressures.

Example 13
Water is flowing through a pipe that contracts from a diam-
eter of 0.15 m to d metres as shown in the following figure. 
The difference in manometer levels is 0.4 m. If the flow rate 
Q in the pipe is expressed in terms of the variable d as Q 
= kdn, then
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0.4 m

h

•
d m

•

1

2

(A)	 k = 0.0495 and n = 0
(B)	 k = 0.0495 and n = 2
(C)	 k = 7.848 and n = 0
(D)	 k = 6.164 and n = 2

Solution
From Bernoulli’s equation we have,

p

g

V

g
z

p

g

V

g
Z1 1

2

1
2 2

2

2
2 2ρ ρ

+ + = + +

Here Z1 = Z2

V2 = 0 (stagnation point)

		            ∴ + =
p

g

V

g

p

g
1 1

2
2

2ρ ρ
� (1)

But			           
p

g
h1

ρ
=

			           
p

g
h2 0 4

ρ
= + .

		            ∴ − =
p

g

p

g
2 1 0 4

ρ ρ
. � (2)

Substituting Eq. (2) in Eq (1), we have

V

g
1
2

2
0 4= .

  V1 0 4 2 9 81= × ×. .  = 2.801 m/s

   Q = A1 × V1

       = 
π
4

0 15 2 8012× ×( . ) .

       = 0.0495 m3/s
\ In the relationship,

		  Q = kdn

		   k = 0.0495 and n = 0.

Hence, the correct answer is option (A).

Free Liquid Jet 
A jet of liquid issuing from a nozzle in to the atmosphere is 
termed as a free liquid jet. The path traversed by a liquid jet 
under the action of gravity is called as its trajectory which 
would be a parabolic path.

Hy

u

θ

x

R

•

Here, u is the velocity of the liquid jet and q is the angle 
made by the jet with the horizontal. The equation of the jet 
is,

y = xtanq – gx2 sec2q /2u2.

	 1.	 Maximum height attained by the jet (H),

H
u

g
=

2 2

2

sin θ

	 2.	 Time of flight (T),

T
u

g
=

2 sinθ

		  Time taken to reach the highest point is = 
u

g

sinθ

	 3.	 Horizontal range of the jet (R),

R
u

g
=

2 2sin θ

		  Range is maximum when q = 45° and its value is 
u

g

2

.

Example 14
The flow rate of a liquid through a nozzle of diameter 50 
mm is 18.62 lit/s. The nozzle is situated at a distance of 
1.5 m from the ground and is inclined at an angle of 30° to 
the horizontal. The jet of liquid from the nozzle strikes the 
ground at a horizontal distance of

B

nozzle

A 30°

1.5 m

Liquid jet

x m

(A)	 1.04 m	 (B)	 1.5 m
(C)	 10 m	 (D)	 5 m

Solution
Area of the nozzle, 

A = 
π
4

50

1000

2
2×






 m

Flow rate, Q = 0.01862 m3/s

∴ = =u
Q

A
9 483. m/s.
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Let the horizontal distance at which the jet strikes the 
ground be x.

If the coordinates of point A is set to (0, 0). Then the 
coordinates of point B will be (x, -1.5).

The equation of the jet is, 

y x
gx

u
= −tan

sec
θ

θ2 2

22

That is, –1.5 = x × tan 30° – 
9 81 30

2 9 483

2 2

2

. sec

.

× ×
×
x °

0.07273 x2 – 0.5774x – 1.5 = 0
\			   x = 10 m.

Hence, the correct answer is option (C).

Vortex Flow 
It is defined as the fluid flow along a curved path or the flow 
of a mass of fluid rotating about an axis.

Plane Circular Vortex Flows 

These are flows with streamlines that are concentric circles. 
Considering a polar coordinate system, the velocity field of 
such a flow is defined as:

V Vrθ ≠ =0 0and

Where, Vq and Vr are the tangential and radial components 
of the velocity respectively. For such flows Vq is a function 
of r only and not q.

Vortex flows can be mainly classified into two types:

	 1.	 Forced vortex flow

	 2.	 Free vortex flow

It is to be noted that a plane circular free vortex flow or a 
plane circular forced vortex flow will be simply referred to 
as respectively a free vortex flow or a forced vortex flow. 
Hence, all the characteristics of a plane circular vortex flow 
will be attributed sometimes to a free or forced vortex flow.

Forced Vortex Flow 
It is defined as the vortex flow in which some external 
torque is employed to rotate the fluid mass. The tangential 
velocity of a fluid particle is given by, Vq = r w.

Where r is the distance of the fluid particle from the axis 
of rotation and w is the angular velocity of the fluid particle. 
In a forced vortex flow all fluid particles rotate with the 
same angular velocity like a solid body and hence this flow 
is termed as a solid body rotation. A forced vortex is also 
called as a flywheel vortex or rotational vortex.

A forced vortex flow is a rotational flow (vorticity = 2w). To 
maintain a forced vortex flow, mechanical energy has to be spent 
from outside and the total mechanical energy per unit mass is 
not constant. In such a flow, shear stress is zero at all points in 
the flow field since there is no relative motion. A forced vortex 
flow can be generated by rotating a vessel containing a fluid so 
that the angular velocity is the same at all points.

Examples: 

	 1.	 Rotation of a liquid in a centrifugal pump.

	 2.	 Rotation of a gas in a centrifugal compressor

	 3.	 Rotation of water through the turbines runner

Consider two points 1 and 2 in a fluid having a forced vortex 
flow as shown in the following figure.

r2

r1

2

Z2

Z1

•

•

1

Free surface

For the two points, the following equation is applicable.

	 p p V V g Z Z2 1 2
2

1
2

2 1
2

− = −( ) − −
ρ

ρ ( ) � (1)

Where, V1 = r1w and V2 = r2w
If the two points lie on the free surface of the liquid then 

p1 = p2 and Eq. (1) becomes,

Z Z
g

V V2 1 2
2

1
21

2
− = −( )

If additionally to the above case, point 1 lies on the axis of 
rotation, (i.e, v1 = r1 × w = 0 × w = 0), then 

	 Z Z
V

g
2 1

2
2

2
− =   or  Z

r

g
=
ω2

2
2

2
� (2)

Where, Z = Z2 – Z1
Since, Z varies with the square of r, Eq. (1) is an equation 

of a parabola consequently the free surface of the liquid is 
a paraboloid.

Cylindrical forced vortex: It can be generated by rotating 
a cylindrical vessel containing a fluid. At any horizontal 
plane, the tangential velocity, Vq = r w
Spiral forced vortex: The superimposition of a purely 
radial flow with a plane circular forced vortex results in a 
spiral forced vertex flow.

Example 15
A cylindrical tank of diameter 1 m and height 3 m, which is 
open at the top, is filled with a liquid up to a certain depth. 
When the cylinder is rotated at 100 rpm. The liquid level is 
raised to be even with the brim. The depth of the liquid in 
the tank is
(A)	 1.39 m	 (B)	 2.3 m
(C)	 3 m	 (D)	 0.5 m
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Solution

Z = Z

ω

3 m

h

2 − Z1

r2

1

2

Let h be the depth of the liquid in the tank.
The points 1 and 2 are chosen as shown in the figure.

Hence, Z Z
w r

g
2 1

2
2
2

2
− =

       ω
π π

= =
×2

60

2 100

60

N

                    r2 = 0.5 m

∴ = − =

×





 ×

×
Z Z Z2 1

2
22 100

60
0 5

2 9 81

π
( . )

.
                        = 1.3973 m

When the vessel is rotated, a paraboloid is formed.
Volume of air before rotation = Volume of air after 

rotation

	          ⇒  π πr r h2
2

2
23× − ×

		    = × × ×
1

2 2
2π r Z

or		  h = 3
2

3
1 3973

2
− = −

Z .

	 	    = 2.3 m.

Hence, the correct answer is option (B).

Pressure forces on the top and bottom of a cylinder: 
Consider a cylinder of radius R and height H which is com-
pletely filled with a liquid. The cylinder is rotated about its 
vertical axis at a speed of w rad/s.

Total pressure on the top of the cylinder,

F RT = ×
ρω

π
2

4

4

Total pressure force on the bottom of the cylinder (FB) 
= Weight of the liquid in the cylinder + Total pressure force 
on the top of the cylinder (FT)

That is,		      F g R H FB T= +ρ π 2

Free Vortex Flow 
A vortex flow in which no external torque is required to 
rotate the fluid mass is called a free vortex flow. The veloc-
ity field in a free vortex flow is described by,

V
c

r
θ =

Where c (called as the strength of the vortex) is a constant 
in the entire flow field. The above equation is derived from 
the fact that in a free vortex flow, as the external torque is 
zero, the time rate of change of angular momentum, i.e., the 
moment of momentum is zero.

A free vortex is also called as a potential vortex or irro-
tational vortex.

A free vortex flow is irrotational (zero vorticity). In this 
type of flow, the total mechanical energy per unit mass is 
constant in the entire flow field with no addition or destruc-
tion of mechanical energy in the flow field. In a free vortex 
flow, the fluid rotates due to either some previously imparted 
rotation or some internal action.

Examples:

	 1.	 Whirlpool in a river

	 2.	 Flow around a circular bend

	 3.	 Flow of liquid through an outlet provided at the 
bottom of a shallow vessel, e.g., wash tube, etc. 

It is to be noted that Bernoulli’s equation is applicable in the 
case of a free vortex flow.

Consider two points 1 and 2 in the fluid having radii 
r1 and r2 respectively from the axis of rotation and with 
heights Z1 and Z2 respectively from the bottom of the vessel 
as shown in the figure.

2

1

Fluid

Vessel

r1

r2

Z1

Z2

Axis of 
rotation

Since, Bernoulli’s equation is applicable for free vortex 
flow, we can write,

p

g

V

g
Z

P

g

V

g
Z1 1

2

1
2 2

2

2
2 2ρ ρ

+ + = + +
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Example 16
In  a free cylindrical vortex flow of air (Density = 1.2 kg/
m3), point A is located at a radius of 350 mm from the 
axis of rotation and at a height of 200 mm from the vessel 
bottom. Point B is however located at a radius of 500 mm 
and height 300 mm. If the velocity at point A is 20 m/s then 
the pressure difference between the points A and B is
(A)	 121.22 Pa	 (B)	 10.29 Pa
(C)	 12.35 Pa	 (D)	 25.62 Pa

Solution
Given,                           rA = 0.35 m

    ZA = 0.2 m
    VA = 20 m/s
    VB = 0.5 m

		          ZB = 0.3 m

For a free vortex flow,
		       Vr = Constant
\		  VA rA = VBrB.

or                             VB =
×

=
20 0 35

0 5
14

.

.
m/s.

From Bernoulli’s equation we have,

        
p

g

V

g
Z

p

g

V

g
ZA A

A
B B

Bρ ρ
+ + = + +

2 2

2 2

p

g

p

g
A B

ρ ρ
+

×
+ = +

×
+

20

2 9 61
0 2

14

2 9 81
0 3

2 2

.
.

.
.

                
p

g

p

g
B A

ρ ρ
− =10 2975.

or		      pB – pA = 10.2976 × 9.81 × 1.2
		                  = 121.22 Pa.

Hence, the correct answer is option (A).

Cylindrical free vortex: A cylindrical free vortex in a 
cylindrical coordinate system has the Z-axis directly verti-
cally upwards where at each horizontal plane, there exists a 
planar free vortex motion with tangential velocity given by,

V
C

r
θ = .

Spiral free vortex: For a plane spiral free vortex two-
dimensional flow, the tangential and radial velocity compo-
nents at any point with respect to a polar coordinate system 
is inversely proportional to the radial coordinate at that 
point.
\ In the flow field,

V
C

r

V
C

r
r

θ =

=

1

2

Such a flow can be said to be the superimposition of a radial 

flow described by equation, V
C

r
r =

2 with a free vortex flow.

If a is the angle between the velocity vector V and the tan-
gential component of the velocity vector Vq at any point then,

      tan a = 
V

V

C

C
r

θ
= 2

1

Now,		   
V

V

dr

dt
rw

dr

dt

r
d

dt

dr

rd
r

θ θ θ
= = =

\	 	
dr

rdθ
α= tan

This is the equation of the streamline in this flow. Integrating 
the above equation, it can be shown that

r r e r ex

c

c= =0 0

2

1θ α
θ

tan

Where, r0  is the radius at q = 0. The above equation shows 
that the patterns of streamlines are logarithmic-spiral.

Example 17
An object, caught in a whirlpool, at a given instant is at a dis-
tance of 100 cm from the centre of the whirlpool. The two- 
dimensional velocity field of the whirlpool can be described 
by the tangential and radial components of the velocity such 

as Vq  and Vr respectively, where Vq = –3Vr. If after a certain 

period of time, the object is found to be at a distance of 4.32 m 
from the centre of the whirlpool, then the number of revolu-
tions completed by the object from its original position is
(A)	 3	 (B)	 1.5
(C)	 4.5	 (D)	 1

Solution
The motion in a whirlpool can be simulated as a free vortex 
flow. Since Vq ≠ 0 and Vr ≠ 0 (for some finite radial location) 
the flow can be considered to a spiral free vortex flow.

Given, r0 = 100 m

r = 4.32 m
Now for a spiral free vortex flow,

r r e c c= 0
2 1θ /

   = r e Vr V
0
θ θ/

That is, 4.32 = 100 × e
θ×

−








1

3

or, q = 9.425744 radians
Now, 1 revolution = 2p radians
\ Number of revolution completed by the object 

= =
9 425744

2
1 5

.
.

π
 revolution.

Direction for solved examples 18 and 19:
The velocity profile for flow in a circular pipe is given as 

v = vmax 1
2

− 



















r

R
where v is the velocity of any radius 

r, vmax is the velocity of the pipe axis and R is the radius of 
the pipe.
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Example 18
The average velocity of flow is given by

(A)	 vmax	 (B)	
3

4
vmax  

(C)	
vmax

4
	 (D)	

vmax

2

Solution
In a cross-section of the circular pipe, consider an elemen-
tary area dA in the form of a ring at a radius r and of thick-
ness dr.

R

r Elementary
areadr

Then, dA =2prdr
Flow rate through the ring

= dQ = Elemental area × Local velocity
         = 2prdr × v

Total flow,	 Q = 2
0

π rdr v
R

⋅∫

	 = 2 1
2

0

π rv
r

R
dr

R

max − 



















∫

	 Q = pvmax 
R2

2









 � (1)

Let, vavg be the average velocity, then

Q = pR2 × vavg

From Eq. (1) we have, 

p vmax 
R2

2









 = pR2vavg

              Vavg = 
vmax

2
.

Hence, the correct answer is option (D).

Example 19
The value of the kinetic energy correction factor is 
(A)	 2	 (B)	 1.11
(C)	 1.04	 (D)	 1

Solution

a = 
1

3

A

v

v
dA

avg









∫

   = ∫
1 8

2
2 3

3

π
π

R V
V rdr

O

R

( )max

    =
16

1
2

2 3

R

r

R
rdr

O

R

− 

















∫

   = ×










16

82

2

R

R
= 2.

Hence, the correct answer is option (A).

Example 20
If the head losses in the pipe shown in the figure is h2 metres, 
then the discharge velocity at the pipe exit is

H

h

Large tank

(A)	 2g h hL( )− 	 (B)	 0

(C)	 2 2g H h( )− 	 (D)	 2g LH h h( )+ −

Solution
Let the height of the water surface from the bottom of the 
tank (chosen as the datum level) be L.

Consider point 1 to be the water surface of the tank and 
point 2 to be at the pipe exit.

Now, P1 = P2 = Patm
The tank is considered to be very large such that V1 ≈ 0
Assuming the flow to be steady applying the energy 

equation between the two points we have

P

g

V

g
Z h

P

g

V

g
P

1
1

1
2

1
2 2 2

2

2 2ρ
α

ρ
α

+ + + = +

      + Z2 + ht +hL� (1)

Since, no pump and turbine is involved, hp = ht = 0.

The kinetic correction factor are considered to be unity, 
i.e., a1 = a2 = 1.

Now the Eq. (1) can be written as:

  L
V

g
L h hL= + − +2

2

2
( )

V g h hL2 2= −( ) .

Hence, the correct answer is option (A).

Example 21
A hydraulic turbine is supplied with 5 M3/s water at 420 
kPa (gauge). A vacuum gauge fitted in the turbine discharge 
4 on below the turbine inlet centre line shows a reading of 
200 mm Hg. If the turbine shaft output power is 1200 kW 
and if the internal diameters of the supply and discharge 
pipe are identically 100 mm, then the power loss through 
the turbine is
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(A)	 2429.62 kW	 (B)	 962.78 kW
(C)	 1229.62 kW	 (D)	 2162.78 kW

Solution
Let the subscripts S and D denote points in the suction and 
the discharge pipe respectively. 

Given Ps = 420 kPa

Zs = 4 m

ZD = 0 m (discharge pipe taken at the datum plane.)

Wturbine = 1200 × 10 3 W

The energy equation applied between the points S and D is 
as follows.

M
Ps

V
s gZ Ws sρ

α+ +
















+

2

2
pump

= + +








M

P V
gZD

D
D

Dρ
α

2

2
+ Wturbine + Emech loss� (1)

Since, no pump is involved,  

Wpump = 0. 

The kinetic energy correction factors are assumed to be 
unity, i.e., aS = aD = 1.

Here, Q = 5 m3/S

\ m
�

 = r Q = 1000 × 5 = 5000 kg/s
Now PD = – 200 mm kg

=
−

× ×
200

1000
13600 9 81.

 = – 26.6832 kPa

Since, the supplies are discharge pipe have identical internal 
diameters, we have 

VS = V0

\ Eq. (1) becomes

5000
420 10

1000
9 81 4

3

×
×

+ ×








.

=
− ×







 + ×5000

26 6832 10

1000
1200 10

3
3.

 + Emech loss

Emech loss = 1229.62 kW.

Hence, the correct answer is option (C).

Stream Function 
For an incompressible two-dimensional planar flow, the 
continuity equation reduces to:

		          
∂
∂

+
∂
∂

=
u

x

v

y
0 � (1)

A function y(x, y), called the stream function can be defined 
such that whenever the velocity components are defined in 
terms of the stream function as shown below, the continuity 
Eq. (1) will always satisfied. 

		         u
y

v
x

=
∂
∂

=
−∂
∂

ψ ψ
, � (2)

Eq. (2) holds for rotational and irrotational regions of flow.
The volume rate of flow, Q, between two streamlines 

such as ψ1  andψ 2  is given by,

   Q = ψ ψ2 1−

The relative value of ψ 2 with respect to ψ1 will determine the 
flow direction as shown below:

2ψ > 1ψ

→ Q

2ψ

2ψ < 1ψ

← Q
1

ψ

Flow streamlines are curves of constant ψ .

Example 22
The velocity potential function of a two-dimensional 
incompressible and irrotational flow is f = ax3y – y3x. The 
value of a is 
(A)	 0	 (B)	 1
(C)	 1/6	 (D)	 6

Solution
For an incompressible and irrotational flow, we have Δ2 f 
= 0

or
∂
∂

+
∂
∂

=
2

2

2

2
0

φ φ
x y

                    f = ax3y – y3x� (1)

                 
∂
∂

= −
φ
x

ax y y3 2 3

               
∂
∂

=
2

2
6

φ
x

axy � (2)

                 
∂
∂

= −
φ
y

ax y x3 23

               
∂
∂

= −
2

2
6

φ
y

yx � (3)

Substituting Eqs. (2) and (3) in Eq. (1) we get

6axy – 6yx = 0
or			           a = 1.

Hence, the correct answer is option (B).
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Example 23
A steady three-dimensional velocity field is given by: 

V axy i b cy j x y k
��
= + − +3 4 2 210 3ˆ ( ) ˆ ˆ . The condition under 

which the flow field will be incompressible is 
(A)	 a = 4c	 (B)	 a = 0
(C)	 a = 12c	 (D)	 b = c

Solution
If the field is incompressible, then from the continuity equa-
tion we have

		      
∂
∂

+
∂
∂

+
∂
∂

=
u

x

v

y

w

z
0 � (1)

From the velocity field description,

	 u = axy3

	 v = 10b – 3cy 4

	 w = x2 y2

Substituting the above three equations in Eq. (1), we have

	 ay3 – 12cy3 + 0 = 0
or	 a = 12c.

Hence, the correct answer is option (C).

Example 24
An incompressible flow is represented by the velocity poten-
tial function f = 4x2 + 4y2 + 17t. For the flow, which one of 
the combinations of the following statement holds true?
  I.	 Flow is physically possible.
 II.	 Flow is physically not possible.
III.	 Flow satisfies the continuity equation.
IV.	 Flow does not satisfy the continuity equation.	
(A)	 I and IV	 (B)	 I and III
(C)	 II and III	 (D)	 II and IV

Solution
f = 4x2 + 4y2 + 17t

u
x

x=
∂
∂

=
φ

8 ; V = 
∂
∂

=
φ
y

y8

The incompressible equation is 

∂
∂

+
∂
∂

=
u

n

v

y
0

Here, 
∂
∂

+
∂
∂

= + = ≠
u

x

v

y
8 8 16 0

Hence, the continuity equation is not satisfied and this 
implies that the flow is physically not possible.

Hence, the correct answer is option (D).

Example 25
Persons A, B and C claim that the functions f = 5x2 – 5y2, 
f = 10 sin x and f = 27xy respectively are valid potential 

functions. Which one of the following statements is ONLY 
correct regarding the claims?
(A)	 The claims of persons A and B are true. 
(B)	 The claims of persons B and C are true
(C)	 The claims of persons A and C are true.
(D)	 The claims of person A is false.

Solution
For f to be a valid potential function

∂
∂

+
∂
∂

2

2

2

2

φ φ
x y

 should be equal to zero.

For f = 5x2 - 5y2

∂
∂

+
∂
∂

= − =
2

2

2

2
10 10 0

φ φ
x y

Person A’s claim is true.
For f = 10 sin x

∂
∂

+
∂
∂

= − +
2

2

2

2
10 0

φ φ
x y

xsin  = –10sin x ≠ 0

Person B’s claim is not true.
For f = 27xy

∂
∂

+
∂
∂

= + =
2

2

2

2
0 0 0

φ φ
x y

Person C’s claim is true.
Hence, the correct answer is option (C).

Example 26
The stream function representing a two-dimensional flow is 

given by ψ = −
ax y

xy
2 2

2
2 –

ax y4 4

12 6
− .

If the flow is irrotational then the value of a is 
(A)	 0	 (B)	 2
(C)	 0.5	 (D)	 12

Solution
If the flow is irrotational,

then	 
∂

+
∂
∂

=
2

2

2

2
0

ψ ψ
ax y

� (1)

  
∂
∂

= − −
ψ
x

axy
y

x a2

2
2

4

12

2 3

∂
∂

= −
2

2
2 2ψ

x
ay x a � (2)

  
∂
∂

= − −
ψ
y

ax y
x

y2

2
2

4

6

2 3
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∂
∂

= −
2

2
2 22

ψ
y

ax y � (3)

Substituting Eqs. (2) and (3) in Eq. (1), we get

		  ay2 – ax2 + ax2 – 2y2 = 0
or 		    a = 2.
Hence, the correct answer is option (B).

Flow Nets 
A flow net is a grid obtained by drawing a set of streamlines 
and equipotential lines.

φ1 φ2 φ3

ψ1

ψ2

ψ3

Flow nets are used to study two-dimensional irrotational 
flow especially in cases where the stream and velocity func-
tions are unavailable or difficult to solve.

Exercises

	 1.	 Let the x and y components of velocity in steady, two- 
dimensional, incompressible flow be linear function of 
x and y such that V = (ax + by)i + (cx + dy) j where a, b, 
c and d are constants. The condition for which the flow 
is irrotational is ________.

	 2.	 X-component of velocity in a two-dimensional incom-
pressible flow is given by u = y2 + 4xy. If Y-component 
of velocity ‘v’ equals zero at y = 0, the expression for 
‘v’ is given by

	 (A)	 4y	 (B)	 2y2

	 (C)	 -2y2	 (D)	 2xy

	 3.	 Two flow patterns are represented by their stream func-
tions y1 and y2 as given below:

		  y1 = x2 + y2

		  y2 = 2xy

		  If these two patterns are superimposed on one another, 
the resulting streamline pattern can be represented by 
one of the following:

	 (A)	 A family of parallel straight lines.
	 (B)	 A family of circles.
	 (C)	 A family of parabolas.
	 (D)	 A family of hyperbolas.

	 4.	 The relation that must hold for the flow to be irrota-
tional is 

	 (A)	
∂
∂

−
∂
∂

=
u

y

v

x
0 	 (B)	

∂
∂

=
∂
∂

u

x

u

y

	 (C)	
∂
∂

+
∂
∂

=
2

2

2

2
0

u

x

v

y
	 (D)	

∂
∂

=
∂
∂

u

y

v

x

	 5.	 For a two-dimensional irrotational flow, the velocity 
potential is defined as f = loge(x

2 + y2). Which of the 
following is a possible stream function y, for this flow?

	 (A)	
1

2
tan-1(y/x)	 (B)	 tan-1(y/x)

	 (C)	 2 tan-1(y/x)	 (D)	 2 tan-1(x/y)

	 6.	 A fluid flow is represented by the velocity field V = ax 
i ayj+ ,  where a is a constant. The equation of stream-
line passing through a point (1, 2) is

	 (A)	 x - 2y = 0	 (B)	 2x + y = 0
	 (C)	 2x - y = 0	 (D)	 x + 2y = 0

	 7.	 For a fluid flow through a divergent pipe of length L 
having inlet and outlet radii and R1 and R2 respectively 
and a constant flow rate of Q, assuming the velocity to 
be axial and uniform at any cross-section, the accelera-
tion at the exit is

	 (A)	
2 1 2

2
3

Q R R

LR

( )−
π

	 (B)	
2 2

1 2

2
3

Q R R

LR

( )−
π

	 (C)	
2 2

1 2
2

2
5

Q R R

LR

( )−
π

	 (D)	
2 2

2 1
2

2
5

Q R R

LR

( )−
π

	 8.	 A closed cylinder having a radius R and height H is 
filled with oil of density r. If the cylinder is rotated 
about its axis at an angular velocity of w, the thrust at 
the bottom of the cylinder is

	 (A)	 pR2rgH

	 (B)	 π
ρϖ

R
R2

2 2

4

	 (C)	 pR2(rw2R2+rgH)

	 (D)	 π
ρω

ρR
R

gH2
2 2

4
+











	 9.	 Of the possible irrotational flow functions given below, 
the incorrect relation is (where y = stream function and 
f = velocity potential) 

	 (A)	 y = xy
	 (B)	 y = A(x2 – y2)

	 (C)	 f = urcos θ +
U

r
cos θ

	 (D)	 f = r
r

−







2
sin θ

	10.	 The curl of a given velocity field (∇ ×
�

V ) indicates the 
rate of
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	 (A)	 increase or decrease of flow at a point.
	 (B)	 twisting of the lines of flow.
	 (C)	 deformation.
	 (D)	 translation.

	11.	 The area of a 2 m long tapered duct decreases as A  
= (0.5 – 0.2x) where ‘x’ is the distance in metres. At a 
given instant a discharge of 0.5 m3/s is flowing in the 
duct and is found to increase at a rate of 0.2 m3/s. The 
local acceleration (in m/s2) at x = 0 will be 

	 (A)	 1.4	 (B)	 1.0
	 (C)	 0.4	 (D)	 0.667

	12.	 The velocity components in the x and y directions of 
a two-dimensional potential flow are u and v, respec-

tively, then 
∂
∂
u

x
 is equal to 

	 (A)	
∂
∂
v

x
	 (B)	 −

∂
∂
v

x

	 (C)	
∂
∂
v

y
	 (D)	 −

∂
∂
v

y

	13.	 A venturimeter of 20 mm throat diameter is used to 
measure the velocity of water in a horizontal pipe of 
40 mm diameter. If the pressure difference between 
the pipe and throat sections is found to be 30 kPa then, 
neglecting frictional losses, the flow velocity is

	 (A)	 0.2 m/s	 (B)	 1.0 m/s
	 (C)	 1.4 m/s	 (D)	 2.0 m/s

	14.	 A leaf is caught in a whirlpool. At a given instant, the 
leaf is at a distance of 120 m from the centre of the 
whirlpool. The whirlpool can be described by the fol-

lowing velocity distribution: Vr = −
×









60 10

2

3

π r
m/s and 

Vq = 
300 10

2

3×
π r

m/s, where r (in metres) is the distance 

from the centre of the whirlpool. What will be the dis-
tance of the leaf from the centre when it has moved 
through half a revolution?

	 (A)	 48 m
	 (B)	 64 m
	 (C)	 120 m
	 (D)	 142 m

	15.	 Match List I (Example) with List II (Types of flow) and 
select the correct answer using the codes given

List I List II

a. Flow in a straight long pipe 
with varying flow rate

1. Uniform, steady

b. Flow of gas through the 
nozzle of a jet engine

2. Non-uniform, 
steady

c. Flow of water through the 
hose of a fire fighting pump

3. Uniform, unsteady

d. Flow in a river during tidal 
bore

4. Non-uniform, 
unsteady

		  Codes:
		  a   b   c   d		  a   b   c   d
	 (A)	 1   4   3   2	 (B)	 3   2   1   4
	 (C)	 1   2   3   4	 (D)	 3   4   1   2

	16.	 Consider the following statements regarding a path line 
in fluid flow:

	 I.	A path line is a line traced by a single particle over 
a time interval.

	 II.	A path line shows the positions of the same particle 
at successive time instants.

	 III.	A path line shows the instantaneous positions of 
a number of particles, passing through a common 
point, at some previous time instants.

		  Which of these statements are correct?
	 (A)	 I and III only	 (B)	 I and II only
	 (C)	 II and III only	 (D)	 I, II and III

	17.	 In a two-dimensional velocity field with velocities u 
and v along the x and y-directions respectively, the con-
vective a acceleration along the x-direction is given by

	 (A)	 u
u

x
v

u

y

∂
∂

+
∂
∂

	 (B)	 u
u

x
v

v

y

∂
∂

+
∂
∂

	 (C)	 u
v

x
v

u

y

∂
∂

+
∂
∂

	 (D)	 v
u

x
u

u

y

∂
∂

+
∂
∂

	18.	 A two-dimensional flow field has velocities along the x 
and y-directions given by u = x2t and v = –2xyt respec-
tively, where t is time. The equation of streamlines is

	 (A)	 x2y = Constant
	 (B)	 xy2 = Constant
	 (C)	 xy = Constant
	 (D)	 Cannot be determined

	19.	 A velocity field is given as V yi xj= +2 3ˆ ˆ where x and y 
are in metres. The acceleration of a fluid particles at (x, 
y) = (1, 1) in the x-direction is

	 (A)	 0	 (B)	 5.00 m/s2

	 (C)	 6.00 m/s2	 (D)	 8.48 m/s2

	20.	 The velocity in m/s at a point in a two-dimensional flow 

is given as V i j= +2 3ˆ ˆ . The equation of the streamline 
passing through the point is 

	 (A)	 3dx – 2dy = 0	 (B)	 2x + 3y = 0
	 (C)	 3dx + 2dy = 0	 (D)	 xy = 6

	21.	 An inert tracer is injected continuously from a point in 
an unsteady flow field. The locus of locations of all the 
tracer particles at an instance of time represents

	 (A)	 streamline	 (B)	 pathline
	 (C)	 streatube	 (D)	 streakline

	22.	 A stream function is given by:
	 y = 2x2y + (x + 1)y2

		  The flow rate across a line joining points A(3, 0) and 
B(0, 2) is

	 (A)	 0.4 units	 (B)	 1.1 units
	 (C)	 4 units	 (D)	 5 units
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	23.	 Consider the following equations:
	 I.	A1v1 = A2v2

	 II.	
∂
∂

+
∂
∂

=
u

x

v

y
0

	 III.	 ρ ρvdA
t

dV
vs

+
∂
∂









 =∫∫ 0

	 IV.	
1

0
r r

rv
z

vr z
∂
∂

+
∂
∂

=( ) ( )

		  Which of the above equations are forms of continuity 
equations? (Where u, v are velocities and V is volume)

	 (A)	 I only	 (B)	 I and II
	 (C)	 II and III	 (D)	 III and IV

	24.	 Consider the following statements about velocity 
potential:

	 I.	Velocity potential is a vector function similar to 
stream function.

	 II.	It is a fully three-dimensional function and not lim-
ited to two coordinates.

	 III.	Velocity potential does not exist at stagnation 
points.

	 IV.	Velocity potential exists only if the flow is irrota-
tional.

		  Which of these statements are correct?
	 (A)	 I, II and III	 (B)	 I, II and IV
	 (C)	 I, III and IV	 (D)	 II, III and IV

	25.	 The predominant forces acting on an element of fluid in 
the boundary layer over a flat plate placed in a uniform 
stream include

	 (A)	 inertia and pressure forces.
	 (B)	 viscous and pressure forces.
	 (C)	 viscous and body forces.
	 (D)	 viscous and inertia forces.

	26.	 The circulation ‘Γ’ around a circle of radius 2 units for 
the velocity field u = 2x + 3y and v = -2y is

	 (A)	 -6π units	 (B)	 -12π units
	 (C)	 -18π units	 (D)	 -24π units

	27.	 In a nominal 90° triangular notch discharging under 
invariant head, the error in the estimated discharge due 
to 2% error in the vortex angle is ______.

	28.	 A right angled triangular notch is used to measure the 
flow in a flume. If the head measured is 20 cm and Cd 
= 0.62, neglecting the velocity of approach, the dis-
charge in lit/s is

	29.	 The percentage error in the computed discharge over a 
triangular notch corresponding to an error of 1% in the 
measurement of the head over the notch would be 

	 (A)	 1.0	 (B)	 1.5
	 (C)	 2.0	 (D)	 2.5

	30.	 The equation gz +
v P2

2
+
ρ

= constant along a streamline 

holds true for

	 (A)	 steady, frictionless, compressible fluid.
	 (B)	 steady, uniform, incompressible fluid.
	 (C)	 steady, frictionless, incompressible fluid.
	 (D)	 unsteady incompressible fluid.

	31.	 A nozzle discharging water under head H has n out-
let area ‘a’ and discharge coefficient Cd = 1.0. A ver-
tical plate is acted upon by the fluid force Fj when 
held across the free jet by the fluid force Fn when held 

against the nozzle to stop the flow. The ratio
F

F
j

n
is

	 (A)	
1

2
	 (B)	 1

	 (C)	 2 	 (D)	 2

	32.	 A body moving through still water at 6 m/s produces a 
water velocity of 4 m/s at a point 1 m ahead. The dif-
ference in pressure between the nose and the point 1 m 
ahead would be

	 (A)	 2000 N/m2	 (B)	 1000 N/m2

	 (C)	 19620 N/m2	 (D)	 98100 N/m2

	33.	 A horizontal jet strikes a frictionless vertical plate (the 
plan view is shown in the figure). It is then divided into 
two parts, as shown in the figure. If the impact loss is 
neglected, what is the value of θ ?

Q2

Q0

Q1 = 0.25 Q0

θ

	 (A)	 15o	 (B)	 30o

	 (C)	 45o	 (D)	 60o

	34.	 The x component of velocity in a two-dimensional 
compressible flow is given by u = 1.5x. At the point (x, 
y) = (1, 0), the y component of velocity v = 0. The equa-
tion for the y component of velocity is 

	 (A)	 v = 0	 (B)	 v = 1.5y
	 (C)	 v = -1.5x	 (D)	 v = -1.5y

	35.	 A 0.1 m diameter jet of concrete flows steadily at a 
velocity of 2 m/s into a cart which is attached to a wall 
by a cable as shown in the figure below.

Jet of concrete

Cart

Cable

θ
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		  The density of the concrete is 2200 kg/m3. If at instant 
shown in the figure, the cart and the concrete in it 
together weighs 3560 N and the reaction force exerted 
by the ground on the cart is 3620 N, then the tension in 
the cable is

	 (A)	 48.92 N	 (B)	 34.31 N
	 (C)	 11.65 N	 (D)	 20.53 N

	36.	 A sprinkler with equal arm lengths of 0.5 m, as shown 
in the following figure, discharges water at equal rela-
tive velocities through nozzles of equal diameters of 
5 cm. The sprinkler freely rotates with no friction at a 
speed of 95.493 rpm. The torque (in Nm) required to 
hold the sprinkler stationary is

0.5 m
60°

60°

0.5 m

	 (A)	 98.175	 (B)	 49.087
	 (C)	 61.235	 (D)	 22.602

	37.	 A frictionless fluid of density ρ flow through a bent 
pipe as shown below. If A is the cross-sectional area 
and V is the velocity of flow, the forces exerted on seg-
ment 1-2 of the pipe in the x and y directions are,

45°

2
1

y

ρV,   , A ρV,   , A

x

	 (A)	 ρAV2; 0	 (B)	 ρAV2; 2ρ AV2

	 (C)	 0; 0	 (D)	 0;
1

2
2ρAV

	38.	 The reading of differential manometer of a venturim-
eter, placed at 45° to the horizontal is 11 cm. If the 
venturimeter is turned to horizontal position, the 
manometer reading will be

	 (A)	 zero	 (B)	
11

2
cm

	 (C)	 11 cm	 (D)	 11 2 cm

	39.	 A tank and a deflector are placed on a frictionless 
trolley. The tank issues water jet (mass density of water 
= 1000 kg/m3), which strikes the deflector and turns 

by 45o. If the velocity of jet leaving the deflector is 4 
m/s and discharge is 0.1 m3/s, the force recorded by the 
spring will be

Ta
nk

Spring
Deflector

Trolley

Je
t o

f w
at

er

45°

	 (A)	 100 N	 (B)	 100 2 N

	 (C)	 200 N	 (D)	 200 2 N

	40.	 The velocity field for a flow is given by:

		  V
→

= (5x + 6y + 7z) î + (6x + 5y + 9z) ĵ + (3x + 2y + λz)

k̂ and the density varies as ρ = ρ0 exp(-2t). In order 
that the mass is conserved, the value of λ should be

	 (A)	 -12	 (B)	 -10
	 (C)	 -8	 (D)	 10

	41.	 A cylindrical vessel is closed at the top and the bottom 
and has a diameter of 0.4 m and height 0.5 m. The ves-
sel is completely filled with a liquid. When the vessel is 
rotated about its vertical axis with an angular speed of 
w rad/s, the total pressure exerted by the liquid on the 
bottom is twice that exerted by the liquid on the top the 
vessel. The value of w is

	 (A)	 22.14 rad/s	 (B)	 14 rad/s
	 (C)	 44.29 rad/s	 (D)	 28 rad/s

	42.	 A glass tube with a 90o bend is open at both the ends. 
It is inserted into a flowing stream of oil, S = 0.90, so 
that one opening is directed upstream and the other is 
directed upward. Oil inside the tube is 50 mm higher 
than the surface of flowing oil. The velocity measured 
by the tube is, nearly,

	 (A)	 0.89 m/s
	 (B)	 0.99 m/s
	 (C)	 1.40 m/s
	 (D)	 1.90 m/s

	43.	 If density of liquid r = 1000 kg/m3 and area A = 1 m2. 
Then flow rate Q at t = 0, (x = 0, y = 0), is

	 (A)	 100	 (B)	 1000
	 (C)	 0	 (D)	 Cannot be determined 

	44.	 Water flows through an inclined venturimeter as shown 
in the figure. Inlet and throat diameters are 100 mm 
and 50 mm respectively. Inlet and throat sections have 
a level difference of 300 mm. The differential mercury 
manometer connected across inlet and throat indicates 
12 cm of mercury level difference at a given flow rate. 
Coefficient of discharge is 0.99.
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300 mm

12 cm

1

2

		  The rate of flow in lit/s is
	 (A)	 14.76	 (B)	 12.85
	 (C)	 10.91	 (D)	 8.86

	45.	

30°1

2

M2

M1

		  Water flows through a tapering pipe inclined at 30° to the 
horizontal. At points 1 and 2 manometers are connected. 
Point 1 is at an elevation of 1 m from ground level and 2 
is 3 m from ground level. Diameter at section 1 and 2 are  
15 cm and 10 cm respectively. Velocity at 1 is 6 m/s. 
If manometer M2 reads 10 cm of mercury, the reading 
shown by manometer M1 in cm of mercury is

	 (A)	 79.5	 (B)	 65.6
	 (C)	 58.3	 (D)	 49.4

	46.	 Mass flow rate of the oil in kg/s is
	 (A)	 2.82	 (B)	 2.64
	 (C)	 2.41	 (D)	 2.22

	47.	 Power required to pump oil per 100 m length of pipe 
is

	 (A)	 6.12 kW	 (B)	 6.34 kW
	 (C)	 6.63 kW	 (D)	 6.82 kW

	48.	 Water flows through an inclined pipe in which a ven-
turimeter is installed for discharge measurement. The 
inlet and throat sections of the venturimeter have areas 
of cross sections 0.07 m2 and 0.0177 m2 respectively. 
An inverted U-tube manometer is used for measure-
ment of differential pressure head. A liquid of specific 
gravity 0.7 is used in the manometer, which gives a 
reading of 250 mm. Inlet and throat sections have a 
level difference of 400 mm

(1)

(2)

200 mm

		  Neglecting frictional losses the rate of flow through the 
pipe in m3/s is

	 (A)	 0.028	 (B)	 0.022
	 (C)	 0.019	 (D)	 0.016

	49.	 In a three-dimensional incompressible fluid flow, veloc-
ity components in x and y directions are:

	 u = x2 + y2z3 
	 v = - (xy + yz + zx)
	 Velocity component in the z direction is 

	 (A)	 -xz + 
z

f x y
2

2
+ ( , ) 	 (B)	 -xz + 

z2

2

	 (C)	 xz - 
z

C
2

2
+ 	 (D)	 -x + z

	50.	 Match List I (Measuring devices) with List II 
(Measuring parameter) and select the correct answer 
using the codes:

List I List II

a. Pitot tube 1. Rate of flow measurement

b. Micro-manometer 2. Measurement of moderate 
pressure

c. Venturimeter 3. Velocity measurement

d. Piezo-meter 4. Easier measurement of 
large pressures 

		  Codes:
		  a   b   c   d		  a   b   c   d
	 (A)	 1   3   2   4	 (B)	 4   2   3   1
	 (C)	 2   1   4   3	 (D)	 3   4   1   2

	51.	 In a horizontal pipeline as shown in the figure, point 2 
is a contraction with reduced area of cross-section. At 
point 1 the pressure head and velocity head are 60 cm 
and 4 cm respectively.  If pressure head at point 2 is 
zero, the ratio of velocity at point 2 to that at point 1 is 

1 2

	 (A)	 2	 (B)	 3
	 (C)	 4	 (D)	 6
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	52.	 For a flow, velocity components in the x and y direc-
tions are given by u = y2, v = -3x.

		  Component of rotation about the Z-axis is 
	 (A)	 -(3 + 2y)	 (B)	 (3 + 2y)

	 (C)	
−

+
1

2
3 2( )y 	 (D)	

1

2
3 2( )+ y

	53.	 The velocity along the centre line of a nozzle of length 
1.5 m is given by:

	 v = 2t 1
2

2

−







x

l
 where l  = length in m

	 v = Velocity in m/s,
	 t = Time in seconds 
	� From the commencement of flow and x = distance from 

inlet. The value of local acceleration at x = 1 m when t 
= 5 seconds is 

	 (A)	 0.67 m/s2 	 (B)	 0.89 m/s2

	 (C)	 1.33 m/s2 	 (D)	 1.67 m/s2 

	54.	 An orificemeter is calibrated with air in a geometrically 

similar model.  Model to prototype scale ratio is 
1

4
. 

The prototype has to carry water.  Ratio of kinematic 
viscosity of air to water is 12.5. Dynamically similar 
flow will be obtained when the discharge ratio is 

	 (A)	 2.850	 (B)	 3.125	
	 (C)	 4.540	 (D)	 4.925

	55.	 For a flow, the stream function is y. For the flow to be 
irrotational, the condition to be satisfied is 

	 (A)	
∂
∂

−
∂

=
ψ ψ
x dy

0 	 (B)	
∂
∂

+
∂
∂

=
ψ ψ
x y

0

	 (C)	
∂
∂

−
∂
∂

=
2

2

2

2
0

ψ ψ
x y

	 (D)	
∂
∂

+
∂
∂

=
2

2

2

2
0

ψ ψ
x y

	56.	 G

A

EI.18 m

EI.15 m

EI.12 m

EI.8 m

Water

Air

Liquid I
S = 0.7

Liquid II
S = 1.6

EI.6 m

		  A tank installed at an elevation of 6 m contains a liquid 
of specific gravity 1.6, water and another liquid of spe-
cific gravity 0.7 space over the liquids contain air . The 
gauge G show a pressure of -17 kN/m2. The elevation 
of liquid level in the piezometer A is

	 (A)	 4.73 m	 (B)	 6.73 m
	 (C)	 8.73 m	 (D)	 10.73 m

	57.	 For the stream function y = 3xy, velocity at a point (1, 
2) is

	 (A)	 18 units 	 (B)	 35 units

	 (C)	 45 units 	 (D)	 55 units

	58.	 In a fluid, the velocity field is given by 
	� V = (2x + 3y)i + (3z + 2x2)j + (2t – 3z)k. The speed at 

point (0, 1, 2) and at time t = 2 seconds, is
	 (A)	 7.836	 (B)	 8.464
	 (C)	 9.695	 (D)	 10.436

	59.	 For a three-dimensional flow, the velocity components 
in m/s are given by:

	 u = yz + t
	 v = xz – t
	 w = xy
	� Total acceleration(in m/s2) at a point (1, 1, 1) after 2 

seconds is            .
	 (A	 4.96	 (B)	 4.28
	 (C)	 4.32	 (D)	 4.47

	60.	 For the flow v = 3xi – 3yj, equation of streamline pass-
ing through (1, 2) is

	 (A)	 xy = 2	 (B)	 xy = 3

	 (C)	
x

y
= 2 	 (D)	

x

y
= 3

	61.	 A pipe of 480 mm diameter branches into two pipes of 
300 mm and 240 mm diameter as shown in the figure. 
If average velocity of flows in 480 mm and 300 mm 
pipes are 3 m/s and 2.5 m/s respectively, average veloc-
ity of flow (in m/s) in 240 mm pipe is

D2 = 300 mm
V2 = 2.5 m/s

D1 = 480 mm
V1 = 3 m/s

D3 = 240 mm

(1)

(2)

(3)

	 (A)	 8.8	 (B)	 8.2
	 (C)	 8.0	 (D)	 8.9

	62.	 For a three-dimensional continuous flow, x  and y com-
ponents of velocity are, u = 2xy and v = 2yz respec-
tively. Then z component of velocity is

	 (A)	 –2yz – z2 + f(x, y, t)	 (B)	 2yz + z2 + f(x, y, z)
	 (C)	 2yz + 2z2 + f(x, y, t)	 (D)	 2yz – z2 + f(x, y, z)
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	 1.	 In a steady flow through a nozzle, the flow velocity on 
the nozzle axis is given by v = u0(1 + 3x/L)i, where x is 
the distance along the axis of the nozzle from its inlet 
plane and L is the length of the nozzle.

		  The time required for a fluid particle on the axis to 
travel from the inlet to the exit plane of the nozzle is
� [GATE, 2007]

	 (A)	
L

u0
	 (B)	

L

u3
4

0

In

	 (C)	
L

u4 0
	 (D)	

L

u2 5 0.

	 2.	 Which combination of the following statements about 
steady incompressible forced vortex flow is correct?

	  P.  Shear stress is zero at all points in the flow.
	 Q.  Vorticity is zero at all points in the flow.
	  R. � Velocity is directly proportional to the radius from 

the centre of the vortex.
	  S. � Total mechanical energy per unit mass is constant 

in the entire flow field.

		  Select the correct answer using the given codes:
� [GATE, 2007]

	 (A)	 P and Q	 (B)	 R and S
	 (C)	 P and R	 (D)	 P and S

	 3.	 At two points 1 and 2 in a pipeline, the velocities 
are V and 2V, respectively. Both the points are at the 
same elevation. The fluid density is ρ. The flow can 
be assume to be incompressible, inviscid, steady and 
irrotational. The difference in pressures P1 and P2 at 
points 1 and 2 is� [GATE, 2007]

	 (A)	 0.5ρV2	 (B)	 1.5ρV2

	 (C)	 2ρV2	 (D)	 3ρV2

	 4.	 For the continuity equation given by ∇⋅
→ →

V = 0 to be 

valid, where V
→

is the velocity vector, which one of 
the following is a necessary condition?�  
� [GATE, 2008]

	 (A)	 Steady flow 	 (B)	 Irrotational flow 
	 (C)	 In viscid flow	 (D)	 Incompressible flow 

Previous Years’ Questions

	63.	 A two-dimensional flow field is given by u = –3y and 
v = –3x. Discharge between the streamlines passing 
through points (2, 6) and (6, 6) is

	 (A)	 16 units	 (B)	 32 units
	 (C)	 48 units	 (D)	 64 units

	64.	 For a vertical venturimeter cross-sectional area at inlet 
is 0.07 m2 and cross sectional area at throat is 0.0177 
m2. The venturimeter is used to measure discharge 
of oil of specific gravity 0.8. The height difference 
between inlet and throat is 300 mm. A U-tube manome-
ter connected between throat and inlet shows a mercury 
level difference of 250 mm. Assuming a coefficient of 
discharge of 0.9, discharge through the venturimeter (in 
m3/s) is______.

200 mm
300 mm

Throat

Inlet

	 (A)	 0.296	 (B)	 0.162
	 (C)	 0.183	 (D)	 0.145

	65.	 Water flows through a 100 mm diameter orifice used 
in a 200 mm diameter pipe at the rate of 0.016 m3/s. 

If coefficient of contraction is 0.6 and coefficient of 
velocity is 1.0, the head difference between upstream 
section and vena contract section (in m of water) 
is______.

	 (A)	 0.524	 (B)	 0.574
	 (C)	 0.586	 (D)	 0.523

	66.	 Water flows through a 90° reducer bend in a pipeline. 
The pressure at inlet is 200 kN/m2 (gauge), when the 
cross-sectional area is 0.01 m2. At the exit section when 
the cross sectional area is 0.0025 m2, velocity is 12 m/s 
and pressure is atmospheric. Magnitude of force (in 
kN) acting on the bend is______ (Assume that the bend 
is in horizontal XY-plane).

V1

V1 = 12 m/s
p2 = 0

p1 = 200 kN/m2

	 (A)	 2.23	 (B)	 2.12
	 (C)	 2.42	 (D)	 2.82
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Direction for questions 5 and 6:
�The gap between a moving circular plate and a stationary 
surface is being continuously reduced, as the circular plate 
comes down at a uniform speed V towards the stationary 
bottom surface, as shown in the figure. In the process, the 
fluid contained between the two plates flows out radially. 
The fluid is assumed to be incompressible and inviscid.
� [GATE, 2008]

Moving 
circular plate

Stationary 
surface

R

r

Vh

	 5.	 The radial velocity Vr at any radius r, when the gap 
width is h, is

	 (A)	 vr = 
Vr

h2
	 (B)	 vr = 

Vr

h

	 (C)	 vr = 
2Vh

r
	 (D)	 vr = 

Vh

r

	 6.	 The radial component of the fluid acceleration at r 
= R is 

	 (A)	
3

4

2

2

V R

h
	 (B)	

V R

h

2

24

	 (C)	
V R

h

2

22
	 (D)	

V h

R

2

22

	 7.	 Consider steady, incompressible and irrotational 
flow through a reducer in a horizontal pipe where the 
diameter is reduced from 20 cm to 10 cm. The pres-
sure in the 20 cm pipe just upstream of the reducer is 
150 kPa. The fluid has a vapour pressure of 50 kPa 
and a specific weight of 5 kN/m3. Neglecting fric-
tional effects, the maximum discharge (in m3/s) that 
can pass through the reducer without causing cavita-
tion is� [GATE, 2009]

	 (A)	 0.05	 (B)	 0.16
	 (C)	 0.27	 (D)	 0.38

	 8.	 You are asked to evaluate assorted fluid flows for their 
suitability in a given laboratory application. The fol-
lowing three flow choices, expressed in terms of the 
two-dimensional velocity fields in the XY-plane, are 
made available.

	 P.	 u = 2y, v = –3x
	 Q.	 u = 3xy, v = 0
	 R.	 u = –2x, v = 2y

		  Which flow(s) should be recommended when the 
application requires the flow to be incompressible and 
irrotational?� [GATE, 2009]

	 (A)	 P and R	 (B)	 Q
	 (C)	 Q and R	 (D)	 R

	 9.	 Water (γw = 9.879 kN.m3) flows with a flow rate of 0.3 
m3/s through a pipe AB of 10 m length and of uniform 
cross-section. The end B is above end A and the pipe 
makes an angle of 30o to the horizontal. For a pressure 
of 12 kN/m2 at the end B, the corresponding pressure 
at the end A is� [GATE, 2009]

	 (A)	 12.0 kN/m2

	 (B)	 17.0 kN/m2

	 (C)	 56.4 kN/m2

	 (D)	 61.4 kN/m2

	10.	 Velocity vector of a flow field is given as 
V xyi x zj
��
= −2 2ˆ ˆ.  The vorticity vector at (1, 1, 1) is

� [GATE, 2010]

	 (A)	 4ˆ ˆi j− 	 (B)	 4ˆ ˆi k−

	 (C)	 ˆ ˆi j− 4 	 (D)	 ˆ ˆi k− 4

	11.	 Match List I (Device) with List II (Uses) and select 
the answer using the codes given below the lists:

List I List II

a. Pitot tube 1. Measuring pressure in a pipe

b. Manometer 2. Measuring velocity of flow 
in a pipe

c. Venturimeter 3. Measuring air and gas 
velocity

d. Anemometer 4. Measuring discharge in a 
pipe

� [GATE, 2010]

		  Codes:
		  a   b   c   d		  a   b   c   d
	 (A)	 1   2   4   3	 (B)	 2   1   3   4
	 (C)	 2   1   4   3	 (D)	 4   1   3   2

	12.	 A streamline and an equi-potential line in a flow field
� [GATE, 2011]

	 (A)	 are parallel to each other.
	 (B)	 are perpendicular to each other.
	 (C)	 intersect at an acute angle.
	 (D)	 are identical.

	13.	 Figure shows the schematic for the measurement of 
velocity of air (density = 1.2 kg/m3) through a con-
stant area duct using a pitot tube and a water-tube 
manometer. The differential head of water (density 
= 1000 kg/m3) in the two columns of the manometer 
is 10 mm. Take acceleration due to gravity as 9.8 m/s2. 
The velocity of air in m/s is� [GATE, 2011]
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10 mm

Flow

	 (A)	 6.4	 (B)	 9.0
	 (C)	 12.8	 (D)	 25.6

14.	 A large tank with a nozzle attached contains three 
immiscible, inviscid fluids as shown. Assuming that 
the changes in h1, h2 and h3 are negligible, the instan-
taneous discharge velocity is� [GATE, 2012]

ρ 1

ρ 2

ρ 3

h1

h2

h3

	 (A)	 2 13
1

3

1

3

2

3

2

3

gh
h

h

h

h
+ +











ρ
ρ

ρ
ρ

	 (B)	 2 1 2 3g h h h( )+ +

	 (C)	 2 1 1 2 2 3 3

1 2 3

g
h h hρ ρ ρ
ρ ρ ρ
+ +
+ +











	 (D)	 2 1 2 3 2 3 1 3 1 2

1 1 2 2 3 3

g
h h h h h h

h h h

ρ ρ ρ
ρ ρ ρ

+ +
+ +











	15.	 For a two-dimensional flow field, the stream function 

y is given as: Ψ =
3

2
(y2 – x2)

	� The magnitude of discharge occurring between he 
streamline passing through points (0, 3) and (3, 4) is 
� [GATE, 2013]

	 (A)	 6 units	 (B)	 3 units
	 (C)	 1.5 units	 (D)	 2 units

	16.	 Water is coming out from a tap and falls vertically 
downwards. At the tap opening, the stream diameter 
is 20 mm with uniform velocity of 2 m/s. Acceleration 
due to gravity is 9.81 m/s2. Assuming steady, invis-
cid flow, constant atmospheric pressure everywhere 
and neglecting curvature and surface tension effects, 

the diameter in mm of stream 0.5 m below the tap is 
approximately� [GATE, 2013]

	 (A)	 10	 (B)	 15
	 (C)	 20	 (D)	 25

	17.	 A plane flow has velocity components u =
x

T1
, v 

= −
y

T2
and w = 0 along x, y and z directions respec-

tively, where T1 (≠ 0) and T2 (≠ 0) are constants having 
the dimension of time. The given flow is incompress-
ible if� [GATE, 2014]

	 (A)	 T1 = -T2	 (B)	 T1 = −
T2

2

	 (C)	 T1 =
T2

2
	 (D)	 T1 = T2

	18.	 A particle moves along a curve whose parametric 
equations are: x = t3 + 2t, y = -3e-2t and z = 2sin 5t, 
where x, y and z show variations of the distance cov-
ered by the particle (in cm) with time t (in seconds). 
The magnitude of the acceleration of the particle (in 
cm/s2) at t = 0 is _______.� [GATE, 2014]

	19.	 For an incompressible flow field V
��

, which one of the 
following conditions must be satisfied?� [GATE, 2014]

	 (A)	 ∇⋅ =V
��

0

	 (B)	 ∇× =V
��

0

	 (C)	 ( )V V
�� ��
⋅∇ = 0

	 (D)	
∂
∂

+ ⋅∇ =
V

t
V V

��
�� ��

( ) 0

	20.	 Consider the following statements regarding 
streamline(s):

	   I.	� It is a continuous line such that the tangent at any 
point on it shows the velocity vector at that point.

	  II.	� There is no flow across streamlines.

	 III.	�
dx

u

dy

y

dz

w
= = is the differential equation of a 

streamline, where u, v and w are velocities in 
directions x, y and z respectively.

	 IV.	� In an unsteady flow, the path of a particle is a 
streamline.

		  Which one of the following combinations of the state-
ments is true?� [GATE, 2014]

	 (A)	 I, II, IV	 (B)	 II, III, IV
	 (C)	 I, III, IV	 (D)	 I, II, III

	21.	 Consider a velocity field V K y i x k
��
= +

∧ ∧
( ),  where K is 

a constant. The vorticity Wz is� [GATE, 2014]
	 (A)	 – K	 (B)	 K
	 (C)	 – K/2	 (D)	 K/2

	22.	 List I lists a few devices while List II provides infor-
mation about their uses. Match the devices with their 
corresponding use.� [GATE, 2014]
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List I List II

P. Anemometer 1. Capillary potential of soil water.
Q. Hygrometer 2. Fluid velocity at a specific point 

in the flow stream.
R. Pitot Tube 3. Water vapour content of air.
S. Tensiometer 4. Wind speed

		  Codes:
		  P   Q   R   S		  P   Q   R   S
	 (A)	 1   2   3   4	 (B)	 2   1   4   3
	 (C)	 4   2   1   3	 (D)	 4   3   2   1

	23.	 A venturimeter, having a diameter of 7.5 cm at the 
throat and 15 cm at the enlarged end, is installed in a 
horizontal pipeline of 15 cm diameter. The pipe car-
ries an incompressible fluid at a steady rate of 30 litres 
per second. The difference of pressure head measured 
in terms of the moving fluid in between the enlarged 
and the throat of the venturimeter is observed to be 
2.45 m. Taking the acceleration due to gravity as 981 
m/s2, the coefficient of discharge of the venturimeter 
(correct up to two places of decimal) is _______. 
� [GATE, 2014]

	24.	 A venturimeter having a throat diameter of 0.1 m is 
used to estimate the flow rate of a horizontal pipe 
having a diameter of 0.2 m. For an observed pressure 
difference of 2 m of water head and coefficient of dis-
charge equal to unity, assuming that the energy losses 
are negligible, the flow rate (in m3/s) through the pipe 
is approximately equal to� [GATE, 2014]

	 (A)	 0.500	 (B)	 0.150
	 (C)	 0.050	 (D)	 0.015

	25.	 In a two-dimensional steady flow field, in a certain 
region of the XY-plane, the velocity component in the 
x-direction is given by vx = x2 and the density varies 

as ρ =
1

x
. Which of the following is a valid expres-

sion for the velocity vy component in the y-direction?
� [GATE, 2015]

	 (A)	 Vy = −
x

y
	 (B)	 Vy =

x

y

	 (C)	 Vy = -xy	 (D)	 Vy = xy

	26.	 The velocity components of a two-dimensional plane 
motion of a fluid are:

		  U =
y

x x y
3

2

3
2+ − and v = xy y

x2
3

2
3

− − .

		  The correct statement is:� [GATE, 2015]

	 (A)	 Fluid is incompressible and flow is irrotational.
	 (B)	 Fluid is incompressible and flow is rotational.
	 (C)	 Fluid is compressible and flow is irrotational.
	 (D)	 Fluid is compressible and flow is rotational.

27.	 Match the following pairs:� [GATE, 2015]

List I 
(Equation)

List II (Physical 
Interpretation)

P. Ñ × V 
→

= 0 I.
 Incompressible 
 continuity equation

Q.  Ñ. V 
→

= 0 II.  Steady flow

R. D V 
→

Dt
= 0 III.  Irrotational flow

S.  
δ V 
→

δ t
= 0 IV.

 Zero acceleration of 
 fluid particle

	 (A)	 P–IV, Q–I, R–II, S–III
	 (B)	 P–IV, Q–III, R–I, S–II
	 (C)	 P–III, Q–I, R–IV, S–II
	 (D)	 P–III, Q–I, R–II, S–IV

	28.	 The velocity field of an incompressible flow is given by

		  V = (a1x + a2y + a3z)i + (b1x + b2y + b3z)j + (c1x + c2y 

+ c3z)k, where a1 = 2 and c3 = –4. The value of b2 is 
______.� [GATE, 2015]

	29.	 Water (ρ = 1000 kg/m3) flows through a venturimeter 
with inlet diameter 80 mm and throat diameter 40 mm. 
The inlet and throat gauge pressures are measured to 
be 400 kPa and 130 kPa respectively. Assuming the 
venturimeter to be horizontal and neglecting friction, 
the inlet velocity (in m/s) is ______.� [GATE, 2015]

	30.	 If the fluid velocity for a potential flow is given by 
V(x, y) = u(x, y)i + v(x, y)j with usual notations, then 
the slope of the potential line at (x, y) is �  
� [GATE, 2015]

	 (A)	
v

u
	 (B)	 –

u

v

	 (C)	
v

u

2

2 	 (D)	
u

v
	31.	 A Prandtl tube (Pitot-static tube with C = 1) is used 

to measure the velocity of water. The differential 
manometer reading is 10 mm of liquid column with a 
relative density of 10. 

		  Assuming g = 9.8 m/s2, the velocity of water (in m/s) 
is ______.� [GATE, 2015]

	32.	 A nozzle is so shaped that the average flow velocity 
changes linearly from 1.5 m/s at the beginning to 15 
m/s at its end in a distance of 0.375 m. The magnitude 
of the convective acceleration (in m/s2) at the end of 
the nozzle is _______.� [GATE, 2015]

	33.	 For steady incompressible flow through a closed-con-
duit of uniform cross-section, the direction of flow 
will always be� [GATE, 2015]

	 (A)	 from higher to lower elevation.
	 (B)	 from higher to lower pressure.
	 (C)	 from higher to lower velocity.
	 (D)	 from higher to lower piezometric head.
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Answer Keys

Exercises
  1.  c = b	 2.  C	 3.  A	 4.  A	 5.  C	 6.  C	 7.  C	 8.  D	 9.  C	 10.  C
11.  C	 12.  D	 13.  D	 14.  B	 15.  B	 16.  B	 17.  A	 18.  D	 19.  C	 20.  A
21.  D	 22.  C	 23.  B	 24.  D	 25.  D	 26.  B	 27.  3.10% to 3.15%	 28.  26.2 	 29.  D
30.  C	 31.  B	 32.  B	 33.  B	 34.  D	 35.  B	 36.  A	 37.  C	 38.  C	 39.  D
40.  C	 41.  C	 42.  B	 43.  B	 44.  C	 45.  A	 46.  A	 47.  C	 48.  B	 49.  A
50.  D	 51.  C	 52.  C	 53.  B	 54.  B	 55.  D	 56.  D	 57.  C	 58.  C	 59.  D
60.  A	 61.  C	 62.  A	 63.  C	 64.  D	 65.  B	 66.  B

Previous Years’ Questions
  1.  B	 2.  B	 3.  B	 4.  D	 5.  A	 6.  B	 7.  B	 8.  D	 9.  D	 10.  D
11.  C	 12.  B	 13.  C	 14.  A	 15.  B	 16.  B	 17.  D	 18.  12 	 19.  A	 20.  D
21.  A	 22.  D	 23.  0.95	 24.  C	 25.  C	 26.  A	 27.  C	 28.  1.9 to 2.1		  29.  6
30.  B	 31.  1.30 to 1.34	 32.  540	 33.  D
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