
Chapter 8 
IMPROPER INTEGRALS 

§ 8.1. Improper Integrals with Infinite Limits 

Let the function f (x) be defined for all x ~a and integrable on 
A 

any interval [a, A]. Then Iim ~ f (x) dx is called the improper 
A-+® a 

integral of the function f (x) in the interval [a, + oo] and is de-
+oo 

noted by the symbol ~ f (x) dx. We similarly define the integrals 
a 

B +oo 

~ f (x) dx and ~ f (x) dx. 
-oo -oo 

Thus, 
+oo A 

~ f (x) dx = lim ~ f (x) dx; 
a A-++oo a 

B B 

~ f (x)dx = lim ~ f (x) dx; 
-oo A--oo A 

+ao C B 

~ f(x)dx= Jim ~f(x)dx+ Jim \f(x)dx. 
_ 00 A-+-oo A B-+oo C 

If the above limits exist and are finite, the appropriate integ­
rals are called convergent; otherwise, they are called divergent. 

Comparison test. Let f (x) and g (x) be defined for all x ~a and 
integrable on each interval [a, A], A~ a. If 0 ~ f (x) ~ g (x) for 

"' 
all x ~a, then from convergence of the integral ~ g (x) dx it fol-

a 

"' "' 
lows that the integral ~ f (x) dx is also convergent, and ~ f (x) dx ~ 

a a 
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~ 00 

~ ~ g (x) dx; from divergence of the integral ~ f (x) dx it follows that 
a a 

the integral ~ g (x) dx is also divergent. 
a 

Special comparison test. If as X-+oo the function f (x) ?- 0 is an 
infinitesimal of order 'A> 0 as compared with _!_, then the integral 

x 
+oo 

S f (x) dx converges for 'A> I and diverges for 'A~ I. 
a 

Absolute and conditional convergence. Let the function f (x) be 
"' 

defined for all x ?- a. If the integral ~ If (x) i dx converges. then the 
a 

"' 
integral ~ f (x) dx also converges and is called absolutely convergent. 

a 
In this case 

I] f (x)dx I~~ If (x) I dx. 

00 00 

If the integral ~ f (x) dx converges, and ~If (x) I dx diverges, then 
a a 

"' 
the integral ~ f (x) dx is called conditionally convergent. 

a 
The change of the variable in an improper integral is based on 

the following theorem. 
Theorem. let the function f (x) be defined and continuous for 

x ?- a. If the function x = <p (t), defined on the interval a< t < ~ 
(a and ~ may also be improper numbers -oo and oo ), is monoto­
nic, has a continuous derivative <p' (t) =F 0 and lim <p (t) =a, 

1~ a+O 

Jim cp (t) = + oo, then 
t .. f)-0 

00 ,, 

~ f (x)dx= ~ f (cp(t))<p' (t)dt. 
a a 

Integration by parts involves no difficulties. 
8.1.1. Evaluate the following improper integrals with infinite 

limits or prove their divergence taking advantage of their defini­
tion 

JO 

(a) S xl~x; (b) 
e' 

00 

S dx 
x2 +2x+5' 

-oo 

"' 
(c) S xsinxdx. 

0 
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Solution. (a) By definition, 
ao A 

--= tm -.-= 1m --- = ~• dx 1. s dx 1. ( I 'A) 
xln3 x A ... +«> xln3 x A ... +:so 2ln2 xe• 

e2 e• 

I. ( I I ) I = im 8-212"A =s· 
A ... +:x> n 

(b) By definition, 
ao 0 A 

(' dx 1. s dx + 1. s dx 
j x2+2x +5 = 8 :~ 00 x2+ 2x+5 A~~"' x2 +2x +5 

-oo B 0 

(instead of the point x = 0 any other finite point of the x-axis may 
be taken as an intermediate limit of integration). 

Compute each of the limits standing in the right side of the 
above equality: 

0 · s dx . I x+ I lo I I re ltm x2 + 2x +s = ltm 2 arc tan-2- = 2 arc tan 2 +4 , 
B-+-oo B 8-+-ao B 

A 

. \ dx 1. I x+ J IA :rt I , I ltm 2 + 2 +s = 1m -2 arctan-2- =-4 --2 arctan-2 . 
A ... +oouX X A ... +oo 0 

0 

Hence, 

- 7J 

( c) By definition, 

"' A 
~ x sin x dx = lim ~ x sin xdx. 
0 A->+ooo 

Putting u = x, dv =sin x dx and integrating by parts, we get 

A ( A 
lim I xsinxdx= lirn -xcosxlA+ I cosxdx)= 

A ... +"'6 A ... +"' 0 6 
= lim (- A cos A+ sin A). 

A-+ a:i 

But the last limit does not exist. Consequently, the integral 
"' 
~ xsinxdx diverges. 
0 
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8.1.2. Evaluate the following improper integrals with infinite 
limits on the basis of their definition: 

<Xl "' <Xl s xdx 
(a) Y<x2_3)a; (b) s dx 

x+x3 ; 
s xdx 

(c) V!4xz+ !)a ; 
2 I 0 
<Xl <Xl "' s dx (e) s dx 

(f) S e-x sin x dx. ( d) x2 (I + x) ; x2 -6x+ 10' 
I -a> 0 

Solution. (a) By definition 
<Xl A 

S xdx = Jim s xdx = Jim [_!_ (x2_3)-1/2 12A] = 
Y(x2 -3)3 A-++ "' Y (x2 -3)3 A-++"' 2 -1/;i 

2 2 

=- Jim [ y I -1] = 1. 
A -+ + "' A2-3 

8.1.3. Prove that the integrals of the form 
+oo /1 

~ e-px dx and ~ ePx dx 
a _.,, 

converge for any constant p > 0 and diverge for p < 0. 

8.1.4. Test the integral 

for convergence. 
Solution. The integrand 

"" S dx 
I+ 2~-x~2 +-3x~4 

0 

I 
f(x)= 1+2x2+3x4 

is positive and is an infinitesimal of order A.= 4 as compared with 

_!_ as x-+ oo. Since 4 > 1, the integral converges according to the 
x 
special comparison test. 

8.1.5. Test the integral 

for convergence. 

"' S dx 
x+sin2 x 

I 

Solution. The integrand f (x)= + 1. 2 is continuous and posi-x Sin X 

tive for x ~ 1. 
As X-+ oo the function f (x) is an infinitesimal of order 'A= 1 

as compared with ~ , according to the special comparison test the 

integral diverges. 
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8.1.6. Test the following integrals for convergence: 

(a) ~In (x"+ IJ dx; (b) i ''" ;_ dx; 
I x I I +x x 

oc oo I 

~ I 3+arc sin -
2+cos x d x d (c) ,;·- dx; ( ) ,r x; 

I r x 2 I +x r x 

8.1.7. Test the integral 

for convergence. 

~ 

\
, (x+ lfx+l) dx 

• x2 +2 V x4+ I 
I 

00 

(' arc tan x d 
(e) J-x- x. 

I 

391 

Solution. The integrand is continuous and positive for x ~ 1. 

Determine its order of smallness A. with respect to _!_ as x---+ oo; 
x 

since 

i+-. I J..+-~ 
x + Y x + I I V x x~ 

---'---'----'--=- x ~---=---======= 
x2 + 2 v x4 + I x v· I I , 

1+2 6+10 x x 

the order of smallness 'A= I. According to the special 
00 

test the integral C x+ (x+T dx diverges. 
J x2+2 }/ x4+ I 
I 

8.1.8. Test the integral 

for convergence. 

00 

S dx 

Yx(x-l)(x-2) 
3 

Solution. Since the function 

comparison 

I I 

t (x) = -y~x=3 (=1 -=;=) (=1 -=;==-) = -3- x -V-;=::(=1 -=~=) (=1 -=f=-) 

is an infinitesimal of order 'A= ~ with respect to ; as X--> + oo, 

according to the special comparison test the integral converges. 
8.1.9. Test the integral 

for convergence. 
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Solution. The integrand is continuous and positive for x ~ 2. 

Determine its order of smallness with respect to - as x-+ + oo: x 

V-3 

V~ I 2+X2 
a' =-1-1Xv V x3--I - 1--1-xas xa 

Since the second multiplier has the limit {/2 as X-+ + oo, we 

have /... = !~ < l. Consequently, the given integral diverges. 

8.1.10. Test the integral 

"' 
S (I -cos ~) dx 
I 

for convergence. 
Solution. The integrand 

f(x)= l-cos~=2sin2 J.. 
x x 

is positive and continuous for x ~ l. Since 2 sin 2 ...!... ,..., 2 (J..) 2 =~, 
x x x 

the given integral converges (by the special comparison test). 

8.1.11. Test the integral 

"' I J In e7 +<n-I) dx, n > 0 
I n 

for convergence. 
Solution. Transform the integrand: 

f(x)=ln e++!n-1) =ln[l+ e!n-1]. 

I 

Since the function 
n is an infinitesimal as X-+ oo, then 

I 

ex -I I f (x),..., ,..., - . In other words, n nx 
lim 11<1x) = 2.. . According to 

X-+00 X n 
the special comparison test the given integral diverges. 

8.1.12. Test the integral 

"' S l-4 sin 2x dx 
xs+Vx 

I 
for convergence. 
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S l t · Th f t' f ) l-4 sin 2x h 't · t th o u ton. e unc 10n (x = V c anges 1 s sign oge er 
x3 + x 

with the change in sign of the numerator. Test the intt>gral 
00 r I I - 4 sin 2x I d 
i v3 x 

'1 xs+ x 

for convergence. Since 11 - 4 sin 2x I < ~ and the integral 
xs+V x xs ' 

00 00 

S 5dx . s 11-4 sin 2x I X3 converges, the integral xs+ V x dx converges as well (ac-
t I 
cording to the comparison test). Thus, the given integral converges 
absolutely. 

8.1.13. Prove that the Dirichlet integral 

converges conditionally. 

00 

I=\ sinx dx 
v x 
0 

Solution. Let us represent the given integral as the sum of two 
integrals: 

11 

00 2 00 

I= r sinx dx = s sinx dx + s sinx dx . 
.J x x x 
o O n 

2 

The first is a proper integral (since lim sinx= t). Applying the 
x- 0 x 

method of integration by parts to the second integral, we have 
oo A 

j,. sinx d 1. j" sinx d 
- X= Im - X= 

X A-oo x 
n n 
2 2 

=Jim [-cosxJA -j~cosxdxl =- 500 co~x dx. 
x n x2 x2 

A-oo -
2 n n 

2 _J 2 
00 

But the improper integral (' cos x 
J -:t2 dx converges 
n 
2 

00 

I cos x I & _..!_ and the integral r d: converges. 
x2 __,,x2 ' J x• 

n 
2 

absolutely, since 
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"' . s sin-x Therefore, the mtegral -x-dx converges. 
0 

Reasoning in a similar way it is easy to prove that the integral 
<£) 

(' cosx h \ --dx also converges. Now let us prove t at the integral 
u x 
n 
2 
"-s I si~ x I dx diverges. Indeed, 
it 

2 
I sin x I ~ sin2 x _ I - cos 2x 
-x-~-x-- 2x ' 

but the integral 

"' A "' 

S I - cos 2x d _ 1. I s dx I s cos 2x dx _ 
X - Im - --- -- -

2x A .... <£J 2 x 2 x 
n n n 
2 2 2 

"' 
=- hm In -- n--- --dx I . A I I ri I s cos 2x 

2 A .... oo 2 2 2 x 
n 
2 

"' 
diverges, since lim In A= oo, and the integral S cos 2x dx converges. 

A~~ X 
n 
2 

8.1.14. Prove that the following integrals converge 
oc "' <£) 

(a) ~ sin(x2 )dx; ~ cos(x2)dx; (b) ~ 2xcos(x4)dx. 
0 0 0 

Solution. (a) Putting x =Vt, we find 
CX) <£) J sin (x 2)dx=-} J ~n/ dt. 
0 0 

Let us represent the integral on the right side as the sum of two 
integrals: 

n 

~ 2 "' 

S ~n/ dt =S ~n/ dt+ J ~~ dt. 
0 O n 

2 

Th fi t d · · t I · I' sin t 0 L t e rs summan 1s a proper m egra , s111ce 1m .r- = . e 
1 .... +o r I 
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us apply to the second summand the method of integration by 
parts, putting 

u= 1/Vt, sintdt=dv, 
<Xl <Xl <Xl 

f sin t dt = _ cost I"' _ _!_ s cost dt = _ _!_ s cost dt. 
. Vt Vt 11/2 2 t3/2 2 [3/2 

11/2 11/2 11/2 
. I cost I I 

The last integral converges absolutely, smce ~:::;; t3f2, and 
<Xl 

the integral I ::12 converges. We can prove analogously that the 
n 
2 

<Xl 

integral ~ cos (x2 ) dx is convergent. The integrals considered are cal­
o 

led Fresnel's integrals. They are used in explaining the phenome­
non of light diffraction. 

(b) By the substitution x2 = t this integral is reduced to the 
<Xl 

integral ~cos (t2 ) dt. The latter integral converges as has just been 
0 

proved. 
Note. Fresnel's integrals show that an improper integral can con­

verge even when the integrand does not vanish as x-+ oo. The last 
convergent integral considered in item (b) shows that an improper 
integral can converge even if the integrand is not bounded. Indeed, 
at x = V nn (n = 0, I, 2, ... ) the integrand attains the values 
+ V nn, i.e. it is unbounded. 

8.1.15. Evaluate the improper integral 
<Xl 

5 dx n natural number. 
(I +x2)n • 

0 

Solution. Make the substitutionx=tant, where o:::;;t<;. Then 

x =0 at t =0, x-++ oo as t-+ n2 -0 and x; = __;....t =#= 0. Conse­cos 
quently, by the theorem on changing a variable in an improper 
integral 

n n 
<Xl 2 2 

S (I ::2)n 5 se:2nt X sec2 t dt = 5 cos2n- 2 t dt. 
0 0 0 

On changing the variable we obtain the proper integral which 
was computed in Problem 6.6.9. 
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Therefore, 
005 d J n/2, n = I, 
-~x~ = 1·3·5 ... (2n-3) n I 

0 (I +x2)n \ 2·4·6 ... (2n-2)' 2' n > · 
"' 

8.1. t 6. Compute the integral I = S 1 ~ x4 dx. 
0 

Solution. Apply the substitution 

X= 1/1; dx=-(1//2)df; 11 =oo, 12 =0; 

If another integral I is added to the right and left sides then we 
get 

00 00 

S I + 12 s I 112 + I 
2/= 1+t4 di= 12+11t2dl. 

0 0 

Make the substitution z=t-1/t, (l+I/t 2 )dt=dz. Then, as 
t-+o, z--+-oo and as t-+ oo, z-+ oo. Hence, 

1500 dz I[· \0 dz . SA dz] I =2 2+2 =2 ltm 2+2 + ltm 2+2 = 
Z 8-.-oo• Z A-.+oo Z 

- 00 8 0 

I l' t B + I l" t A = - .r- 1m arc an .r- .r- 1m arc an v- = 
2 I' 2 8-.-oo I' 2 2 I' 2 A -.+oo 2 

=2~2 (;+~)=2;2. 
8.1. 17. Evaluate the following improper integrals: 

Cf) 

(' Jn x 
(a) J 1 +x2 dx; 

0 

00 

(b) s e-x• x2m+1 dx. 
0 

8.1.18. Compute the integral 

accurate to two decimal places. 
Solution. Represent the given integral in the form of a sum of 

two integrals 



§ 8.2. I mp roper Integrals of Unbounded Functions 397 

C.Ompute the former with the required accuracy, using Simpson's 
formula, and estimate the latter. Since for x ~ 1 we have 

V a 2+ I a/2 0 < x -x < _x_ =x-7/2 
x•+x2 + I x• ' 

then 
00 

0< 12 = 5 x- 7 t2 dx=; N- 012. 

N 

At N = 7 we get the estimate 12 < 5
2 x r, < 0.0031. 

49 7 
C.Omputation of the integral 

7 

(' V x3 -x2 + I 
I 1 = .) x• + x2 + I dx 

I 

by Simpson's formula for a step h = 1 gives 

s. = 0.2155, 
. h 
and for a step 2 = 0.5 

S0 . 0 =0.2079. 
Since the difference between the values is 0.0076, the integral / 1 

gives a more accurate value S0 • 0 = 0.2079 with an error of the order 
0 ·~76 '.:::'. 0.0005. 

C.Onsequently, the sought-for integral is approximately equal to 

I~ 0.208 

with an error not exceeding 0.004, or I= 0.21 with all true deci­
mal places. 

§ 8.2. Improper Integrals of f:Jnbounded Functions 

· If the function f (x) is defined for a~ x < b, integrable on any 
interval [a, b -e]. 0 < e < b-a and unbounded to the left of the 
point b, then, by definition, we put 

b b-e 

~ f (x) dx = lim ~ f (x) dx. 
a e~+o a 

If this limit is existent and finite, then t.he improper integral is 
said to be convergent. Otherwise it is called divergent. 

Analogously, if the function f (x) is unbounded to the right from 
the point a, then 

b b 

~ f (x) dx = Jim ~ f (x) dx. 
a 8->-tOa+e 
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Finally, if the function is unbounded in the neighbourhood of an 
interior point c of the interval [a, b], then, by definition, 

b c b 

~ f (x) dx = ~ f (x) dx + ~ f (x) dx. 
a a r 

Let the function f (x) be continuous on the interval [a, b] except 
at a finite number of points. If there exists a function F (x) conti­
nuous on [a, b] for which F'(x)=f(x) except at a finite number 
of points, then the Newton-Leibniz formula 

b 

~ f (x) dx= F (b)-F (a) 
a 

holds good. 
Sometimes the function F (x) is called a generalized antiderivative 

for the function f (x) on the interval [a, b]. 
For the functions defined and positive on the interval a~ x < b 

convergence tests (comparison tests) analogous to the comparison 
tests for improper integrals with infinite limits are valid. 

Comparison test. Let the functions f (x) and g (x) be defined on 
the interval a~x<b and integrable on each interval [a, b-e], 
0 < e <b -a. If 0 ~ f (x) ~ g (x), then from the convergence of the 

b b 

integral ~ g (x) dx follows the convergence of the integral ~ f (x) dx, 
a a 

" b 

and ~ f (x) dx ~ ~ g (x) dx; from the divergence of the integral 
a a 

b b 

Sf (x) dx follows the divergence of the integral 5 g (x) dx. 
a a 

Special comparison test. If the function f (x) ~ 0 is defined and 
continuous on the interval a~ x < b and is an infinitely large 

quantity of the order /.. as compared with b 1 x as x -b-0, then 
b 

the integral 5 f (x) dx converges for A.< 1 and diverges for /.. ~ 1. 
a 

In particular, the integral 
b 

S dx 

<b-x)' 
a 

converges for 'A < 1 and diverges for A.~ I. 
Absolute and conditional convergence. Let the function f (x) be 

defined on the interval a~ x < b and integrable on each interval 
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/J 

[a, b-e]; then from the convergence of the integral ~If (x) / dx 
a 

b 

follows the convergence of the integral ~ f (x) dx. 
a 

b 

In this case the integral ~ f (x) dx is called absolutely convergent. 
a 

b b 

But if the integral ~ f (x) dx converges, and the integral ~ / f (x) / dx 
a a 

b 

diverges, then the integral ~ f (x)dx is called conditionally convergent. 
a ,, 

Analogous tests are also valid for improper integrals ~ f (x) dx, 
a 

where f (x) is unbounded to the right from the point a. 
8.2.1. Proceeding from the definition, evaluate the following 

improper integrals (or prove their divergence): 

e 

(a) r dx 

·t x Vlnx ' 

:rt 

2 r dx 
(b) j cos x ; 

0 
3 2 

(c) S Jf 4x~x2 -3; (d) S YI ld~x2 I ' 
I 0 

fl xa+Vx-2 SI d 
(e). 5/xa dx; (f) l~x:f' 

0 v 0 

Solution. (a) The integrand f (x) = 3V1 is unbounded in the 
x lnx 

neighbourhood of the point x = 1. It is integrable on any 
(I+ e, e], since it is a continuous function. 

Therefore 

Se dx 1. Se dx 1. [ 3 v-1 2 le J ---= 1m = 1m - n x = 
xVlnx 8-++0 xVlnx 8-++0 2 lte 

I 1+8 

=um f~-~V1n2 <t+e)j=~. 
8 ... +O _ 2 2 2 

interval 

(b) The integrand f ( 11:) = - 1- is unbounded in the neighbourhood 
cos x 

of the point x = ; and integrable on any interval [ 0, ~ - e j as 
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a continuous function. Therefore 

:rt :rt 
2 2-e 

S~= lim (' .!!=_= 
cos x 8-++0 J cos x 

0 0 

= lim lntan(i+~)J~-e = lim lntan (~-;) = oo. 
e ... +o o ..... +o 

Hence, the given integral diverges. 
(c) The integrand is unbounded in the neighbourhood of the points 

x = 1 and x = 3. Therefore, by definition, 

3 2 3 

S ~ =S ~ +S ~ 
Jf 4x-x2 - 3 Y 4x-x2-3 V4x-x2 -3 

I I 2 

(instead of the point x = 2 we can take any other interior point of 
the interval [ 1, 3)). Let us now compute each summand separately: 
2 2 

-r:=== = tm = tm arc sm (x- = S dx 1· \' dx 1· . 2) 12 
Jf4x-x2 -3 e ... +o u Yl-(x-2)2 e-+o l+e 

l I+ e 

3 3-• 

-r:==== un S dx 1. \' 
. Y 4x- x2 -3 e-+o ,, 
2 2 

Hence, 
3 

= Jim [0-arc sin (e-1)] =i; 
e ... +O 

-;:::===== hm arcsm(x-2) = dx • . 13-• 
YI- (x-2)2 e ... +o 2 

= Jim [ . ( 1 ) OJ n e-+o arcsm -e - = 2 . 

S Y;;:::4=x""'~""x:r;i2 ""-~3 = ~ + ~ = n. 
I 

(d) The integrand f (x) = V 1 -. is unbounded in the neigh-
! I -x2 1 

'bourhood of the point x= I, which is an interior point of the 
inkrval of integration. Therefore, by definition, 

2 I 2 

S _d_x -s dx +S dx 
YI l-x2 1- Yi l-x2 1 YI l-x2 1' 

0 0 I 
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Evaluate each summand separately. If 0 ::s;;;;x < l, then 
I I 

S dx r dx 

Yi 1-x2 1 = J YI -x2 

0 0 

1-e 
lim r dx 

s-++O J YI -x2 = 
0 

401 

= lim arcsinxl 1
-

0 = lim [arcsin(l-e)-0]=~. 
E-++0 0 8-++0 

If I < x ::s;;;; 2, then 
2 2 2 

--;=:=== = = 1n1 = S dx f dx 1. s dx 
Yil-x2 1 , Yx2 I ~ .... +o Yx2 I 

I I I +e 

= lim In (x + V x2 - 1) j2 = 
8-++0 l+t 

= lim [ln(2+V3)-ln(l+e+V(l+e)2 -l)]=ln ~2 + V3). 
e .. +o 

Hence, 
2 

S y dx = :rc2 +In (2 + V3). 
I 1-x2 \ 

0 

(e) Represent the given integral as a sum of three items, divid-
ing each term of the numerator by V x3 , 

I I I I 

(" xa+.Vx-2 dx= (' x12t• dx+ (" ~-2 (" ~. 
J V xa J J x4/IO J xa/& 
0 0 0 0 

The first summand is a proper integral evaluated by the Newton­
Ldbniz formula: 

I 

x12t• dx--x111• =-S 5 I' 5 -17 0 17. 
0 

The second and third summands are unbounded to the right of the 
point x = 0. Therefore, 

I I 

r ~= lim (' ~= lim ~ xll/101 1 = 15 ; 
.J x4/ JO e .... + o J x'I u e .... + 0 11 e 11 
o e 

analogously, 
I I 

-= tm -= tm -x2• =-. j,. dx 1. s dx 1. 5 / I' 5 
x310 e .... + o x310 e .... + o 2 s 2 

O e 
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Hence, 

(f) Represent the integrand f (x) =I~ x3 in the form of a sum 

of partial fractions; 

I I I [ I x+2 ] 
f (x)= I-x3 = (1-x) (I +x+x2) =3 1-x +I +x+x2 • 

I I I 

Then S 1 dxx3 = ~ S 1 d\+~S 1 ~;~x2 dx. Since 
0 0 0 

I 1-8 

S dx 1· s dx 1· I · 1 1 • -e -1-= 11n -1-=- tm nt -x) =oo, 
-x e-+o -x e-+o 0 

0 0 

the given integral diverges. There is no need to compute the second 
summand representing a proper integra I. 

Note. Evaluation of the improper integrals from Problem 8.2.1 
(a to f) can be considerably simplified by using a generalized anti­
derivative and applying the Newton-Leibniz formula. For instance, 

in Problem 8.2.1 (a) the function F (x) = ; Vln2 x is continuous on 

the interval [ 1, e] and differentiable at each point of the interval 
1 <x~e, and F'(x)=f(x) on this interval. Therefore 

e 

r~_d_x_=~ v Jn2xle = ~. 
J xV In x 2 1 2 
I 

8.2.2. Proceeding from the definition, compute the following 
improper integrals (or prove their divergence): 

Ja 2/;r. J 2xdx (b) s . I dx 
(a) (x2-a2)2/3; Sin-·-· 

x x2' 
0 0 

I 6 J n dx (d) s v(::.x)2 ; 
(c) COSI-x'(I-x)2; 

0 2 
-2 2 

(e) s dx 
xJfx2-l 

(f) 5 dx 
X JnP X • 

-1 I 
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8.2.3. Evaluate the following improper integrals: 
3 2 --

\~ x 2 dx 

(a) , Y9- x2 ; 

-3 

(b) .f y;+;dx. 
0 

Solution. (a) Find the indefinite integral 

S ~2~xx2 = ~ ( 9 arc sin ~ -x V9-x2 ) + C. 

The function F(x) = +( 9 arc sin~ -x V9-x2 ) is a generalized anti­

derivative for f (x) = V x2 
. on the interval (-3, 3], since it is 

9-x2 

continuous on this interval and F' (x) = f (x) at each point of the 
interval (-3, 3). Therefore, applying the Newton-Leibniz formula, 
we get 

3 

r _!_2 dx = _!_ ( 9 arc sin .:.._x V9-x2 ) 1
3 = -i- n. , l y 9- xz 2 3 - 3 2 

-3 

(b) Transform the integrand 

f (x) = J/-2+x = 2+x = 2 + x • 
2 - x V 4 - xz V 4 - xz V 4 - xz 

The indefinite integral is equal to 

S (;+~ dx=2 arc sin~ -V4-x2 +C. 

The function F (x) = 2 arc sin ~ -V 4-x2 is a generalized anti deri­

vative for f (x) on the interval [O, 2], since it is continuous on 
this interval and F' (x) = f (x) on the interval [O, 2). 

Therefore, applying the Newton-Leibniz formula, we get 
2 

\ {;:; dx = ( 2 arc sin ;-V4-x2 )/: =n+2. 
'6 

8.2.4. Test the integral 
1 

S dx 

xVx 
-1 

for cm1vergence. 
Solution. At the point x = 0 the integrand goes to infinity. Both 

0 1 

integrals S :>- and \' :x __ diverge, since 'A=~ > I. Consequent-
x v x .xVx 

-1 0 
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ly, the given integral diverges. If this were ignored, and the New­
ton-Leibniz formula formally applied to this integral, we would 
obtain the wrong result: 

I 

5 xvx=(-vx)[I =-G. 
-I 

And this is because the integrand is positive. 

8.2.5. Test the following improper integrals for convergence: 
I I 

\ 
ex b) \sinx+cosxd 

(a) .r dx; v· x. . r I - cos x • 0 I - xa 
0 0 

Solution. (a) The integrand is infinitely large as x __. + 0. Since 

· v- x V2 V 1-cosx= 2sin 2 ,...,, 2 x as x--+o, 

the integrand has the order /... = I as compared with ~ . According 

to the special comparison test the given integral diverges. 
(b) Rewrite the integrand in the following way: 

f(x)=:inx+cosx ·~.-,-'-
Vt +x +x2 v1-x 

This function is infinitely large as x ~I, its order is equal 

to /... = ~ as compared with 1 
1 x, since the first multiplier tends 

to 1 as X-> 0. Therefore, by the special comparison test, the given 
integral converges. 

8.2.6. Test the following improper integrals for convergtnce: 
2 

(a) .\ 
0 
I 
I" 

In (1 + i/X:l) 
sin x 1 dx; e -

( c) \ cos x d~ . 
, tf x -StnX 
0 

2 

\ Yx2 +I (b) 3 • dx; 
~ V l6-x4 

I 

Solution. (a) The integrand f (x) =In ( 1 t Vxa) is positive in the 
e" x_ l 

interval (0, 2) and is not defined at x =0. Let us show that 
Jim f (x) = oo. Indeed, since 
a: .... +o 
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we have 
( vxa) 5 .x3 

Jim In 1+ =Jim L = lim vl-= oo. 
x-+ o e•m x - I x -+ O x x -+ o X2 

At the same time we have shown that f (x),...., V~x2 as x-.. 0, i.e. 

that f (x) is an infinitely large quantity of order A.= { < l as com­

pared with _.!._ • Consequently, by the special comparison test, the 
x 

given integra 1 converges. 
(b) Determine the order of the infinitely large function f (x) = 

= ;X2+1 in the neighbourhood of the point x = 2 with respect 
16-x4 

l 
to 2_x. To this end transform the expression for f (x): 

VX2+1 Yx2+T l 
f (x) = v 16- x'- v 4+ x2 v2+x v2-x . 

Hence it is obvious that the function f (x) is an infinitely large 

quantity of order A.= f < l as x-.. 2. According to the special 

comparison test the given integral converges. . oosx 
(c) The integrand f (x) = V . is unbounded in the neigh-

x - Sill X 

bourhood of the point x = 0. Since 
cos x cos x l 

f(x) = V x·-sinx Vx ( 1-sV;) ,..., Vx (x-- + O), 

as x __. + 0 the function f (x} is an infinitely large quantity of order 

A.= { < l as compared with ~ and, by the special comparis0n test, 

the integral converges. 

8.2.7. Investigate the following improper integrals for conver-
gence: 

I I• ex dx 

(a). V1-x3; 
0 

(c) (· vi- l ~ x' dx; 

ii 
I 

(e) r dx . J x-sinx' 
0 

I I' x 2 dx 

(b) ,, V(l-x2)o' 
0 
I 

J. dx 

(d) l-x3+x0 ' 

0 

(f) r In ( v; + 1) d 
I tan x X. . e -1 
0 
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8.2.8. Prove that the integral 

.converges. 
Solution. For 0 < x::::;;; 1 

I 

~I . I 
sm­
_x_dx 

0 Vx 

But the integral .f ;x converges, therefore, by the comparison 
0 

I 

test, the integral SI sin~¥x) I dx also converges, and consequently 
0 

the given integral converges absolutely. 

8.2.9. Prove the convergence of the integral 

and evaluate it. 

" 2 
l=~lnsinxdx 

0 

Solution. Integrate by parts, putting u =In (sin x), dx = dv: 
;r n: 31 

:rt -
2 - 2 2 

r lnsinxdx=xlnsin x 12 -f x c?s x dx = - s -t x dx. 1 sm x an x 
0 ° 0 0 

Since Jim _x_ = l, Jim -1 x = 0, the last integra I is a proper 
x-+otanx ., anx 

x- 2-0 
one. Consequently, the initial integral converges. 

Now make the subst ltution x = 2t in integral /. Then dx = 2dt; 

x = 0 at /1 = O; x = i- at t2 =-=;;.. On substituting we get: 

n/2 :rt/4 n/4 

~ lnsinxdx=2 ~ lnsin2tdt=2 ~ (ln2+lnsint+lncost)dt= 
0 0 0 

:rt/4 '1/4 

= 2t In 2 j~14 + 2 ~ In sin t dt + 2 ~ In cost dt = 
0 0 

'1/4 :rt/4 

= ~ In 2 + 2 S In sin t dt + 2 S In cost dt. 
0 0 
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In the last integral make the substitution t =n/2-z. Then 
dt = - dz; t = 0 at z1 = n/2; t = n/4 at 22 = n/4. Hence, 

N4 ~4 ~2 

2 S lncostdt ~=-2 S lncos(;-z)dz=2 5 lnsinzdz. 
O N2 ~4 

Thus, 
:rt/2 :rt/4 :rt/2 

I= 5 lnsinxdx=iln2+2 S lnsintdt+2 S lnsinzdz= 
o o n/4 

Whence 

:rt/2 

= ; ln2 + 2 S In sin t dt = -i In 2 + 21. 
0 

n:/2 

I= S In sin xdx = - ; In 2. 
0 

8.2. IO. Compute the integral 
I r xn dx J VI_ x2 (n a natural number). 

0 

Solution. The integrand is an infinitely large quantity of order 

A.={ with respect to dx as x---.l-0. Therefore, the integral con­

verges. 
Make the substitution x =sin t in the integral. Then dx =cost dt, 

x = 0 at t = 0, x = l at t = n/2. On substituting we get 
t N2 ~2 

1'_xndx =j' sinnt.costdt= r sinntdt . 
.) y J -x~ cos t .) 
0 0 0 

The last integral is evaluated in Problem 6.6.9: 

:rrJ/,2 . { n n 1 • ~=~ ... --} ~ , n even, 
sm" t dt = 

n-1 n-3 2 
o -- • --2 ••• -3 , n odd. n n-

Consequently, the given integral is also computed L>y the same 
formula. 

8.2.11. Evaluate the following improper integrals (or prove their 
divergence): 

(a) J dx 
xtnx; 

2 

b j' dx 
( ) x Vlnx ; 

1 

1 

C 3x2 +2 
{c) J VX'i dx. 

0 
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8.2.12. Compute the improper integral 
1 

In=~ xm innxdx (n natural, m > -1). 

Solution. At n = 0 the integral is evaluated directly: 
1 

S xm +1 11 I 
lo= xmdx=m+I o=m+I' 

0 

For 11 > 0 integrate In by parts, putting 
u =inn x; dv =Xmdx; 

du - 11 lnn-i xdx · - X' 
xm+1 

V=m+I" 
w~ get 

This gives a formula by means of which one can reduce In to / 0 for 
any natural n: 

n n(n-1) (-l)nn! 
In= - m+ If n-1=+(m+1)2 I n-2 = · · · = (mf- J)n f o 

And finally, 
(-l)n n! 

fn=(m+l)n+l' 

8.2.13. Compute the integral 
2.0 

S e-x dx !-
- v2+x-x2 

0.3 

accurate to 0.03. 
Solution. The integral has a singularity at the point x= 2, since 

2+x-x2 =(2-x)(l+x). Let us represent it as the sum of two in­
tegrals: 

2-e 

I= , S e-x dx 

1 v2+x-x2 
0. 3 

Now compute the first integral to the required accuracy, and estimate 
the second one. For e ~ 0.1 we have 

2 3 :J 

e- 1 •9 s dx 4 4 4 O<l 2 <v- v==0.115x 3 e =0.153e, 
2.9 2-x 

2-e 
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Putting 8=0.1, we get the estimate / 2 < 0.028. Evaluation of the 
integral 

1.9 

S e-"dx I -
1- v2+x-x2 

o.a 

by Simpson's formula with a step h = 0.8 gives 

so.8 = o.519, 

and with a step h/2 = 0.4, 
S 0 • 4 =0.513. 

And so, integral I 1 gives the more accurate value, 0.513, with an 
error not exceeding 0.001. Taking into consideration that integral / 2 

is positive, we round off the obtained value to 

I ::::::::0.52 

with an error not exceeding 0.03. 
Note. By putting 8=0.01, we get the estimate / 2 < 0.005, but the 

computation of the integral 
1.99 

I - s e-x dx 
1- v2+x-x2 

0.3 

would involve much more cumbersome calculations. 

8.2.14. Investigate the following integrals for convergence: 
1 f dx 

(a) .r . ; 
• y stnx 
0 

1 

(c) scos2 xdx. 
(l-x)2 ' 

0 

1 

(d) s tan xdx . 
YI x2 ' 

(e) 

0 

6 

5 

S sin xdx 

Yll-x2 1· 
1 

2 

§ 8.3. Geometric and Physical Applications of Improper 
Integrals 

8.3.1. Find the area of the figure bounded by the curve y=-1 
1 

2 +x 
(the witch of Agnesi) and its asymptote. 

Solution. The function y= 1 ~x2 is continuous throughout the en­

tire number scale, and Jim y = 0. Consequently, the x-axis is the asymp-
x-oo 

tote of the given curve which is shown in Fig. 118. It is required 
to find the area S of the figure that extends without bound along the 
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x-axis. In other words, it is required to evaluate the improper integ-
oo 

5 dx 
ral S = 1 +x~ . By virtue of the symmetry of the figure about the 

- 00 

y-axis we have 
00 00 

S=l 1 ~xx2 =2l 1 ~~x2 =2 Jim arctanx!A=2·~=Jt. J I J I A-oo 0 
- 00 0 

8.3.2. Find the surface area g(~nerated by revolving about the 
x-axis the arc of the curve y = e- x between x = 0 and x = + oo. 

y 
1 

-1 0 
Fig. 118 

Solution. The area of the sur­
face is equal to the improper in­
tegral 

+ 00 

S=2:n: S rxVt+e- 2"dx. 

Making the substitution e-x = t. 
dt=-rx dx, we get x=O at 

t = t, x = oo at t = O; hence 
I 

S = 2:n: S Vt+ fi dt = 2:n:-{ [t Vt+ t2 +In (t +Vt+ t 2 ))~ = 

0 

=n rv·2+ In(l + V~2)J. 
8.3.3. Compute the area enclosed by the loop of the folium of Des­

cartes 
x3 + y3 -3axy = 0. 

Solution. The folium of Descartes is shown in Fig. 86. Let us re­
present the curve in polar coordinates: 

x = p cos cp; y = p sin cp. 

Then p3 cos3 cp + p:i sin 3 cp- 3a p2 cos cp sin cp = 0, whence, cancel I ing p\ 
we get 

3a cos <p sin <p 
P = cosa <p+ sina <p • 

Since the loop of the curve corresponds to the variation of cp between 

0 and i the sought-for area is equal to 

n 
2 S=+s 

0 

n 

2 _ 9a2 52 sin2 <p cos2 <p 
P dcp - 2 (sina <p +cos a <p)2 dcp. 

0 
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To evaluate the obtained proper integral make the substitution 
d~ rr tan q.> = t; -.,- = dt; q.> = 0 at t = 0, c:p = -2 at t = oo. Thus we get 

cos- <p 

3a2 • [ I ] A 3 , -2 lun 1+ a =-2 a-. 
A ... oo t o 

8.3.4. Find the volume of the solid generated by revolving the cis-

soid y2 = -2 xa about its asymptote x = 2a. 
a-x 

Solution. The cissoid is shown in Fig. 119. Transfer the origin of 
coordinates to the point 0' (2a, 0) without changing the direction of 
the axes. In the new system of coordinates 
X = x-2a, Y = y the equation of the cissoid !I 
has the following form: 

y 2 = (X +2a) 3 

-X 

The volume of the solid of revolution about 
the axis X = 0, i. e. about the asymptote, is 
-expressed by the integral 

00 "' 

v = :n; ~ x2 dY = 2n ~ x2 dY. 
- "' 

0 2a1 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Let us pass over to the variable X. For this 
purpose we find dY = Y' dX. Differentiating the 
equation of the cissoid in the new coordinates 
.as an identity with respect to X, we get Fig. 119 

2yy' =- 3 (X+2a) 2 X-(X+2a)a =- 2 (X+2a)2 (X-a) 
x2 x2 

whence for Y > 0 we have 

Hence, 

Y' __ (X+2a)2 (X-a) __ (X+2a) (X-a) 
- X2Y - x2 v -(X +2a)JX • 

0 

V=-2n f (X+2a)(X-a) dX. 
, V- (X+2a)/X 

-2a 

Make the substitution (X + 2a)/X = - t2 ; X = -2a at t = 0, X =0 at 
l=oo. Then: 

2a 4at 2at 2 

X=- 1+ 12 ; dX=(l+t2)2 dt; X+2a= l+t2 ; 

3a+at2 • 
X-a=- 1+12 ' 
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whence 
00 

r 2at 2 (3a + at 2) 4at di 
V = 2n j t (I+ 12) (I + 12)( I + 12)2 = 

0 

00 00 I. /2 In /4 
= 48:rta3 • (I + 12) 4 dt + l 6na3 • (I+ 12 ) 4 dt. 

0 n 

Putting t=tanz, dt=sec 2 zdz, Wl' get t=O at z=O, t=oo at 
z = n/2. Hence, 

N2 N• 

V = 48na 3 ~ sin2 z cos 4 z dz+ 16na3 ~ cos2 z sin 4 z dz= 
0 

JT/2 JT/2 

= 48:rca3 ~ cos4 z dz - 48na3 ~ cos6 z dz+ 
0 0 

1t/ 2 1t/ 2 

+ 16na3 ~ sin4 zdz-16na3 ~ sin 6 zdz. 
0 0 

1t/2 

Using the known formulas for the integrals ~ sin" xdx, 

JT/2 

~ cosn xdx (see Problem 6.6.9), we get 
0 

V 64 3 n I x3 64 3 n I x3x5 2 2 3 
= na 2 · 2x4- na 2 · 2x4x6 = 31 a· 

8.3.5. Prove that the area of the region bounded by the curve 

y = V 1 , the axis of abscissas, the axis of ordinates and the 
l-x2 

asymptote X= 1 is finite and equals ~ . 

8.3.6. Prove that the area of the region bounded by the curve 

y = 3V1 ., , the axis of abscissas and the straight lines x = ± 1 is 
x-

fi n i te and equals 6, and the area of the region contained between 
I 

the curve y= 2 , the axis of abscissas and the straight lines x= +1 
x 

is infinite. 

8.3.7. Find the volumes of the solids enclosed by the surfaces 
generated b.y revolvi'ng the lines y = t-x, x = 0, y = 0 (0 ~ x < + oo ): 

(a) about the x-axis, 
(b) about the y-axis. 
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x3 
8.3.8. Compute the area contained between the cissoid y 2 = 2a-x 

and its asymptot<:>. 

8.3.9. Compute the area bounded by the curve y = e- 2x (at x > 0) 
and the axes of coordinates. 

8.3.10. Find the volume of the solid generated by revolving, about 

the x-axis, the infinite branch of the curve y = 2 ( ~ - : 2 ) for x ~ l. 

8.3.11. Let a mass m be located at the origin 0 and attract a 
material point M found on the x-axis at a distance x from 0 and 

having a mass of I, with a force F = ; (according to Newton's 

law). Find the work performed by the force F as the point M moves 
along the x-axis from x= r to infinity. 

Solution. The work will be negative, since the direction of the 
force is opposite to the direction of motion, hence 

oo N 

A = f - ~ dx = lim f - ~ dx = - .!?::. • J X N-+ooJ x r 
, 1 

During the reverse displacement of the point M from infinity to 
the point X= r the force of Newtonian attraction will perform posi-

tive work !!!_. This quantity is called the potential of the force r 
under consideration at the point x = r and serves as the measure of 
potential energy accumulated at a point. 

8.3. 12. In studying a decaying current resulting from a discharge 
"ballistic" instruments are sometimes used whose readings are pro-

oo 

portional to the "integral current intensity" g= ~I dt or the "inte-
o 

00 

gral square of current intensity" S = ~ / 2 dt and not to the instan-
o 

taneous value of the current intensity I or to its square / 2 • Here t 
is time measured from the beginning of the discharge; I is alterna­
ting-current intensity depending on time. Theoretically, the process 
continues indefinitely, though, practically, the current intensity be­
comes imperceptible already after a finite time interval. To simplify 
the formulas we usually assume the time interval to be infinite in 
all calculations involved. 

Compute g and S for the following processes: 
(a) I= ! 0rkt (a simple aperiodic process); k is a constant coeffi­

cient, which is greater than zero. 
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(b) I= I 0rkt sin ffit (simple oscillating process); coefficients k and U> 

are constant. 
Solution. 

"' A 

(a) g=S l 0rk 1dt= lim r t 0rk 1dt=l0 lim r-~-k1 ] 0A=l0/k; 
A-+oo.J A-+oo 

0 0 
00 

S= 12e-2ktdt=-o . j. /2 

0 2k , 
0 

oo A 

(b) g= ~ I,rk 1 sinffitdt= lim \ ! 0rk1 sinffitdt= 
o A-+oo<~ 

_ Io 1 · [( . t k · -kt] A_ I oUJ • -(f)2 +k2 1m wcosrn+ srnwt)e 0 -(f)~+k2 ,. 
A ~ oo 

oo A 

S = l /~e-2"1 sin2 cot dt = Jim (' /~ e-2kt 1-c~s 2 @I dt = J A-+ooJ 
0 0 

= - :! )~m00 [ 1- UJ 2 ~k2 (k2 cos 2ffit + wk sin 2wt) J e- 2"1 1: = 

l~w2 

8.3.13. Let an infinitely extended (in both directions) beam lying 
on an elastic foundation be bent by a concentrated force P. If the 
x-axis is brought to coincidence with the initial position of the axis 
of the beam (before the latter is bent) and the y-axis is drawn 
through the point 0 (at which the force is applied) and directed 
downwards, then, on bending, the beam axis will have the follo­
wing equation 

y = ~; e-a1x1(cosax+ sin a J x I), 

where a and k are certain constants. Compute the potential energy 
of elastic deformation by the formula 

00 

W =Ee ~ (y")2 dx (£, e canst). 

Solution. Find y": 

y" = p:• e-ax [(cos ax+ sin ax)-2 (-sin ax+ cos ax)+ 
p 3 + (-sill ax-cos ax)]= Te-ax (sin ax- cos ax). 
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Hence, 

"' 
P2a.6£eS W =-k-2 - e- 2ax (l-2 sin ax cos ax) dx= 

0 

p2a,sEe [ I 2a. J p2a,5£e 
= -k-2 - 2a.-4a.2 +4a.2 =~. 

8.3.14. What work has to be performed to move a body of mass m 
from the Earth's surface to infinity? 

8.3.15. Determine the work which has to be done to bring an 
electric charge e2 = l from infinity to a unit distance from a 
charge e1 • 

§ 8.4. Additional Problems 

8.4.1. Prove that the integral 

"' S dx 
xP lnq x 

I 

converges for p > l and q < l. 
8.4.2. Prove that the integral 

00 

~ x;P sin xq dx, q =I= 0 

converges absolutely for -1 < (p+ l)/q < 0 and converges condi­
tionally for 0 ~ (p + l )/q < l. 

8.4.3. Prove that the Euler integral of the first kind (beta func­
tion) 

I 

B (p, q) = ~ xP- 1 (l-r)q- 1 dx 
0 

converges for p > 0 and q > 0. 
8.4.4. Prove that 

T 

lim -j,-J'sinax-sin~xdx=O, 
r ... oo 

0 

if I a I =1= I~ I· 
8.4.5. Prove that 

"' 
I= S e-x' · x2n+ 1 dx = ~I (n natural). 

0 
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00 

8.4 .6. Prove that if the integra I J f ~x) dx converges for any posi-
a 

tive a and if f (x) tends to A as x--+ 0, then the integral 
00 

\ f (ax)-f (~x) dx (ex> 0, p > 0) 
C' x 
0 

converges and equals A In (P/a). 

8.4.7. Prove that 
00 Oh 

Se- M_e-~x dx = j' cos ax -cos~x dx =In 1_. 
x x a 

0 II 

8.4.8. At what values of m does the integral 

verge? 
:rt 

JT/ 2 

j. I -cos x dx 
xm con-

8.4.9. Prove that the integral J (s~:.t? converges if k < I, and 
0 

diverges if k ;::, I. 
00 

S sin x ( lx-s cos x) dx 8.4. 10. Prove that the integral 
0 

0 < s < 4, and converges absolutely if I < s < 4. 

8.4. 11. Suppose the integral 
+ 00 

~ f (x) dx 
a 

converges and the function c:p (x) is bounded. 
Does the integral 

+ 00 

~ f (x) c:p (x) dx 
a 

necessarily converge? 

converges if 

(I) 

(2) 

What can be said about the convergence of integral (2), if integ­
ral (I) converges absolutely? 

8.4.12. Prove the validity of the relation 

f (x) = 2f (n/4 +x/2)-2f (n/4-x/2)-x In 2, 
x 

where f (x) = - ~ In cosy dy. 
0 
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Compute with the aid of the relation obtained 

2 

f ( ~ ) = - J In cos y dy. 
0 

8.4.13. Deduce the reduction formula for the integral 
lT 

2 

In=~ lncosx·cos2nxdx (n natural) 

and evaluate this integral. 

417 



ANSWERS AND HINTS 

Chapter I 

1.1.5. (b) Hint. Prove by the rule of contraries, putting 2=p~, wherepandq 
q-

are positive integers without common multipliers. 
s2 -2 

1.1.8. Hint. You may take k=~. 

1.1.9. (b) x;?4, x~O; (c) -4~x~2. 
I.I.I I. (a) x < - I or x;? I. Hint. The equality is valid for those values 

x-1 
of x for which x+ 1 ? 0; (b) 2 ~ x ~ 3. Hint. The equality hold•;lrue for those 

values of x for which x2 -5x+6~0. 

1.1.13. (a) x < ; or x > 8; (b) x < 0 or 0 < x < 5. Hint. The inequality 

I a-b \ > I a 1-1 b I holds good when a and b are opposite in sign or when 
la I< b I· 

O· a+ 2 . ( 3 ) 3 I) 
1.2.3. ' [a (a2+3a+3)]' a +a (a - . 

? 2. (a+h)3 .r- . ¥2+ 1 . 1.2.4. b-+ab+a, - 8--1. 1.2.6. 4 r 2+ I, --2-, 

1.2.11. f(x)=I0+5x2x. 

1213 ,(3 ) = 45x2+1. f( 3)=5x6 +1. 
· · · x 2 - 3x ' x 2 -- x3 ' 

3f(x)=l5x2 +3; [f(x)]3=125x6 +75x4+15x2+1. 
2-x 8-12x+6x2-x3 

l.2.14.f(2)=5;f(0)=4;f(0.5)=4;f(-0.5)= ~3 ; f(3)=8. 

2 VTO-s. 

1.2.15. Hint. Fromxn+ 1 =xn+d it follows that Yn+i=axn+•=axn+d=axnad. 
1.2.16. X= ± 2; ± 3. 1.2.17. f (x)=x2 -5x+6. 1.2.18. f (x) ~~ 23; qi (x)=527. 

1.2.19. x~-1 or x;? 2. 1.2.20. P=2b+·2 (I-~) x; S=b ( 1- ~) x. 

:n: 
1.2.21. (b) (2, 3); (c) (-oo, -1) and (2, oo); (d) x=2 +2k:n:(k=O, ±1, 

± 2, ... ). Hint. Since sin x ~ I, the function is defined only when sin x =I; 

(g) (-oo, 2) and (3, oo); (h) [I, 4); (i) (-2, 0) and (0, I); (j) - ; +2k:n: <x< 
:n: < 2 +2k:n: (k=O, ±I, ±2, ... ). 
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1.2.22. (d) The function is defined over the entire number scale, except the 
points x= ±2. 

1.2.24. (a) (-oo, oo); (b) (3-2:n:, 3-:n:) and (3, 4); (c) [-1, 3]; 
( d) (-1, 0) and (0, oo ). 1.2.25. (b) 5.;;;;; x.;;;;; 6. 

1.2.26. (a) 2kn.;;;;x.;;;; (2k+ 1) :n: (k=O, ± l, ±2, ... ); (b) [ - ~ , -1 J. 
1.3.3. (b) Hint. Consider the difference ~-~. 

1+x2 I +xi 

1.3.4. (b) It increases for - 5;+k:n: < x < i+kn (k=O, ±1. ±2, ... ) 

and decreases on the other intervals. 

1.3.7. The function decreases on the interval 0 < x.;;;;; ~ from + oo to 2 and 

increases on the interval -';f.;;;;; x < ..:;. from 2 to + oo. 

1.3.9. (c) The function is neither even, nor odd, (d) even. 
1.3.10. (a) Even; (b) odd; (c) odd; (d) neither even, nor odd; (e) even. 

1.3.12. (a) IA [=5, co=4, cp=O, T=~; (b) I A 1=4, co=3, cp= ~, 

T= 2;; (c)JA[=5,co=~, cp=arctanf, T=4n. Hint.3sin ~ +4cos ~ = 

=5sin (~+cp). where coscp=~, sincp=:. l.3.13.(b)T=2:n:;(c)T=l. 

1.3.16. The greatest value f (l) =2. Hint. The function reaches the greatest 
value at the point where the quadratic trinomial 2x2 -4x+3 reaches the least 
value. 

1.3.17. (a) Even; (b) even; (c) odd; (d) even. 
1.3.18. (a) T=n; (b) T=6n. 
1.3.19. Hint. (a) Assume the contrary. Then 

x+T+sin (x+T)=x+sin x, 

whence cos ( x+ ~ ) =- ~ T , which is impossible for any constant T, 
2sm 2 

since the left side is not constant; (b) suppose the contrary. Then 

cos Vx+T=cos Yx, whence either Yx+T+ Vx=2nk, or y T y 
x+T+ x 

= 2:n:k (k=O, ±I, ±2, ... ),which is impossible, since the left-hand members 
of these equalities are functions of a continuous argument x. 

l +arcsiny 10
1 

5 1.4.6. (a) X= 3 ; (b) X= 3 sin y; (c) X= y g (Y > O); (d) x = 

log2 Y log Y (0 < y < 2 or 2 < y < oo ). 
log2y-l =log Y 

2 

V3 V3 V3 
t.5.3. (a) -2-· -2-, 0,--2-, ... ; (b) -2· 4' -3· 16' ... , 

IO 113 
(c) 2; 2.25; 2 27 ; 2 256 , .... 

1.6.9. Hint. The inequality 
1
2n+ 3_2,<e is satisfied for n>N= 
n+l 
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=£(~-I). At e=O.I the inequality is fulfilled beginning with n=IO, at 

e=0.01 beginning with n= 100, at e=0.001 beginning with n= 1000. 
1.6.10. Hint. Verify that the sequence {x2n-i} tends to I as n--+ oo, 

and the sequence {x2n} tends to 0 as n--+ oo. 
1.6.12. (a) It has; (b) it does not have; (c) it has; (d) it does not have. 

1.6.14. Hint. (a) lxnl.;;;;~; (b) Ix,,!.;;;;_!_. 
n n 

1.6.19. Hint. For a> I put Va= I +an (a,,> 0) and, with the aid of the 
inequality a= (I + an)n > na,,, prove that an is an infinitesimal. For a < I put 

n/(i =-1- 1-(an > 0) and make use of the inequality _!_=(I +a,,)n >nan. 
V +~ a 

5 I I 
1.7.1. (b) 4 , (c) 0; (e) 2 . 1.7.2. (b) 16 ; (e) I; (f) I. 

1.7.4. (b) I; (f) 0. Hint. Multiply and divide by imperfect of a sum, square 
4 

and then divide by n 3 ; (g) -+; (h) I. Hint. Represent each summand 

of Xn in the form of the difference 
I I I I I . I 

Ix2= 1-2· 2x3=2-3; ... 'n(n+I) n-n+I' 

I 
which will bring Xn to the form Xn= I-n+ 1 . 

1.7.5. (a)}; (b) I; (c) 0, (d) -+. Hint. The quantity 2~ is an in-

4 
finitesimal, and cos n3 is a bounded quantity; (e) O; (f) 3. 

1.8.6. (b) Hint. The sequence is bounded due to the fact that n! =I X2X 
x3x ... xn ~ 2n- 1 and therefore 

x,,.;;;;2+}+(f Y+···+( + r-1 =3-U r-1 <3. 

1.8.7. (b) 0. Hint. Take advantage of the fact that Xn+i = +2 
3 < I. 

Xn n 
1.8.9. Hint. For all n, beginning with a certain value, the inequalities 

*<a< n are fulfilled; therefore i)n < fla < vn. and lim vn= 
=lim ~Ii= I. 

1 1 

{ } d . 2•1+1 2nx2 1.8.10. flint. The sequence y,, ecreases, since Yn+ 1 =a =a = 
= Vi,; (Yn > I). 

The boundedness of the sequence from below follows from a > I. Denote 
Jim Yn by b and from the rel at ion y,, +I= vi,; find b = I. 

fl~ (XI 

1.8.11. Hint. Ascertain that the sequence increases. Establish the bounded­
ness from the inequalities 

I I 
n~ < n(n-l) n-1 n (n~ 2); 

x,,<1+(1--})+(-}-f)+ ... +(n 11-~)=2-~, 
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1.8.12. Hint. Transform Xn into the form Xn = 2n and take advan-
V n2 + l + n 

tage of the inequalities 
2n 2n --< <I. 

2n + I y n2 + I+ n 

1.8.13. Hint. See Problem 1.8.7 (a). 
1.8.14. Hint. Establish the boundedness of the sequence by comparing Xn 

with the sum of some geometric progression. 
1.9.2. (b) Hint. Choose the sequences 

I 
x.,=n and 

, I Xn=-n (n=I, 2, ••. ) 

and ascertain that the sequences of appropriate values of the function have 
different limits: 

l 

I X~ 
Um 2xn = + oo, lim 2 =0. 

1.9.3. (e) Hint. Take advantage of the im•quality 

~-arctanx< tan (~-arctanx)=_!.._ (x > 0). 2 2 x 

(f) Hint. Transform the difference 

. I . . n 
smx-2 =smx-sm 6 

into a product and apply the inequality \sin a!..;;;;;; I a\. 
1.10.1. (d) ~ ; (e) ~ ; (f) - 1~. Hint. Multiply the numerator and de-

nominator by i~perfect trinomial square ( V IO-x+ 2): (g) ~~; (h) log0 6. 

. . [ x-3 J [ . (x-3) (VX-t°6+3)] . 2 Hint. hm log0 .r-- =log0 !rm _ 3 =log0 6;(1)-3 ; 
x-3 r x+6-3 x-3 X 

(j) 172. 

1.10.2. (e) ; . Hint. On removing the irrationality to the denomim1tor divide 

the numerator and denominator by x. 

1.10.3. (b) 32. (c) ; . Hint. Put x= zU; (f) oo. Hint. Put ~ -x= z; 

1t 
z----+- 0 as 

1t 
(g) -3. Hint. Put sin x=y. X=2-z: X-+-2; 

I 
I 

1.10.5. (b) e 3 ; (c) e- 1; (d) emk; (f) 4; (g) -· (h) 2. a ' 
I 

1.10.7. (b) 4· 1.10.8. (b) I; 
I 

(d) e cot a 
(c) -; 

e 

1.10.11. (a) 
I 

(b) 
3 I 2 

(e) O; (f) - I. 2; -4· (c) 2; (cl) 5: 

1.10.12. 
I 

(a) 20; (b) -2; 
:rt 

(c) 2; 
I 

(d) !i'; (e) -24. 
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l 

1.10.13. (a) e4; (b) -I; (c) 2 ln a; (d) ea; (e) e 2 ; (f) e-1; (g) l; 
(h) I; (i) 9; {j) l; (k) a-~. Hint. 

lim e•X-e~x lim e;ixe<•-~>x-1 a-B. 
x-o x x-o x 

1.10.14. (a) Jl2. Hint. Replace arc cos (l-x) by arc sin V 2x x2 ; (b) l; (c) a, 
1.11.5. (b) It is of the third order of smallness. Hint. 

lim tan a- sin a I 
a- o a 3 2" 

t.11.6. (b) They are of the same order; (c) they are equivalent. 
1.11.8. (a) IOOx is an infinitesimat of the same order as x; (b) x2 is an 

infinitesimal o! an order higher than x; (c) 6 sin x is an infinitesimal of the 
same order as x; (d) sin3 x is an infinitesimal of an order higher than x; 

(e) V tan~ x is an infinitesimal of an order of smallne~s lower than x. 
1.11.9. (a) It is of the fourth order of smallness; (b) of the first order of 

smallness; (c) of the third order of smallness; (d) of the third order of 
smallness; (e) of the first order of smallness; (f) of the order of smallness 
I 
2 , (g) of the first order of smallness; (h) of the first order of smallness; 

(i) of the ~econd order oi smallness. Hint. Multiply and divide the difference 

cos x-v~ by imperfect trinomial square; (j) of the first order of smallness. 
1.11.10. The diagonal d is of the first order of smallness; the area S is of 

the second order of smallness; the volume V is of the third order of smallness. 

1.12.3. (b) 4; (f} 3; (g) -} ; (i) 2. 1.12.6. (a) I; (b) 2. 

1.12.7. (a) I; 

3 
(f) 4 ; (g) -2; 

1.13.1. (b) 
f (2+0)= + 00. 

I 3 4 3 3 2 
(b) 3 . 1.12.8. (a) 5 ; (b) 5 ; (c) -2 ; (d) 2 ; (e) g; 

(h) I. 1.12.9. 10.14. Hint. 1042= 103 X (I +0.042). 

f(l-0)=-2, f (1+0)=2; (f} f (2-0)=- oo; 

I 
1.13.3. (a) f (-0) = 2 • f( +0) =0; (b) f (-0) =0, 

(c) f (-0)=-l, f(+O)=i. 
1.14.2. (b) The function has a discontinuity of the first kind at the point 

x=3. The jump is equal to 27. 
1.14.3. (c) The function is continuous everywhere; (e) the function has 

a discontinuity of the first kind at the point x=O; the jump equals n. Hint. 
n n 

arc tan (-oo)= - 2 , arc tan ( + oo)= + 2 -. 
1.14.6. (b) At the point x0 =5 there is a discontinuity of the first kind: 

/(5-0)=-"i· {(5+0)=~; (c) at the point x0 =0, a discontinuity of the 

first kind: f(-0)=1, f(+0)=0; (d) at the point x0 = ~, an infinite dis-

continuity of the second kind: 

t(~-o)=+oo, t(~+o)=-oo. 
1.14.7. (a) At the point x=O there is a removable discontinuity. To remove 

the discontinuity it is sufficient to redefine the function, putting f (0) = 1; (b) at 
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the point x~~o there is a removable discontinuity. To remove the discontinuity 
it is sufficient to extend the function putting f (0)= I; (c) at the point x=O 
there is a discontinuity of the second kind: f (-0) = 0, f ( + 0) = + oo; (d) at 

the pointsx=(2k t-1)-i (k=O, ±1, ±2, ... ),removable discontinuities, since 

. . .,,, { 0 if I sin x / < 1, 
f(x)= hm (smx)- = 1 .f I. 1_ 1. 

n -+ oc I Sin X - , 

(e} at the points x=kn (k~-0. ±I, ±2, ... ), discontinuities of the 1st kind, 
since 

f (x) = I si_n x I J I if sin x > 0, 
smx ) -1 if sinx < O; 

(f) at the points x=n=O, ±I, ±2, ... removable discontinuities, since 

f (x) = { -1 ~f x=: n, 
0 1f x ""n. 

1.14.8. (a) At the point X= 1 there is an infinite discontinuity of the second 
kind; (b) at the point x=-2, a discontinuity of the first kind (the jump 
being equal to 2); (c) at the point x=O, an infinite discontinuity of the second 
kind, at the point x= l, a discontinuity of the first kind (the jump being equal 
to -4); (d) at the point X= l, an infinite discontinuity of the second kind. 

3 1 
l.14.9. (a) f(O)=l; (b) f(0)=- 2 ; (c) f(0)= 2 ; (d) f (0)=2. 

1.15.2. (b) The function is continuous on the interval (0, + oo ). 
1.15.3. (b) The function is continuous everywhere. At the only possible point 

of discontinuity x=O we have 

lim y = lim u2 = 1; lim y= lim u2 = 1; 
~--0 U-+1 

(c) at the points x = ~ + mt (n = 0, ± I, ± 2, ... ) there are removable dis­

con!inuities, since limy= lim IJ=-1. 
3t u-±oo x--
2 

1.16.2. Yes. 1.16.12. 1.53. 1.16.13. No. For instance, the function y=x~ 
on the interval [-1, 1]. 

1.17.1. (a) Hint. Multiply the obvious inequalities: 

vf:li< n11; 
.r-- n-+-l r 2(n-I)< - 2-; 

,r;-::--- n+ I 
... (ri-1)·2 < -2-; 

.r- n+l 
r n-1 < - 2-. 

1 3 5 2n-I 
(b) Hint. Le! A-2X-,:rX5X- .. X~. 

2 4 6 2n 
B -~ 3 X 5 X 7 X . . . x 2n ·t- I . 

. 2n-I 2n 1 
Then A< B since~< 2n+l and A2 < AB~ 2n+l" 
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1.17.2. (a) Hint. Extract the lOlst root from both sides of the inequality 
and reduce both sides by 101 2 • 

(b) Multiply the obviou5 inequalities: 

99 X IOI < 1002 , 

98 x 102 < 1002, 

2 x 198 < 1002 , 

I x 100 X 199 X 200 < 100'. 
I 5 

1.17.3. (a) -3< ~<-I or I <x<3; (b) x<- 3 or x> 3 : (c) the 

inequality has no solutions, since it is equivalent to the contradictory system 
x-2 > 0, x (4x 2 -x+4) < 0. 1.17.4. Yes. 1.17.5. (a) No; (b) Yes. 

1.17.7. Hint. Apply the method of mathematical induction. At n= I the 
relation is obvious. Supposing that the inequality 

(I +x1) (I +x2) ••• (I +xn- 1);;;,: I +x1 +x2 + ... +x,,_ 1 

holds true, multiply both its sides by I +xn and take into consideration the 
conditions l+xn > 0, x;·x,. > 0 (i=I, 2, .. ., n-1). 

1.17.8. (a) [I, + oo); (b) (2n:rc)2 ,,;;;;x,,;;;; (2n+ 1) 2 n 2 (n=O, I, 2, ... ); 
(c) x=O, ±I, ±2 .... ; (d) (-oo, 0) for f (x); g (x) is nowhere defined; 

:re 
(e) [-4, -2) or (2, 4); (f) x= (2n+ I) 2 (n=O, ±I, ±2, ... ). 

1.17.9. (a) No: cp(O)=l, and f(O) is not defined; (b) No: f(x) is defined 
for all x :j:. 0, and <p (x) only for x > 0; (c) No: f (x) is defined for all x, and 
cp(x) only for x;;;.O; (d) Yes; (e) No: f (x) is defined only for x > 2, andcp(x) 
for x > 2 and for x < I. 

1.17.10. (a) (0, oo); (b) [I, oo). 1.17.11. V=B:rc (x-3) (6-x), 3 < x < 6. 
1.17.12. (a) X=5. Hint. The domain of definition is specified by the inequa­

lities x+2~0, x-5;;;.0, 5-x;;;.O, which are fulfilled only at the point 
x=5. Verify that the number x=5 satisfies the given inequality. (b) Hint. 
The domain of definition is speci tied by the contradictory inequalities x-3 > O; 
2-x > 0. 

2 x ax -La- x ax - a - x 
l.17.17.(a)f(x)= 1+x2 +1+x2 ; (b)ax= •2 + 2 (seePro-

blem 1.17.16). 
1.17.18. An even extension defines the function 

{ f(x)=x 2 +xfor O.;;;;x,,;;;;3, 
<p (x) = f (-x)=x2 -x for -3,,,;;;; x < 0. 

An odd extension defines the function 

(x)={ f (x)=x 2 +x for O.;;;;x,,;;;;3, 
'll -f(-x)=-x2 +x for -3.;;;;x<O. 

1.17.21. Hint. If the function f (x) has a period Ti. and the function cp (x) 
has a period T 2 , and T 1 = n1d, T 2 = n2d (n1 , n 2 positive integers), then the pe­
riod of the sum and the product of these functions will be T = nd, where n is 
the least common multiple ol the numbers n1 and n2 • 

1.17.22. Hint. For any rational number r 

A (x + r) =A (x) = { I for ~a!io.nal x, 
0 for 1rrat10nal x. 

But there is no least number in the set of positive rational numbers. 
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1.17.23. Hint. II we denote the perioc1 of the function f (x) by T, then from 
f (T) = f (0) = f (- T) we get 

sin T +cos aT= I= sin (-T)+cos (-aT), 

whence sin T = 0, cos aT = I, and hence T =kn, aT = 2nn, a= 2; is rational. 

t.17.25. The difference of two increasing functions is not necessarily a mono­
tonic function. For example, the functions f (x) = x and g (x) = x·i increase for 
x~O. but their difference f(x)-g(x)=x-x2 is not monotonic for x~O: it 

increases on [ 0, + J and decreases on [ ~ , oo) . 

1.17.26. Example: 

{ x if x is rational, 
Y = - x if x is irrational. 

1.17.27. 
I I+y 

(a) x= 2 ln l-y (-I< y < l); 

(b) 
( y _ for - oo < y < I. 

x = { Vy for 1 ,,,;;;,. y ,,,;;;,. 16, 
I log2 y for 16 < y < oo. 

!J ~<S> / 
~/ 
/ 

/ 
t.17.28. Hint. Thefunctionsy=x2 + 

+2x+I (x ~-I) and u=- 1+vx 
(x ~ 0) are mutually inverse, but the 
equation y=x, i. e. x2 +2x+ I =X has f{ff:c11 
no real roots (see Problem 1.4.4). r• '/J 

1.17.30. (c) Hint. If Eis the domain 
of definition of the function f (x), X 
then the function y=f [f (x)] is deli- f(X) .X 
ned only for those xE E for which 
f(x)EE. How the points of the desired Fig. 120 
graph are plotted is shown in Fig. 120. 

1.17.32. Hint. The quantity T=2 (b-a) is a period: from the conditions of 
symmetry f(a+x)=f(a-x) and f(b+x)=f(b-x) it follows that 

f [x+2 (b-a)] =f [b+(b+x-2a)] =f (2a-x)=f [a+(a-x)] =f (x). 
1.17.33. (a) It diverges; (b) it may either converge or diverge. Examples: 

I . [l+(-l)n) 
X11 =n• Yn= 2 : 11 I~rn,,, (x11y11 )=0, 

1 
X11=- Y11=n2; 

n 
Jim (x11 y11 ) = oo. 

1.17.34. (a) No. Example: x11 =n; y11 =-n+ l; (b) No. 
n0-~ . 

1.17.35. a.11 = (n=3, 4, ... ). 1.17.36. Hint. Take mto account n 
that llx11 l-lalj.,;;;,.lxn-al. The converse is incorrect. Example: x11 =(-J)11+1. 

1.17.38. Hint. The sequence a.n may attain only the following values: 
0, I, ... , 9. If this sequence turned out to be monotonic, then the irrational 
number would be represented by a periodic decimal fraction. 

1.17.39. Hint. If the sequence ~11 increases, then 
II 

a; a11+1 
-b <-b-' i. e b,.+1a; < a11 +1 IJ; (i=I, 2, .•. , n), 

i 11+1 
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whence it follows that 
b11 +1 (a1 +a2+ ... +a,,)< a,,+ 1 (b1 +b2+ ... +b,,), 

and hence 

a1+a2 + ... +a,,+ 1 a1+a2+ ... +a,, 
u1 +bd- ... + b,,+ 1 - b1 +b2 + ... +b,, 

a,,+ 1 (b 1 +b2 + ... +b,,)-b,,+ 1(a1 +a2+ ... +a,,) 
(b1+b2+ ... +bn+1)(b1+b2+ ... +b,,) > O. 

1.17.40. (a) 2; (b) O; (c) 0. 1.17.41. Hint. From the inequalities 
. f l I E (nx) nx-1<E(nx),;;;;;;nx1t allows that x- < x-n < -n-,;;;;;;x. 

1.17.42. Hint. From the inequalities 
n n n 

~ (kx- I),;;;;;; ~ E (kx),;;;;;; ~ kx, 
k=I k=I k=I 

it follows that 

n+ I I I ; n+ I 
x 2n - n,;;;;;; n2 L E (kx) ,;;;;;; x 2n. 

k=I 

1.17.43. Hint. Take advantage of the fact that Jim a" = Jim V~ =I (see 

Problem 1.6.19), Jim a n = 1 v-= I, and for a> 1, I h I< _!_ the ine-
n .... oo Jim a n 

fl - 00 
1 

qualities a n -1 <ah- I < an - I take place. 
1.17.45. Hint. Divide the numerator and denominator by xm. 

1.17.46. (a) a= I; b=- 1; (b) a= I; b=-}. Hint. To find the coefficient 

a divide the expression by x and pass over to the limit. 
1.17.47. (a) 

(b) 

f (x) = { I for 0,;;;;;; x,;;;;;; 1, 
x for x > I. 

{ 
0 for x =I= ; +mt, 

f(x)= :rt (n=O, ± I, 
I for x= 2 +nn 

1.17.48. Hint. Take advantage of the identity 

± 2, ... ). 

(1-x) (1 +x) (I +x2 ) ••• (I +x2")= l-x2". 

1.17.49. Generally speaking, one can't. For example, 

Jim In (I +x)+ In (1-x) = lim In (l -x2 ) =- 1 
x - o x2 x - o x:l ' 

and if we replace ln(l+x) by x and ln(l-x) by -x we will get the wrong 

result: lim x-x =O. 
x .... o x2 
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1.17.50. -} . Hint. If a is a central angle subtended by the arc under con­

sideration, then the ct-:ord is equal to 2R sin ~ - Ra, and the sagitta to 

a2 
R (I -cos a) - R 2 . 

1.17.51. 2. Hint. The difference of the perimeters of a circumscribed and 
inscribed regular n·gons is equal to 

2R (t :n . :re) 2 Rtana-sina R 2 n an n - sin n = n a - n a • 

where a=~, and the side of an inscribed n-gon is 
n 

2Rsin ~=2R sin a,..., 2Ra. 
n 

1.17.52. On the equivalence of (l+a)3 -l and 3a as a---+0. 
In (I +x) x 

1.17.53. No, log(l+x)= In 10 - 1n 10 as x---+0. 

1.17.54. (a) Yes. Hint. If the function <p(x)=/(x)+g(x) is continuous at 
the point X= x0 , then the function g (x) = <p (x)-f (x) is also continuous at this 
point; (b) No. Example: f (x)=-g(x)=signx (see Problem 1.5.11 (p)); both 
functions are discontinuous at the point x= 0, and their sum is identically 
equal to zero, and is, hence, continuous. 

1.17.55. (a) No. Example: f (x) =xis continuous everywhere, and g (x) =sin.::_ 
x 

for x :f. 0, g(O)=O being discontinuous at the point x=O. The product of these 

functions is a function continuous at x= 0 since Jim x sin.::_= 0; (b) No. Exam-
x ... o X 

pie: f (x) = - g (x) = { 1
1 ffor x ;;::=. 00• both functions are discontinuous at the 

- or x < ; 
point X= 0, their product f (x) g (x)=-1 being continuous everywhere. 

{ 1 if x is rational, . 
1.17.56. No. Example: f (x)= 1 'f . . t· 1 We may write 

- 1 x 1s 1rra 10na . 
f (x) = 2A. (x)- 1, where A. (x) is the Dirichlet function (see Problem 1.14.4 (b)). 

1.17.57. (a) x=O is a discontinuity of the second kind, x= I is a disconti­
nuity of the first kind; (b) x= I is a discontinuity of the first kind: f ( 1-0) = 0, 
f (I +o) = 1; (c) <p (x) is discontinuous at all points except x = 0. 

1.17.58. (a) x=n=O, ± 1, ±2, ... are discontinuities of the first kind: 
Jim y= I, Jim y=y lx=n=O. The function has a period of l; (b) x= ± Vn 

X-+n-0 X-+n+O 
(n= ± 1, ±2, ••. ) are points of discontinuity of the first kind: 

Ii~ y=2n-I; Ii~ y=y lx=Vn=2n. 
x-Vn-0 x_.,Jln+O 

The function is even; (c) x=±Vn (n=±l, ±2, ... )are the points of 
discontinuity of the first kind; at these points the function passes over from the 
value 1 to -1 and returns to I. The function is even; 
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(d) 

( x if I sin x I < ~ , i.e. - ~ + :nn < x < ~ +:rtn, 

Ix "f I . I I . :rt+ y = ~ 2 1 sm x = 2 , 1.e. x = ± 6 :rtn, 

I 0 "f I . I I . :rt + 5:rt + l 1 sm x > 2 , 1.e. 6 :rtn < x < 6 :nn. 

x= ± ~· +:rtn are discontinuities of the first kind. 

1.17.59. The function f (g (x)] has discontinuities of the first kind at the 
points x= -1; O; +I. The function g If (x)) is continuous everywhere. Hint. 
The function f (u) is discontinuous at u = 0, and the function g (x) changes sign 
at the points x=O, ± 1. The function g If (x) I= 0, since f (x) attains only the 
values 0, ±1. 

1.17.61. Hint. Write the function in the form 

{ 
x+ I for -2 ~ x < 0, 

f (x) = 20 for x = 0, 

(x+l)2 x tor 0 < x~2. 
Make sure that the function increases from - I to I on the intE'rval r-2, 0) 

and from 0 to ~ on the interval (0, 2]. Apply the intermediate value theorem 

to the intervals [-2, -I) and (0, 2]. The function is discontinuous at the point 
x=O: f (-0)=1, f (+0)=0. 

1.17.62. Hint. Suppose e > 0 is given and the point ~oEla, b] is chosen. We 
may consider that 

e,.;;;;min[f(x0)-f(a), f(b)-f(xo)]. 

Choose the points x1 and x2 , x1 < x0 < x2 so that 

f (x1)=f (xo)-e, I (x2)=/ (xo)+e, 

and put ll=min(x0 -X1, x2-x0 ). 

1.17 .63. Hint. Apply the intermediate value theorem to the function 
g(x)=f(x)-x. 

1.17.64. Hint. Apply the intermediate value theorem to the function f (x) on 
the interval [x1, Xn], noting that 

min [f (x1), ... , f (xn))..;;;;;; _!_If (x1) + f (x2) +. ·. +f (xn)]..;;;;;; max lf (x1) •.. ·, f (xn)J. n 
1.17.65. Hint. Apply the intermediate value theorem to the function f! (x) = 

= 2x- ! on the interval [ {, 1]. 
1.17 .66. Hint. At sufficiently large values of the independent variable the 

values of the polynomial of an even degree have the same sign as the coefficient 
at the superior power of x; therefore the polynomial changes sign at least twice. 

1.17.67. Hint. The inverse function 

{
-Jf-y-1 for y<-1, 

x= 0 for y=O, 

Jt'Y=T for y > I 

is continuous in the intervals (-oo, -I) and (I, oo) and has one isolated point 
y=O. 
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Ct1 apter I I 

2.1.1. 
20 

(b) -21. 2.1.2. (b) y' = IOx-2. 2.1.5. Vav=25 m/sec. 

2.1.6. (a) y'=3x2; (b) y'=- ~. 2.1.7. The function is non-differentiable at 

2 _-2._ 4 _.!.... 
the indicated points. 2.2.1. (b) y'=- 3 ax 3 + 3 bx 3 . 2.2.2. (c) y' = 

= 2x arc tan x+ I. 2.2.3. (b) -9000. 2.2.4. (a) y'=6x2+3; (b) y'= .~- -
2 r x 

I + 9· () ,_ -3x2 +2x+2. (d) ,_ 3 Vx-+B Vx+2 vT/X. 
---- x' c y - ' y -- • 

2x Vx (x:i-x+ 1)2 6 (x-2 V x) 

() ,_cos(f'-sincp-l, (f) y'=2ex+~· (g) y'=2excosx; (h) y'= 
e Y - (I-cos cp) 2 ' x ' 

x (cos x-sin x)- sin x-ex 
x2ex 

2.2.5. (f) 30ln4(tan3 x)~6 ; 
SIO X 

(g) sin ,,,- 2 · 3 • 
r 1-x _ 

2(1-x) 2 

2 cos x 2 sin x 
(b) y'=-3(3-sinx)2cosx; (c) y' +- · 

3 sin x V sin2 x cos3X"' 
2.2.6. 

2ex + 2x In 2 5 ln 4 x 
(d) ,_ +--· 

y - 3 V (2ex - 2x + I):! x ' 
(e) 11' = 3cos3x - ~ sin ~ + 

I .r- a a 
+ .r- sec:! r x; (f) t/=(2x-5)cos(x2-5x+I)- 2 sec2-; (h) y'= 

2 r x x x 

I + I + I (') I 21 t x I 3 
= x •'1+1n2x arctanx I+x:i; 1 11 = narc an3 · t x • 9+x2· 

t' arc an 3 
b ,__ I 2 + I 2 • d) I 3 

2·2•8• ( ) 11 - sinh:! (tan x) sec x cosh2 (cot x) cosec x, ( Y = x X 

X (x sinh 2x3 +cosh x2·sinh 2x2); (e) y' = esinh ax ix<acosh ax+b>, 

) ,_av2I-x ·a 2 (2 I 2x +3 t 2t )· 2.2.9. (c y - x 1 +x:i sm xcos x 3x - l-x - l+x2 cox- anx , 
(x+ I) 

(d) y' =(tan x)_2 _ (-}In tan x + :i~2~). 
2.2.13. (a) f' (x) = ~ ( cosh ~ +sinh ; ) ; (b) f' (x) = tanh x; (c) f' (x) = 

= Vcoshx+I; (cl) f'(x)=-1h-; (e) f'(x)=4sinh4x; (f)f'(x)=(a+b)eaxx 
cos x 

X (cosh bx+sinh bx)=(a+b) e<a+b>x. 
2.2.14. (a) y'=(cosx)'1"x (cos x In cos x-tan x sinx); 
b I COS 3x 

( ) Y = V sin2 3x(l-sin 3x)4; 

, 5x2 +x-24 
(c) Y = I 5 5 ' 

3(x-1)2 (x+ 2)3 (x +3i'2 
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17 ) , In 3 tan Yarc sin 3- 2x. 
2.2. . (a Y = .rs1x-1 V , r arc sin 3-2x 

. I a I 2 
(b) y' =- sm n X· n x . 

5x V cos4 ln3 x ( 1 + V cos2 ln3 x) V (arc tan V cos Ina x) 2 

2.3.1. (b) knekx; (e) 2n-1 sin ( 2x+n ; ) ; (f) {sin ( x+n ; ) + 

+ 3
2n sin ( 3x+n;) + 54n sin ( 5x+n;). 

2.3.4. (b) ex(x2 +48x+551); (c)ea.x{sinBx [a.n-n<7:; 1>a.n-2B2+ ... ]+ 

+cos Bx [ na.n-1B - n (~~ 1J ~;- 2> an-aBa+ ... J } . 
2_3_6_ (a) 2x2+3x ; (b) (1 +2x2) arc sin x +~; (c) 2e_x2 x 

(1 +x2) Vl +x2 ~ (l-x2)2 
(l-x2) 2 

x (2x2 -l). 
2.3.8. (a) x3 sin x-60 x2 cos x-1140 x sin x+8640 cos x; (b) 2e-x x 

X (sin x+cos x); (c) ex [3x2+6nx+3n (n-1)-4); (d) (-l)n [(4n2+2n + 
+ I -x2) cos x- 4nx sin x]. 

1001 [ I I J (b)tx3x5x ... xt97x(399-x) 
2.3.9. (a) (x-2)101 (x-1)101 ; 201 • 

2100 (l -x)_2_ 
I I 

Hint. y=2 (l-x)-2 -(I -x)2. 
" 4 cos x 

2.4.1. (b) Xyy=- (6+ sin x)a. 
k-1 

2.4.3. (b) y~= - cot - 2- t; (d) y~=- 2e- 2ct. 

2•4•4• (b) y~ 3 (t2~ 1)3; (c) u:x= at c1os3 t 

2.4.5. (b) Y~':x=-3sintsec2 t. 
y 

2 4 6 (b) , _ y + --x . ( ) , _ 2-x . 
. . · Yx-x e , c Yx-y_ 5 , (d) u·=- Vy. 

x x 
,, _(ex-eY) (1-ex+Y). 

2.4.7. (b) Yxx- (I +eY)a ' 
4ex-Y 4 (x+y) 

(c) Y:x= (ex-Y + 1)3 (x+y+ 1)3. 

2a-2x-y x+y 
2.4.9. (a) + 2 2 ; (b) - ; (c) x y- a x-y 

ex sin y+e-Y sin x I 
-excosy+e-Ycosx; (d) -7· 

4 10 ( - 2y2 + 2 . (b) !!.!. 2. . . a) y5 ' 256 . 2.4.11. (a) 
c sin t t 

a (b+cos t) ; (b) 2; 

t2 +1 
(c) 4t3; (d) 

2t (2t 2 +2t+ 1); 

.. /1-4t2 
(f) - V 2-t2 ; (g) - ¥1-12. 

(e) 

2.5.1. (b) 6x+2y-9=0; 2x-6y+37=0. 

(a cos t-b sin t) cos3 f 
4 . t 

sm 2 
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( 2 IO ) ( 2 IO ) 2.5.2. (c) M 1 - y3", 5+ 3 y3" , M2 'ya , 5- 3 y:f · 
2.5.3. (b) qi=arctan2Y2. 2.5.8. (b) x+y-2=0; y=x. 

:rt 39 2 ( 5 \ 
2.5.15. (a) 4 ; (b) y= I, x+2y-2=0; (c) Y+f6= -3 x+ 4 }; 

:rt 
(d) 4". 2.5.16. 11. 

2.5.17. 26,450. gt2 I a2 2.5.19. s=at-2 ; v=a-gt; Smax=S a =2. 
I=- g 

g 

2.5.20. v = r/ = 27:8 sin M (I + 2e cos M). 2.6.3. !J.y ~ dy = 0.05. 

2.6.5. (b) log 10.21 ;::: 1.009; (d) cot 45°10' ~ 0.9942. 
2.6.7. (c) 11y=lcosxl/J,,x; (d) 11y=(l+tan2 x)l1x. 

4 ln x-4-Jn3 x 
2.6.9. (a) d2y = 4-x2 2 In 4 (2x2 In 4- I) dx2 ; (b) d2y dx2; 

x2 Y(ln2x-4)3 
(c) d3y=-4 sin 2xdx3 • 

2610 ()d2 =-4(1+3x')d2. (b)d2 =-4(I+3x')dx2-~d2 . 
.. . a Y (l-x')2 x, Y (l-x')2 l-x4x, 

in particular at x= tan t, d2y= - ~ 21 dt 2 • 
cos 

2.6.ll. 11V=4:rtr2 M+4:nrM 2 +: :nMa is the volume contained between 

two spheres of radii r and r+M; dV=4:rtr 2 !J.r is the volume of a thin layer 
with a base area equal to the sphere's surface area 4:rtr2 and a height !J.r. 

2.6.12. !J.s=gt M++ g M 2 is the distance covered by a body within the 

time M; ds=gt M=vdt is the distance covered by a body which would move at 
a velocity v=gt during the entire interval of time. 

2.7.l. (a) It does not exist; (b) it exists and equals zero. 
2.7.2. 90°. Hint. Since 

f'_ (0) = -1, 1: (0) = l. 

{
ex, x;;;=. 0 

Y= e-x, x < 0, 

2.7.3. f'_ (a)= -qi (a); 1: (a)= qi (a). 

2.7.4. Hint. For x t= 0 the derivative 

f' (x) = - cos ( ! ) +2x sin ( ! ) . 
At x=O the derivative equals zero: 

f' (0)= lim 
l::,,.x -? 0 

/J.x2 sin J_ 
___ !J._x __ o 

!J.x - . 

Thus, the derivative f' (x) exists for all x, but has a discontinuity of the 
second kind at the point x = 0. 

2.7.5. a=2x0 , b=-x~. 2.7.7. Hint. The formula for the sum of a geo-
metric progression represents an identity with respect to x. Equating the deri­
vatives of both sides of the identity, we get 

nxn+l-(n+ I) xn+ I 
I +2x+3x2+ ... +nxn- 1 = (l-x)2 ; 
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multiplying both sides of this equality by x and differentiating again, we get 

12+ 22x+ +n2xn-•= I +x-(n + 1)2 x"+ (2n·!+2n- I) x11 + 1 -nx11+2 
• · · (l --x1" · 

2.7.8. sin x+3 sin 3x+ ... +(2n- l) sin (2n-1) x~ 
(2n-l- I) sin (2n- l) x- (Zn- I) sin (2n+ I) x 

4 sin2 x 

Hint. To prove the identity multiply its left side by 2 sin x and apply the 
formula 2 sin a sin~= cos (a-~)- cos (a+~). To deduce the desired formula 
differentiate both sides of the identity and equate the derivatives. 

2. 7.9. (a) sin 2x [f' (sin2 x)- f' ( cos2 x) ); (b) el <x> [ext' (ex)+ f' (x) f (ex)); 

"ljl' (x) I <p' (x) In 1jJ (x) 
(c) 1jJ (x) ' In <p (x) - <p (x) ' ln 2 qi (x) · 

2.7.10. (a) No; (b) No; (c) Yes; (d) No. 
2.7.11. Hint. Differentiate the identity f (-x)=f (x) or f (-x)=-f (x). 

This fact is easily illustrated geometrically if we take into consideration that 
the graph of the even function is symmetrical about the y-axis, and the graph 
of the odd function about the origin. 

2.7.12. Hint. Differentiate the identity f (x-j- T) = f (x). 
2.7.13. F' (x) = 6x2 • 2.7.14. y' = 2 Ix I. 2.7.15. The composite function 

f [qi (x)] may be non-differentiable only at points where qi' (x) does not exist 
and where qi (x) attains such values of qi (x) = u at which f' (u) does not exist. 
But the function y = u2 =Ix12 has a derivative y' = 0 at the point x= O, 
though at this point the function u =Ix I has no derivative. 

2.7.16. (a) y"=6ixl; (b) y"=2sin_!_-~cos_!_-J.sin_!_ at x;i:O, 
xx xx· x 

y" (0) does not exist, since y' (x) is discontinuous at x = 0. 

2.7.17. Hint. (a) Verify that f<k> ~1 =C~ (k=O, 1, .. ., n) and take advan­

tage of the property of the binomial coefficients. (b) Designate: f (x) = un; 
show that u~= (n-1) Un-i-Un- 2 and use the method of mathematical 
induction. 

2.7.18. Hint. Apply the Leibniz formula for the nth derivative ol the pro-
x 

duct of the functions u=e a and v=x2 • 

{ 
0 at n = 2k 

2.7.19. y<n> (0)= [I X3X ... X(2k-1)) 2 at n=2k-j- I 
(k= 1, 2, ... ). 

Hint. Differentiate the identity n-2 times and, putting x=O, obtain 

y<n>(O)=(n-2)2 y<n- 2l(O) (n;;;;,:2). 

2.7.21. Hint. Take advantage of the definition 

e-xa H n+t (x) = (e-x2)<n+ •> = (-2xe-x2)1nl 

and the Leibniz formula for the nth derivative of the product u = e- x2 and 

V=-2X. 2.7.22. y~= 3 (y2 ~ I). 

2.7.23. x1 2 = ±V 1 + YI-y (-oo < y.;;;;, l), 

xa.4=±V1-v1-y <O.;;;;,y.;;;;,1). 

xj= 4x;(/-xl) (i=l, 2, 3, 4) for x;;t:O, ±1. 
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flint. Solve the biquadratic equation x~-2x2+y=O and find the domains 
of definition of the obtained functions x; (y). 

2.7.25. (a) Xi=-3; X2=l; (b) X=±I. 

2.7.26. Hint. Note that the function x=2t-ltl={ 3:: ~~g· has no deri­

f x, x~o. 
vative at t = 0. But t = 1 x 0 therefore we can express y = t2 + t It I= 

\ 3' x < , 

= { ~~ 2 • : ~ g· through x: y= { ~~2 ' ;7 g'. This function is differentiable eve· 

rywhere. 2.7.27. a=c={; b=-}. 2.7.28. Hint. The curves intersect at the 

points where sin ax= I. Since at these points cos ax= 0, 

y~=f' (x) sin ax+f (x)acosax=f' (x)=y;, 

i.e. the curves are tangent. 
2.7.30. Hint. For t :j:: :rcn the equations of the tangent and the normal are 

reduced to the form: · 
t l 

y=cot 2 (x-at)+2a; y=-tan 2 (x-at), 

respectively. For t=n ('lk-1) (k= I, 2, ... ) the tangent line (y=2a) touches 
the circle at the highest point, and the normal (x=at) passes through the high· 
est and lowest points; for t = 2kn (k = 0, I, ... ) the tangent line (x =at) pas­
ses through both points, and the normal (y = 0) touches the circle at the lowest 

d2y . M 2d<p 
point. 2.7.34. dt2 +Y· 2.7.35. The relative error i'J=T::::J sin 2<p. The most 

reliable result, i.e. the result with the least relative error, corresponds to the 
value <p=45°. 

Chapter III 

3.1.2. (b) Yes; (c) No, since the derivative is non-existent at the point 0. 
3.1.5. s=e-1. 3.1.7. No, since g (-3) =g (3). 3.1.9. (d) Hint. Consider 
the functions 

f(x)=arcsin l~x2 +2arctanx for lxl >I, 

g(x)=arcsin l~x2 -2arctanx for I xi< I. 

1 2 10 ± rs2. 
3.1.15. (a) s= 2 ; (b) ~= 1n 3 ; (c) £= 24 , (d) it is not appli-

cable, since the function has no derivative at the point x=O. 
3.1.16. 1.26 < In (I +e) < 1.37. Hint. Write the Lagrange formula for the 

function f (x) =In x on the interval (e, e+ I] and estimate the right-hand side 

in the obtained relation: In (I ·J-e) =I +i- (e < £ < e+ I). 

3.1.17. Hint. Apply the Lagrange formula to the function f (x)= In x on the 
interval [I, I +xJ. x > 0, and estimate the right-hand side in the obtained re-

lation In (I +x)=; (I<£< I ·f-x). 3.2.1. (c) 2; (d) O; (f) - ; . 

I x-tanx I 
3.2.3. (b) 0. flint. Represent cot x--~=---- · (c) -2 3.2.5. (b) e1 =e. 

x x tan x ' 
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3.2.6. (a) l; (b) I. 
4 

3.2.9. (a) 1 ; (b) In a- I; (c) 2; (d) n ¥3 . (e) _! ; 
6 ' a 

-m2~ 2 2 
(f) O; (g) I; (h) Ina; (i) e 2. (j) (k) -I; (1) e; (m) . - ; 3; n 

I a2 1 

(o) (p) 30 ; (q) 
I 

(b) 0.34201. (n) 2; 2· e I; (r) -2· 3.3.5. 

1 

3.3.6. V 83 ~ 3.018350. Hint. V 83 = V 81 +2 = 3 (I+ 8
2
1) 4 

• Apply the bi­

nomial formula and retain four terms. · 
3.3.7. Hints. (b) Write the Maclaurin formula for the function f (x)=tanx 

with the remainder R4 (x); (c) write the Mnclaurin formula for the function 
t 

f (x) =(I + x) 2 with remainders R2 (x) and R3 (x). 
I I I x2 x:ix~ 

3-4,2. (a) f (x)= 2 x2 - 3 x3 - 5 x6+o (x6); (b) f (x)=x - 2 +6- 12 + 

x6 + 24 +o (x6). 

I I 
3.4.3. (b) - 2 ; (c) 12 ; (d) 3 ; (e) I. 

2 5 I xt xt x6 x 
3.4.4.(a) 1+2x+x2 - 3 x3-6 x4-15 x6; (b)- 2 - 12+45 ; (c) 1-2+ 
x2 x4 

+12-120· 
3.5.1. (d) The function decreases on the interval (-oo, 0) and increases on 

(0, oo ); (e) the function increases on the intervals ( -oo, ~ ) and (3, + oo) 

and decreases on ( ~ , 3} (f) the function increases over the entire number 

scale. 

3.5.2. (b) The function increases on the intervals ( 0, ~) and ( 5:, 2:rc) 

and decreases on ( ; , 5:) . 

3.5.8. (a) The function increases throughout the number scale; (b) the func­
tion increases on the interval (-1, 0) and decreases on (0, I); (c) the function 
decreases throughout the number scale; (d) the function increases on both 
intervals (-oo, 0) and (0, oo) where it is defined; (e) the function decreases 
on the intervals (0, I) and (I, e) and increases on (e, + ao); (f) the function 
decreases on the intervals (-oo, I) and '(I, oo), increases on (-1, I). 
3.5.10. a,,;;;;O. 3.5.11. b;;?: I. 3.6.1. (b) The minimum is f (l)~f (3)=3, the 

maximum f (2) =4; (d) the minimum f ( ~ ) =- ; 4 . 3.6.2. (b) The mi.nima 

are f (±I)= V3; the maximum f (0) = 2. 
3.6.3. (b) The maximum is f (-2) = 160; the minimum f (0) = 2. 
3.6.7. (b) The minimum is f (0)=0. 

3.6.8. (b) On the interval (0, 2n]: the minimum is f ( ; ) =-4; the maxi-

mum f ( 3
2:rc) =4. 3.6.10. (a) The minimum is f (0) = 0, the maximum f (2) = 4e-~; 

(b) the minimum is f (-2)=-l. the maximum f (2)= I; (c) the maximum i~ 
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/ (0)=0, the minimum ( 5) 25 v· T f 3 =-9 9;(d)themaximumisf(±2)=-I, 

the minimum f(0)=7; (e) the maximum is f (-3)=3V3, the minimum 
3 ,-

' (2)= -v 44. 
3.6.11. (a) There is no extremum; (b) there is no extremum; (c) the ma· 

xi mum is f (0) =0; (d) the minimum is f (0) =0. 

3.7.1. (c) The greatest value is f (I)=_!_, the least value f (0)=0; (d) the 
e 

greatest value is f ( ± ; ) = :s , the least value f (±I)= 0. 

3.7.2. (b) The greatest value is y (0) = ; , the least value y ( ± ~2) = ~; 
(c) the greatest value is y (4) =6, the least value y (0) = 0. 

. 16 37 
3.7.6. (a) The greatest value 1s f (-2)=3 , the least value f (3)=- 4 : 

(b) the greatest value is f (0)=2, the least value f (±2)=0; (c) the greatest 

value is f ( ;-3) = ~ +o.25 ln 3, the least value f ( ¥3) = ~ -0.25 In 3; (d) the 

greatest value is f ( ~) = 3 ; 3 , the least value f ( 32:rt) =-2; (e) the great­

est value is f (I)= I, the least value f (2) = 2 (I -Jn 2); (f) there is no great­
est value, the least value is f (0) =I. 

3.8.3. H = R V2, where H is the height of the cylinder, R is the radius of 
the sphere. 3.8.7. x=a sin a, y=a cos a, where a=0.5 arc tan 2. 

Hint. The problem is reduced to finding the greatest value of the function 
S = 4xy+4x (y-x) = 4a2 (sin 2a-sin2 a) 

:rt £2 
in the interval 0 <a< T. 3.8.8. Prnax = 4W. at W = Wi. 3.8.9. h=2R= 

I 

= 2 V ~: . 3.8.10. The radius of the cylinder base is r = ~ , where R 
is the radius of the cone base. 3.8.11. The equation of the desired straight 

1. . x+y I me 1s 2 -.r= . 
3.8.12. x=a-p for a> p and x=O for a~p. 

3.8.13. v= V ;b . Hint. It will take ~ hours to cover one knot. The 

. a+hv3 a 
appropriate expenses are expressed by the formula T=--=-+bv2. 

v v 

3.8.14. <p= ~. Hint. At Hie board width a the cross-sectional area of the 

trough is equal to a2 (I +cos cp) sin <p. where <p is the angle of inclination of the 
walls to the bottom. 

3.8.15. ~ . Hint. The point of fall of the jet is at a distance of v ~from 
the tank base, where H = h-x is the height at which the orifice should be 
located, v is the rate of flow; therefore the length of the jet is determined by 
the expression 
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a a 
3.8.16. After 2v hours the least distance will be equal to 2 km. 

3.9.1. (b) The intervals of concavity are ( - oo, ~) and (I, oo), of conve­

xity (; , I); the points of inflection are (; , 12 ~~) , (l, 13); (c) the in­

tervals of concavity are ( - y'3, 0) and ( y'3, oo ), of convexity (- oo, - y3) 

and (0, y3); the points of inflection are ( - y3, - ~;). (0, 0), ( ¥3, 

~) ; (e) the curve is concave everywhere; (f) the intervals of concavity are 

3-Vs 3+ vs 

(0, x1) and (x2 , oo ), of convexity (x1 , x2), where x1 = e-2- x2 = e-2- the 
points of inflection are (x1 , y1), (x2 , y2), where 

V5-3 

(3-¥5) 2 -2 
Y1= 2 e , 

3+V5 

( 3+ ¥5) 2 --2-
Y2= 2 e . 

3.9.5. (a) The point of inflection is (3, 3); the curve is convex for x < 3 and 

concave for x > 3; (b) the abscissa of the point of inflection X= arc sin ~-I ; 
th . . ( n . YS-1) d . ( . ¥5-1 e curve 1s concave m - 2 , arc sm 2 , an convex m arc sm --2-, 

~). 
3.10.1. (c) y=O; (d) x=O; (i) y=2X 

X-+-00. 3.10.3. (a) x=3, y=x-3; 

n 
(d) x=± 2; (e)y=2x-2. 

as x-++ oo and y= -2x as 
nx 

(b) u=± 2 -1; (c) y=x; 

3.11.2. (a) The function is defined everywhere, it is even. The graph is sym­
metrical about the y-axis and has no asymptotes. The minimum is y (0) =I, 

maxima y (I)= y (-1) = : . The points of inflection are ( ± ~"3, ~~} (b) the 

function is defined in (- oo, - I) and ( -1, + oo ). The graph has a vertical 
asymptote x= - I and an inclined asymptote y=x-3. The minimum is y (0)=0, 

256 . ( 3296) maximum y (-4) = - 27 . The points of inflection are -6, - 125 and 

(c) the function is defined in ( - oo, 0) and (0, + oo). The graph ( 2, ~~} 
has a vertical asymptote x=O. The minimum is y ( ~) =3. The point of in flee-

. . v2 . t1on 1s ( - - 2- , 0) , (d) the function is dt•fincd in the intervals ( - oo, - 1 ), 

(-I, I) and (I, oo); it is odd. The graph is symmetrical about the origin, has 
two vertical asymptotes x= ±I and an inclined asymptote y=x. The minimum 

is y ( y3) = +3 ~"3, the maximum y (- Jl3) = - 3 1:3 . The point of 

inflection is (0, O); (e) the functioa is defined everywhere, it is even. The 
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graph is ~ymmetrical about the y-axis and has a horizontal asymptote y=O. The 
minimum is y (0) = V4. the maxima y ( ± y2) = 2 v2. The points of inflec-

tion are ( ± 2, V4); (f) the function is defined in ( -2, + oo ). The vertical 
asymptote isx=-2. The minimum isy(O)=O, the maximum y(-0.73)~0.12. 
The point of inflection is (-0.37; 0.075); (g) the function is defined everywhere. 

The horizontal asymptote is y=O as x -++ oo. The maximum is y ( ! ) = ( ~ )3. 
The points of inflection are (0, 0), 

( 3- v'3 (3- ¥3) 3 va-3) (3+ ¥3 (3+ ¥3) 3 -3-va). 
4' 4 e '4' 4 e ' 

(h) the function is defined and continuous everywhere. The horizontal asymptote 
is y =I. The minimum is y (0) = 0, the point (0, 0) being a corner point on the 

, n , 1t 
graph: y_ (0) = -2. Y+ (0) = +2. 

3.12.6. 4.4934. 3.12.8. X1 =-2.330; X2=0.202; X3 =2.128. 3.12.11. 0.6705. 
3.12.12. (a) 0.27; 2.25; (b) 0.21. 3.12.13. (a) 1.17; (b) 3.07. 3.12.14. 1.325. 
3.12.15. 0.5896 and 2.2805. Hint. To approximate the smaller root more precisely 
write the equation in the form x=eo.sx-1, to find a more accurate value of the 
larger root represent it in the form X= 1.25 (I+ In x). 

3.13.1. No. Hint. Show that at the point x= I the derivative is non-exis· 
tent: (.(l)=l; f~(l)=-1. 

3.13.2. Hint. Check the equality f (b)-f (a)=(b-a) f' (atb). 
3.13.3. Hint. Apply the Rolle theorem to the function f (x) =a.,xn + .•• 

. . . +an-I (x) on the interval (0, x0 ). 

3.13.4. Hint. Make sure that the derivative f' (x) = 4 (x3 -1) has only one 
real root, x= I, and apply the Rolle theorem. 

3.13.5. Hint. The derivative f'(x)=nxn-i+p has only one real root at an 
even n and not more than two real roots at an odd n. 

3.13.6. Hint. The derivative is a polynomial of the third degree and has 
three roots. Take advantage of the fact that between the roots of the polyno­
mial lies the root of its derivative. 

3.13.7. Hint. From the correct equality lim cos~=O (0 < 6 < x), where 6 is 
x - 0 l::i 

I 
determined from the mean value theorem, it does not follow that lim cos -=0, 

x - 0 x 
since it cannot be asserted that the variable 6 attains all intermediate values 
in the neighbourhood of zero as x-+ 0. Moreover, 6 takes on only such a sequ-

ence of values E for which lim cos ~ =0 <6E£). 
3.13.8. Hint. The mistake is that in the Lagrange formula one and the same 

point 6 is taken for f (x) and qi (x). 
3.13.9. Hint. Apply the Lagrange formula to the function In x on the interval 

(b, a]; (b) apply the Lagrange formula to the function zP on the interval [y, x]. 
3.13.10. Hint. With the aid of the Leibniz formula ascertain that the 

coefficients of the Chebyshev-Laguerre polynomial alternate in sign, the odd 
powers of x having negative coefficients. Whence deduce that L,, (x) > 0 for 
x < 0. 

3.13.11. Hint. Using the Rolle theorem, show that inside the interval l_x0 , x,,j 
there are at least n roots of the first derivative, n-1 roots of the second deri­
vative, and :•o on. 

3.13.12. Hint. The L'Hospital rule is not npplicable here, since the derh'<l· 
tive~ of both the numerator am! <lenond1:ator vanish at all points where the 
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factor sin x (which we cancelled in computing the limit ol the ratio of deriva­
tives) vanishes. 

3.13.13. Hint. Write the Taylor formula with the remainder R2 : 

h2 h3 
f (a+h) = f (a)+hf' (a) + 21 f" (a) + 31 f'" (a +81h). 

Comparing it with the expansion given in the problem, get the equality 
f" (a+Sh)-f" (a) I 

h 3f'"(a+81h) and pass over to the limit as h--+0. 

3.13.14. Hint. Prove by using the rule of contraries. Suppose that e=.!!..., 
q 

where p and q are natural numbers, p > q > I, and, using the Taylor formula, 
get for n > p 

p I I I I ( p )B 
(/= 1 +rr+2f+ ... +Ii!+ <n+ I)! (/ (O < e < 1). 

Multiply both sides of this equality by n!, and noting, that .!!... n! and 
q 

(1+fi-+ ... + ~!) nl are positive integers and n~l (~ r < nll ·:<I, 
obtain a contradictory result. 

3.13.15. Hint. Verify that the function 

J sinx :re 
f(x)=i -x-' O < x~2' is continuous on the interval lo, ~]. 

l l, X=O 
Ascertain that the derivative f' (x) < 0 is inside the interval. 
3.13.16. Hint. Show that f' (x) ~ 0. Ascertain that 

f (O) = I -a { > 0 for a < I, 
< 0 for a> I, 

and take advantage of the fact that the function increases. 
3.13.17. Hint. Show that the function f (x)=xex-2 increases and has oppo­

site signs at the end-points of the interval (0, l). 
3.13.18. Hint. Show that the derivative 

f' (x) = -2
1 + 2x sin _.!_ - cos _!__ (x i= 0) 

x x 

is equal to ; at the points x=(2n~l):rc (n=O, ±1. ±2, ... ),and to-~ at 

the points x = -2 
1 , i.e. the derivative changes sign in any vicinity of the 

n:rc 
origin. 

3.13.19. Hint. Ascertain that the auxiliary function 1p (x) = f (x)-<p (x) iPJ­
creases. 

3.13.20. Hint. Make sure that at all points of the domain of definition of the 
function the derivative retains its sign if ad-be i= 0. But if ad-bc=O, i.e. 

; = ~, then the function is constant. 3.13.21. P=-6, q= 14. 

3.13.22. A mmimum f (x0 ) = 0 if <p (x0) > 0 and n is even; a maximum 
f (x0) = 0 if <p (x0) < 0 and n is even; the point x0 is not an ext rem um if n 
is odd. Hint. Al an even n, in a certain neighbourhood of the point x0 the func­
tion retains its 5ign and is either rigorously greater than zero or rigorously less 
tlian zero, depending on the sign of <p (x0). At an odd n the function changes 
sign in a certain neighbourhood of the point x0• 
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3.13.23. Hint. For x :j: 0 f (x) > 0, hence 

ti d . t. f' ( ) 2 . I + I I . ie enva 1ve x = -sm- -cos- 1s 
x x x 

f (0) is a minimum. For x > 0 

positive at the points x=-2 
1 

nn 

and negative at the points X= (2n~ I) :rt. The case x < 0 is investigated ana­

logously. 3.13.24. (a) I and O; (b) I and -2. 
3.13.25. (a) The least value is non-existent, the greatest value equals I; (b) 

the function has neither the greatest, nor the least value. 
3.13.30. Yes. Hint. Since f" (x) changes sign when passing through the point x0 , 

the latter is a point of extremum for the function f' (x). 
3.13.31. The graph passes through the point M (-!, 2) and has a tangent 

line y-2=- (x+ I); M is a point of inflection, the curve being concave down­
ward to the left of the point M, and upward to the right of it. Hint. The func­
tion f" (x) increases and changes sign when passing through x = -1. 

I 
3.13.32. h= .r-. 

a r 2 
3.13.33. Hint. According to the Rolle theorem, between the roots of the first 

derivative there is at least one root of the second derivative. When passing 
through one of these roots the second derivative must change sign. 

3.13.35. Hint. The polynomial has the form a0x2n+a1x2n- 2+ ... +an_ 1x2 +an. 
Polynomials of this form with positive coefficients have no real roots. 

3.13.36. Hint. Take advantage of the fact th1t a polynomial of an odd degree 
(and, hence, also its second derivative) has at least one real root and changes 
sign at least once. 

( 2x4+x3+ ') 3.13.37. Hint. Find lim 3 0 1 . 
x- 00 x - .... x--

Ch apter IV 

4.1.2. /=x3 +x2 +0.51n\2x-1 l+C. 
3 3 

4.1.7. I=~ (x+l)2 + ~ x2 +c. Hint. Eliminate the irrationality from the 

denominator. 

4 1 14 I I t 2x C . . . = 10 arc an 5 + . 

2 2x+ I 
4.1.15. I= .r- arctan .r- +c. 

r 3 r 3 
4.1.18. l=lnlx+3+V·'--x2_...J.._,-6.-r1_'_1 l+c. 

/ =-'-In I v-Tiix- vr 1 c 4·1.20· 2 V10 Viox+ V1 + . 
I x-3 . 3 ,VJ - . 4.1.21. (a) 2 arctan-2-+c, (b) 4 (x-4) x+C. 

2 
+2 cot x+C; (d) - x--!-arc tan x+ C. 

(c) 3 tan x + 

4.1.22. (a) In (x+ YI -f-x2 )-t-arc sin x-f-C; (b) sinx-cos x+C; 

(c) -Ii~ 5 5-x+ ~ 2-x+c; (d) -0.2 cos.Sx-x sin Sa+C. 

4.2.3. I=~ Jr(2x-5)'1+~ V2x-5- .37 +c. 
12 2 4 Y2x-s 



440 Answers and Hints 

-- I ~ 
4.2.8. I =-2 Vcos x+c. 4.2.10. I =T (x3+3x+ I) a +c. 

I 2 
4.2.13. (a)0.75 V(l+lnx)'+C; (b) lnllnxl+C; (c) 2 arcsin;3+c; 

I xn .r- I 
(d) - arc tan -+C; (e) -2 cos r x +c; (f) -2 ln2 x+ Jn I In x I +c. 

na a 
3 ~ 

4.2.14. (a) - 140 (35-40x+14x2) (1-x) a +c; 

(b) ; (lnx-5) V l+lnx+C; 

(c) (~-~ sin2 x+~ sin' x) JI sin3 x+C· 3 7 11 ' 

(d) -/5 (8+4x2 +3x') JI I x2+C. 

4.3.2. x arc sin x+ YI x2 +c. 
4.3.14. - cosx In tan x+ln I tan (;) l+c. 

4.3.17. x In (x+ VI+ x2)- VI +x2 +c. 
4.3.18. ! x Vx [(In x) 2 - ~ In x+ n +c. 

4.3.19. 2 VI +x arc sin x+4 VT=X+c. 
4.3.20. -0.5 (++cot x) +c. 

Sin X 

4321 3X(sinx+cosxln3) C 
. . . l+(ln3)2 + . 

4.3.22. (; x3 -x2 +; x+ 1:) eax+c. 
4.3.23. (x4 -10x2+21) sin x+x (4x2-20) cos x+C. 
4324 9x2 +1Bx-ll 3 2x+2. 3 C . . . 27 cos x+-9- s1n x+ . 

( x3 ) ·1 2 
4.3.25. --x2+3x In x-.::._+~-3x+C. 

3 9 2 
x4 - I x3 x 

4.3.26. - 4- arc tan x-12+4 +c. 

x3 2+x2 .r--4.3.27. 3 arccosx--9- r 1-x2+c. 

4.3.28. (a) IBx2 + 7
5;-t3 sin(6x+2)- 5x7tl cos(6x+2)+ ~ x3 + 

3 2 9 ~ 
++x2 -x+C; (b) 4 (x2-7x+I) (2x+I)3 - 40 (2x-7)(2x+l) 3 + 

'i.7 ~ 
+ 320 (2x+ I) a +c. 

4.4.2. (d) Hint. Apply the generalized formula for integration by parts and 
express In from the relation thus obtained 

e•x n (n-1) 112 
ln--a.2 sinn- 1 x(a.sinx-ncosx)+ a.2 ln-2-a~ In. 
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4.4.3. I =- cos x +n-2 I 2) 
" (n-J)sin"- 1 x n-1 n- 2 (n~ ; 

cos x I cos x I I x I /3=- -2 .. , +-2 11 =- 2-.-.,-+-2 In tan -2 +c. sm·x sm·x 

Chapter V 

x2 I J x-1 J 16 5.1.2. 2 -2x+ 6 1n (x+ !)3 +3 In I x+21+c. 
x 

5.1.5. 21nlx-1 l-1nlxl-{X-l)2 +c. 

5.1.8 .• ~- arctan 2~: 1 -_!_arctan(x+2)+C. 
3 f 7 f 7 3 

5.1.10. 5x+ln x2 (x+2) 4 I x-21 3 +C. 
9x2+sox+68 I J (x+ I) (x+2)16 I 

5.1.11. 4 (x+2) (x+3J2 +a In (x+3)11 +c. 
I 

5.1.12. - x- 2-arc tan (x-2)+C. 

I I (l+x)2 I 
5.1.13. - 6 (I +x) +6 In l-x +x2+2 arc tan x-

i 2x-1 
- 3 ¥_3 arc tan VJ +c. 

x+2 vx:tT 
5.1.14. 2 (x2 +I) +2 arc tan x +In V x2 + 1 +c. 
5.2.2. 4 Vx+6 Vx+24 1~-x+241n I ~x-1 l+c. 

I 21+ I I Vv+2fi I 5.2.4. - .r- arc tan .r- +In 3 • + 
f 3 f 3 Vt-l·Yt 2 +t+1 

+c. where t = vx- I. 
x 

.. /x+I 3 v1+x 
5.2.7. V l-x +c. 5.2.8. 2 l-x + C. 

5.2.9. ( 1-f x) VT"=X1-f arc sin x+C. 

5.3.3. -2 arc tan ( V 1+x;xLf- 1 +I) +c. 

5.3.5. 2 In I V xi+ 2x + 4 -- x I- . 3 -
2 ( V x2 +2x+4-x- I) 

441 

:i 11--- I - -x In ~ x~+2x-i-4 -x-1 + c. 
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536 l+Jf'f"=X"2+2arctan -./l+x+c . 
. . " x V 1- x 

5.3.7. x- I +c. 5.3.8. (x+ Vf+XI)u +c. 
Y2x-x2 15 

5.4.2. 5 Y x~+2x +-5-ln (x+ I+ Vx_2_+_2x_+_5)+C. 

5.4.5. 3x2 + 3x-I Y3x2 -2x+1+c. 

5.4.6. 2x:I J.l"x2 +x+I +} lnl2x+1+2 JfxLt-x+t l+c. 

5.4.8. + (x2 -14x + 111) V x2 +4x+ 3- 66 In I x+2+ Jf x" --i-4x+3 l+c. 

5.4.9 . ..!..(32x2 -20x-373) v~x'+5x+7+ 32;; ln/4x+5+ 
64 128 r 2 

+ 2 Jf 4x2 + I Ox + 14 I+ C. 
3x+5 ,/-2- 2- 3 . I C 

5.4.10. tl (x + l)2 r x + x-8 arc sm (x+ I)+ . 

Yx2 -4x+3 . I 
5.4.11. - 1 -2arc sm------.;+C. 

X- X-.&. 

-~ .., /x+28x2 +12x+7 C 
5.4· 12· 15 V x+ I (x+ 1)2 + · 
5.4.13. 1nlx2 + 1+V;4 + 3x2 + 1 l+c. Hint. First make the substitution 

x2 =t. 

V-
5.5.2. 3 arc tan x+C. 2 --a 4 12 3 4 ( 2)Y ( 2)5 

5.5.4. 3 2+x - 5 2+x +c. 
11 8 !j 

3 I • a 3 (I 2>3+ 3 (I 9 a c 5.5.5. 22 ( +x·) - 8 +x TO +x·) + . 

5.5.7. 172 V(t+Vx)7-3 V(i+v xt+c. 

v--x 3 
5.5.8. 3 In a/ + av-+C. 

l+v x I+ x 
a 

(I +x2) 2 (3x2 -2) 
5.5.9. 15 +c. 

5 51.o Y~ (2x2 -I) +c 
· · · 3x3 • 

5.5.11. ~~ V(1+vx~)8 +c. 
4 D 

5.5.12. ~ ( 1++ )5 - ~ (I+~ ) 5-1-C. 

5.6.2. 3~--5 .1 
6 +c. 5.6.6. tan x+ 3

1 tnn'l x+C. 
Stn X Stn X 

I I 
5.6.IO. (a) -cotx+ 3 cot3x- 5 cot6 x-x-f-C; 

(b) ~ tan2 x-~ ln(l+tan2 x)+C~~ ~ tan 2 x-j-lnlcosx\+C. 
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5.6.12. -sinx-...!_ sin3 x+_!_ In 1 1+ sinxl+c. 
3 2 I- sin x 

2 (1+2tani) 
5.6.14. VIS arc tan VIS ;+c. 

, x sinh 4x 2 ( 2 tanh ; + 1 ) 
5.6.22. (a) - 8 +32+c; (b) V 3 arc tan V 3 +c. 

5.7.3. -! ln(x+ Vx2 -1)+ ! x(2x2 -I) Vx2 -l+C. 

5.7.4. In (x+ Vx2 +1)- VX2+T +c. 
x 

5.7.7. i=arcsinxtl+c. 

x-1 
5.7.8. I= V +c. 

4 x2 -2x +5 
5.8.2. I =4 VI -x+ 2 In (2-x-2 Vl=X)-2 (I+ Y 1 x) In x+C. 

ta cos t +sin t 
5.8.5. I ~"e• a.2 + 1 + C, where t =arc tan x. 

Ch apter VI 
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6.1.9. 1=4·3t 19 =44 as the area of a trapezoid whose height is5-1=4 

and bases 4Xl-1=3 and 4X5-1=19. 

I 175 125 1 175 125 
6.1.12. Sn=16-;r-2ii'"+ 4n2 ; Sn=l64+2ii'"+ 4n2 • 

3 :rt 7 I 3 
6.2.2. (a) I; (b) 2 ; (c) 6 . 6.2.10. (a) 72 ; (b) 2 In 2 ; 
:rt :rt n n 

(d) 4 - arc tan T; (e) In 2; (f) I; (g) arc tan e-4 ; (h) 16 : 

(c) n; 

') 14 
(1 T5; 

4 v·3-¥2 . 5 
(J) 3 : (k) 2 . 6.3.1. (c)3</ <5. Hint. M=/(0)=2 , m= 

3 , sin2x ,r-- . n2 dy 
=/(2)= 2 . 6.3.11. (a)-x-: (b) - r i+x4 • 6.3.14. (b) 4 .63.15.(b)dx= 

. 3 . , t , tan t 
= - e-IJ smx. 6.3.23. (a) In x; (b) x. 6.3.24. (a) Y, =mt: (b) Yx= T· 

6.3.25. (a) The maximum is at x= I, the minimum at X=- I; (b) the 
minima are at x=- 2; O; 2, the maxima at X= ± I. 

6.4.3. (a) ~~4 (substitution X= a sin t); (b) Jf-3-; Jf°2 (substitution X= tan/) . 

• r- 2 2+ ¥3 '"' 3 J/3 6.4.6. (a) r 2-,r-+ln v_; (b) 2(r 3-1); (c) 8+-2-n. 
r 3 l+ 2 

. n 
sm 24 

6.4.15. (a) 2-2 ln2; (b) 0.2 In 112; (c) ----
. :rt . :rt 

sm 8 sm 12 

(d) y'°3-0.5 In (2+ 
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+ Jf 3); (e) 0.25 In 3 (substitution sin x- cos x= t); (f) a3 ( ~ - ; ) 

(substitution X= a cost); (g) :n;2 (substitution X= 2a sin2 t); (h) ~ +f. 
6.4.16. (a) ~ ; (b) : ; (c) {-In~~ (substitution x4 = t); (d) ~ (substi-

tution x2 = a2 cos2 t + b2 sin2 t). 

6.4.17. The substitution x =+ will not do, since this function is disconti­

nuous at t = 0. 

6.4.18. The substitution t =tan ; will not do, since this function is discon­

tinuous at x = :n. 
6.4.19. Hint. The inverse function x= ± Jf/5 is double-valued. To obtain 

the correct result it is necessary to divide the initial interval of integration into 
two parts: 

2 0 2 

~ V x2 dx= ~ V x2 dx+ ~ V x2 dx 
-2 -2 0 

and apply the substitutions x=- Vto in -2 < x < 0 and x=+ Jf75 in 0 < 
< x < 2. 

6.4.20. It is impossible, since sec t ~I and the interval of integration is 
(0, I]. 

6.4.21. It is possible; see Problem 6.4.12. 
a 0 a 

G.4.22. Hint. On writing ~ f (x) dx = ~ f (x) dx + ~ f (x) dx, make the sub-
-a -u O 

stitution x= - t in the first integral. 
I -1 0 

6.4.23. ~ f(arcsint)dt+ ~ f (n-arcsint)dt+ ~ f(2:n+arcsint)dt. 
0 I -1 

Hint. Represent the given integral as the sum of three integrals for the in· 

( :It ) ( :It 3:rt ) ( 3:rt ) . tervals: 0, 2 , 2, T , T, 2:n and substitute the variable: x = 

=arcsint, X=:rt-arcsint, x=2n+arcsint respectively. 
6.5.3. (I) If f (x) is an even function, then 

:t n :re 

~ f(x)cosnxdx=2 ~ f (x)cosnxdx, and ~ f(x)sinxdx=~O. 
-rr 0 -IT 

rr rr 

(2) If f (x) is an odd function, then ~ f (x) cos nx dx == 0, and ~ f (x) sin nx dx= 

IT 

= 2 ~ f (x) sin n dx. 
0 

-IT -rr 

6.5.4. 0. 6.6.3. 6-2e. 6.6.5. rr y·2-4. 6.6.6. rr-2. 6.6.13.(a) ~--I; 

(c) .::._ Jf-3rr+..!..1n2-· (u) _::._ _ _!__. (c) ln2-_!_. (f)ln2· 
(b) --e· 4 9 2 :.:! ' 4 2 • 2 ' 8 • 

:n 16:11 .r-
(g) 2-I; (h) 3-2 r 3. 
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6.6.14. /lint. Integrate by parts twice, putting u = (arc cos x)n the first 
time and u =(arc cos x)n- 1 the second time. 

6.6.15. Hint. Integrate by parts, putting u=x. 

6.7.4. (a) 0.601. Hint. Estimate I flV (x) I on the interval [ ~ , ~ J and put 

2n=6; (b) 0.7462. 6.7.5. 0.96 
6.8.1. 

( x-x2 
for O~x~I. I 2 

I 
F (x)= i 2 for I< x~2. 

(x-2)3 I 
for 2 < x~3. 1-+-3 2 

Continuity is checked directly. The assertion concerning the derivative re· 
quires checking only at the points x= l, x=2. 

6.8.2. Hint. Make sure that the function f (x) is continuous both m~1de the 
interval (0, I) and at the end-points ( lim f (x) = f (O) and Jim f (x) = f (I)). 

X->+0 x-J-0 
6.8.3. No. Hint. Consider the function 

{ I if x is rational, 
<p (x) = - I if x is irrational on the interval [ 0, I). 

b 

6.8.4. l-Jf3. Hint. ~f"(x)dx=f'(b)-f'(a). 
a 

6.8.5. Hint. Putting for definiteness x > 0 and 
E (x)=n~x < n+ I, 

take advantage of the additivity of the integral 
x I 2 n x 

~ E (x) dx= ~ E (x) dx+ ~ E (x) dx+ ... + ~ E (x) dx+ ~ E (x) dx. 
0 0 I n-1 n 

6.8.6. The antiderivative f 1 (x) will lead to the correct result and f 2 (x) to 
the wrong one, since this function is discontinuous in the interval [O, :re]. 

x 

6.8.7. F (x) =Yo+~ f (t) dt. Hint. Any an ti derivative F (x) can be represen-
Xo 

x 

ted in the form F(x)=~f(t)dt+C. Puttingx=x0 , find C=y0 • 

Xo 
I e2b_e2a 

6.8.8. ~ =2 ln 2b-2a . 

6.8.9. The function is defined on the interval [-I, I], it is ncld, and in­
creasing; convex on the interval [-I, O] and concave on the interval [O, I]; 
the point [O, OJ is a point of inflection. 

6.8.10. Hint. The function 
_ { xx at 0 < x ~ I 
I (x)= 

I at x~-"o 
I 

is continuous on the interval, it reaches the least value m = e e ~ 0.692 at 
I 

x=- and the greatest value M ~ l at x=O and at x= l. e 
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6 8 11 H. I t t th · 1't 2 sin x I ... int. negrae e mequa1y n~-x-~. 

6.8.12. Hint. Integrate the inequality 

V xsinx > yx2 -i=x yi- ~~at O~x~ ~ 
and write Schwarz-Bunyakovsky inequality 

~ ;·l't E.. 
2 2 2 

5 Vxsinxdx~ l/ 5 xdx 5 sinxdx= ~'=~· 
0 " 0 0 2¥2 

6.8.14. Hint. Apply the Schwarz-Bunyakovsky inequality in the form 

r ! b v t (x). f ~x) dx] 
2 ~ ! f (x) dx ! f ;x) dx. 

6.8.15. Hint. Make the substitution arc tan x=;. 

x 

6.8.16. Hint. If f (x) is an even !unction, then F (x) = ~ f (l) dt is an odd 

!unction, since 
-x x 

F(-x)= ~ f(t)dt=-~f(-z)dz=-F(x) (l=-z). 

, 
And ii f (x) is an odd function, then F (x) = ~ f (t) dt is an even !unction, 

since 
-x , 

F(-x)= ~ f (t)dt=-~ f(-z)dz=F(x) (t=-z); 

all the remaining antiderivatives have the form F (x) +c and, therefore, are 
also even functions. 

6.8.17. Hint. The derivative of the integral I with respect to a equals zero: 
di 
da =f (a+T)-f (a)=O. 

Ch apter VII 

7.1.4. (a) In 2; (b) ~ (2 ¥2-1); 
3 I 

(c) T; (d) I; (e) 2 . 
.n 2i 

7.2.5. -4 . 7.2.10. .r 
hr d2+h2 

I I I 2 
7.2.2. (a) -2 ; (b) -+-In--~ 0.283. 

2 2 e-:- I 
5 8 

7.2.13.(a) µ=a; (b) µ=ln2; (c) µ= 1n 3 +2. 

35 2 5 . 3 8 
7.3.4. 6 . 7.3.6. 3 + 2 arcsm 5 . 7.3.11. 15 . 

21! 2/ 0 
1.2.15. 3 . 1.2.16. 11 . 

I 
7.3.13. 9. 7.3.16. --1 m+. 



64 
7.3.19. 3· 

128 
7.3.23.15. 
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8 
7.3.20. 3· 

I 
7.3.24. 3· 

7.3.21. 2:rt-(2 y3) In (2+ y3). 
4 

7.3.25. 3. 8 
7.3.26. 15. 

1 
7.3.27. 12. 
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7.3.22. 0.75:rt. 

91 
7.3.28. 30. 

8 
7.4.6. 5 . 7.4.8. 0.75:n:ab. Hint. The curve is symmetrical about the coordinate 

axes and intersects them at the points X= ±a, y= ±b. 
7.4.9. (a) ~5 . Hint. The curve is symmetrical about the x-axis, intersecting 

it twice at the origin at I=± I. The loop is situated in the second and third 

quadrants; (b) ~5 . Hint. The points of self-intersection ot the curve are found 

in the following way: y=tx(t), therefore y(t1)=t1x(ti)=t2x(t 2 ) at 11 f= t 2 and 

x(t1)=x(t2), only if x(t 1)=x(t 2)=0, i.e. t 1 =0; t 2 =2; (c) 8 ~3 . 
7.4.10. 0.25:n:ab. Hint. The curve is symmetrical with respect to both axes of 

coordinates and passes twice through the origin forming two loops. Therefore, it 
is sufficient to compute a quarter of the desired area corresponding to the variation 

of t from 0 to ; and multiply the obtained result by 4. 

7.4.11. ~;; . Hint. The curve resembles an astroid extended in the vertical 

direction. 

7.5.2. (a) 3; ; (b) :n::2
• Hint. The curve is a circle of radius ~ passing 

through the pole and symmetrical about the polar axis, - ~ ..:;;;;; cp..:;;;;; ; • 

7.5.6. 2a2 ( 5
8:rt - I)· 7.5.8. (a) :n:;2

; (b) :n:t. 7.5.9. a2 ( ~;- r3). 
7.5.10. ~~2 

• Hint. The curve passes through the pole forming two loops located 

symmetrically about the y-axis in the first and fourth quadrants. It is suffirient 
to calculate the area enclosed by one loop corresponding to variation of qi from O 

to ~ and double the result thus obtainer!. 

7.5.11. ~ na2 • Hint. The curve passes through the pole. it ts symmetrical 

about the polar axis and situated in the first and fourth quadrants. It is suffiricnt 
to calculate the area of the upper portion of the figure which corresponds to 

variation of qi from 0 to ; and double the result thus obtained. 

··( :rt ¥3) 7.5.12. a· 1+6 --2- . 

7.5.13. n;2
• Hint. The curve is symmetrical about the coordinate axes and 

intersects them only at the origin, forming four loops-one in each quadrant 
(a four-leaved rose). Therefore, it is sufficient to find the area of one loop corres-

ponding to the variation of qi from 0 to ; and multiply the result by 4. 

7.5.14. ¥2 :n:a2 • Hint. The curve is symmetrical about the axes of coordi­
nates and the bisectors of the coordinate angles; it cuts olT equal intercepts on 
the axes. The origin is an isolated point. It is sufficient to compute the area of 
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one-eighth of the figure corresponding to variation of rp from 0 to -i- anrl mul­

tiply the result by 8. 

7.6.2. 9; :rt. Hint. A plane perpendicular to the x-axis at the point x will 

cut the sphere along a circle of radius r= V16-x2, therefore the cross-sectio­
nal area S (x)=:rt (16-x2). 

7.6.5. 0.5:rta2h. Hint. The area of a triangle situated at a distance x from 
the centre of the circle is equal to h Va 2 -x2 • 

7.6.10. 2:rt2a 2b. 7.6.11. ~ (see Problem 7.3.9). 7.6.14. 5:rt2a3. 

7.6.16. (a) 2nab (I +3~2 ) ; (b) 1
3
6 a; (c) ~ abk2:rt. 7.6.17. ; a3 tan Cl. 

2 . b 16 . 64 . d 2. 64 . (f 4 3 7.6.18. (a) I :rt, ( ) 15 :rt, (c) 5 :rt, ():rt, (e) 3 :rt, ) 3na. 

7.6.19. ~~3 . 7.6.20. 7~. 7.6.21. {-:rta3 (e :" -e - ~c) +na2c= n;3 sinh ~ + 

+ :rra2c. 7.6.22. ; 0 (6:rt+5 Jl3). Hint. The abscissas of the points of intersec-

:rt n 19 127 16:ric6 
tion are: x1 =-3 ; x2 = 3 . 7.6.23. 48 :rt. 7.6.24.7:rt. 7.6.2s. 105ab2 • 

Hint. Represent the evolute of the ellipse parametrically as follows: x= c2 cosa t; 
a 

2 

y=--7J-sin3 t, where c=Va2 b2. 
4 . n 2a3 

7.6.26. 3 :rra3 • 7.6.27. 4 V2"; 

:rt;3 l V2 In (1 + V2)- ~ J . Hint. Pass over to polar coordinates. 

4 3 112 eb-e-b .r .r 
7.6.28. 21 na. 7.7.2. 2f. 7.7.4. In ea-e~. 7.7.8. (a) r 6+In ( r 2+ Jl3); 

n . :rt . 2 Jl3 a (a+ 2) 
(b) 2ln(2-V3). Hint. x1 =- 2 . x2 =3· (c) - 3-. 7.7.9. --2-. 

7.7.10. 10 G;+ VS)- 7.8.2. Ba. 7.8.5. 1:. Hint. The curve intersects the 

4/-
axes at t1 =0 and t 2 =1/ 8. 7.8.7. 4 V3. 7.8.8. 16a. 7.8.9. B:rta. Hint. 

4 (a3-b3) :rta 2n 
Sre Fig. 79. 7.8.10. ab . 7.8.11. 3 . 7.8.12. At t= 3 the point 

Mr a ( 2; - ~3)' 3;] . 7.9.5. l.5:rta. 7.9.9. 152+ In ; . 7.9.10. 2V2 :rta. 

Hint. The curve p = 2 JI~ a cos ( rp- ~ ) is a circle. 

7.9.11. P[V2+In(l+V·2)]. 7.10.3. (a) I 4:r (b) 623Jt . 3; 

7.10.5. 2:rr (I+ 3 ~-:3). 2 
(34 ¥17-2) ; . 7.10.8. 7.10.14. 

7.10.15. 2:rt [ V2+ In(!+ V 2)]. 7.10.16. 5
3
6 na2 • 

2 V2 
7.10.17. -g- rr (e"-2). 

7.10.18. 29.6n. 7.10.19. 4:t2a2 • 7.10.20. 1 ~8 na2. 7.11.i. 16a2 where a 1s 
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8 
the radius of the cylinders base. 7.11.8. l.5:n:. 7.11.10. (a) 15 ; 

7 I I :rra2 p2 ( .r-
(b) 50 - 4 arc tan 2 . 7.11.11. (a) T; (b) 6 3+4 r 2); 

I ,1 a ¥2 ( .r - ,1 -) (c) 8 (5:rt+6 r -3). 7.11.13. 2 (2ln3-I). 7.11.14. - 3 - 5 r 5-2 r 2. 

7.11.17. 2:rt ~/. 7.11.18. :rra2 fpq. 7.11.19. :rtab ( 3~2 -1+ 2;). 

nabh I 2 1 1 ( 4 y3 - 6 ) b2 7 I 1 4 a 7.11.20. 3 . 7.11.21. rr. 7. .22. 9 :rt a. . .23. 2f :rra . 

r .r- .r-) ( .r- ¥5-1 J 4:rra 2 ( .r-7.11.24. (a) :rt ( r 5-" 2 + r 2+1)-2- ; (b) 243 21 r 13+ 

·3+ yT3) 2 3 :rtR4 MR 2w2 + 2 ln 2 ; (c) 2nrh. 7.12.2. 3 yR. 7.12.4. T. 7.12.9. - 4-. 

7.12.11. :rrabhd. 7.12.12. :rtrdh2 • 7.12.13. /2 :rrR2H. 7.13.3. 0.25nRa. 

7.13.7. Mx=f(5YS-1); My=; rs+/51n(2+Y5). 7.13.8. Mx= 

= ~ ya2+b2 ; My=~ ya2+b2. 7.13.9. ¥2+1n(l+ y2). 7.13.10. 0.15. 

I _aba. 1 _aab 71312 (a+3b)h3 
7.13.11. x- 12 , y- 12 . . . . 12 . 7.13.16. Xe=Ye=0.4a. 

a sin rx 5a 
7.13.19. Xe=Ye=s. 7.13.26. Xe= R --a-; Ye=O. 7.13.28. Xc=s; Yc=O. 

0.2 (2e2"-en) 0.2a (e2"- 2e") 
7.13.29. Xe=- n Ye n 7.13.30. 4.5:n:a~. 

en-e2 en-e2 

7.13.31. Xc=O; Ye=!~· 7.14.t.1:::+~1 1; 41:+~1if bothmand nare 

even; 2 i m-n J if both m and n are odd; I m-n I if m and n are of different 
m+n m+n 

evenness. Hint. The curves ym=xn and yn=xm have two common points (0, O) 
and (I, I) in the first quadrant. The area of the figure situated in the first 

quadrant is equal to I j (x; -x :
1

) dx I· Depending on evenness and oddness 

of m and n this figure is mapped symmetrically either about the coordinate 
axes (m, n even) or about the origin (m, n odd). If m and n are of different 
evenness, then the curves enclose only the area lying in the first quadrant. 

7.14.3. Hint. Take advantage of the formula for computing the area in 
polar coordinates. 

7.14.4. Hint. Since the figures are of equal area, the function S (x) appear­
b 

ing in the formula for the volume V = ~ S (x) dx is the same and, consequently, 
a 

the values of the integrals are also equal. 
7.14.5. Hint. The formula follows rlirectly from Simpson's formula 

h 

SJ(x)dx=~ [t(O)-Ht(%)+f(h)]. 
0 
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nr2x2 
for a sphere S (x) = n (r2-x2); for a cone S (x) = ---p- ; for a paraboloid of 

revolution S (x) = 2npx and so on. 
7.14.6. Hint. Divide the curvilinear trapezoid into strips 11x wide and write 

an expression for the element of volume 11V = 2n xy 11x. 
7.14.8. Hint. Use the formula for calculating the length of a curve represen­

ted parametrically. 

7.14.9. In ~. Hint. The point (t= I) nearest to the origin with a vertical 

:rt 
tangent corresponds to t =2'. 

V3 7.14.13. 2n l5. 7.14.14. V2·z. 7 .14.16. (a) 0.5 In (x+y); 

(b) ~-0.5arcsinx. 

Chapter VIII 
I I 

8.1.2. (b) 2 In 2; (c) I; (d) I - In 2; (e) n; (f) 2 . 

8.1.6. (a) It diverges. Hint. In (x2 + I)>_!_ for x > Y e-1; (b) converges; 
x x 

( d . H"t2+cosx l. (d) ()d' c) 1verges. in . V x > Vx, converges; e 1verges. 

8.1.17. (a) 0. Hint. Represent the integral as the sum of two items: 
oo I oc 

S 1 1~:2 dx=S 1 ~:2 dx+ S 1 ~:2 dx. Make the substitution x=+ in these-
o 0 I 

"' I 
(' In x s In x 

cond summand and show that .) 1 +x2 dx= - 1 +x2 dx; 

2 

8.2.2. (a) 9a 3 ; 

I 0 

(b) it diverges; (c) diverges; 

(f) converges for p < l and diverges for p >- I. 

(b) ~!. 

(e) 3' 

8.2.7. (a) It converges; (b) diverges; (c) converges; (d) converges; 
.r- 51 (e) diverges; (f) converges. 8.2.11. (a) It diverges; (b) 2 r In 2; (c) 7 . 

8.2.14. (a) It converges; (b) diverges; (c) diverges; (d) converges; 

(e) converges. 8.3.7. (a) ; ; (a) 2n. 8.3.8. 3:rra2 . 8.3.9. +. 8.3.10. ~n. 
8.3.14. mgR. Hint. The law of attraction of a body by the Earth is deter­

ml{ R2 
mined by the formula f =--2 -, where m is the mass of the body, r is the 

r 
diStance between the body and the centre of the Earth, R is the radius of tl~e 
Earth. 

8.3.15. e1 • Hint. Electric charges interact with a force e,~2 , where e1 and e2 r 
are the magnitudes of the charges and r is the distance between them. 

8.4.1. Hint. Represent the integral in the form of the sum 
+oo a +oo 

S xP~:qx=S xP~:qx+ S xP~~qx (a> I) 
1 I a 
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and apply special tests for convergence, taking into consideration that in the 
first integral lnx=ln[I+(x-1)]-x-l as X-+ I, and in the second integral 
the logarithmic function increases slower for q < 0 than any power function. 

8.4.2. Hint. Making the substitution xq=t, reduce the given integral to the 

form ± + s"' t:~ 11 sin t dt. Represent the integral S'" t~~: sin t dt as the sum 

0 0 
I +oo 

S s~~ / dt + S s~~ t dt, where a= 1-p~ 1 , and show that the integral conver-

o I 

ges absolutely for I <a < 2 and conditionally for 0 < a,,;;;;; I. Note that at 

P+ 1 =0 the integral is reduced to the conditionally converging integral 
q 

+~ +~ 

S sint t P+I t h d' .. t 1 s sintd -t- dt, and a -q- = - l o t e 1verging in egra y t. 

0 0 

1/2 

8.4.3. Hint. Represent the given integral as the sum ~ xP- 1(1-x)q-idx+ 
0 

I 

+ ~ xP- 1 (1-x)q-i dx and apply the special comparison test. 
1/2 

T 

8.4.4. Hint. If /a I ::j: I~/, then ~ sin ax· sin ~x dx is bounded. 
0 

8.4.5. Hint. By substituting t =x2 the integral is reduced to the Euler 
gamma-function. 

"' "' "' afl 
8.4.6. Hint. Sf (ax)-:-f (~x) dx= S f ~) dx- S f ~x) dx= 5 f ~x) dx= 

fla 
a aa afl aa 

=A lnl+S f(x)-Adx. Applying the generalized mean value theorem, show a x 
aa 

that the last integral tends to zero as a-+ 0. 
8.4.7. Hint. Take the function f (x)=e-x for the first integral, the function 

f (x) =cos x for the second and take advantage of the results of Problem 8.4.6. 
8.4.8. It converges for m < 3 and diverges for m:;,, 3. Hint. Take advantage 

x2 
of the equivalence of I -cos x and 2 as X-+ 0. 

1t 

8.4.9. Hint. Represent 5 ~as the sum of two 
0 (sin x) 

1t 

1t 

2 

S dx 
integrals . k + 

0 (sin x) 

+ S ~; reduce the second integral to the first one by making the substi­
( sin x)k 

1t 

2 
tu ti on x= rt- t and take advantage of the equivalence of sin x and x as x-+ 0. 
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l't 

00 2 

Ssinx(l-cosx) ssinx(l-cosx) 
8.4.10. Hint. xs dx= dx + 

0 0 ~ 
00 

-f S sin x (I_ -cos x) dx. The integrand of the first summand on the right side is 
xs 

2 
an infinitely large quantity of order s-3 as x-+ 0. By the special comparison 
test the first integral converges absolutely for s-3 < I, i.e. s < 4, and diverges 
for s;;;;. 4. The second integral in the right side converges absolutely for s > I, 
since the function sin x (I -cos x) is bounded. But if 0 < s.;;;;; I, the second in· 
tegral converges conditionally as the difference of two conditionally converging 

"' "" 
integra Is S sin x dx and S sin X· cos x dx (see Problem 8.1.13). 
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8.4.11. Hint. Integral (2) can diverge. For example, let 

q:>(x)= { 
I, 2n:rt .;;;;; x .;;;;; (2n + I) :rt, 

- I, (2n + I) :rt < x < (2n + 2) :rt. 
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. I s sin x d p bl 8 13 B s sixn x m (x) dx = The integra -x- x converges (see ro em .I. ). ut .,, 

0 0 
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=SI si~ x I dx diverges (see the same problem). But if the integral Sf (x) dx con· 

0 u 
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verges absolutely, then the integral S f (x) q:> (x) dx also converges absolutely: if 

a 

I q:> (x) I < C, then If (x) q:> (x) I < CI f (x) I. and it remains to use the comparison 
theorem. 

l't 
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8.4.12 Hint. Transform the integral f (x) into f (x)= ~ In sin z dz by the 
l't 
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substitution y=; -z. Taking into account that sin z= 2 sin ~ ·cos ~ , reduce 

the above to the sum ol three integrals. 
8.4.13. Hint. Putting u= In cos x, cos 2nxdx=dv, integrate by part~ and get 

2 

the equality I I s . 2 sin x d Cl s· ,.=- sm nx -- x, n ¢: . 1r.ce 
2n cos ll'. 

p 

sin '2.nx =sin (2n-2) X·COS 2.!.+ sin 2x·cos (2n-2) x, 
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I s . sin x ln=-2 - sin (2n-2)x--dx+ 
n cos x 
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+ l •In (2n - 2) r-oln 2xdx +,] ,1n•x·m• (2n-2) xdx l 
0 0 ~ 

Check by direct calculation that for n ~ 2 the second and the third summands 
equal zero. Therefore, for n ~ 2 

" 2 
I =- - sm (2n-2) x--dx=- -- I -i· 

1 s . sin x n-l 
" 2n cos x n " 

0 

and by mductwn, l,,=(-l)n- 1 Bi· 


