Chapter 8

IMPROPER INTEGRALS

§ 8.1. Improper Integrals with Infinite Limits

Let the function f(x) be defined for all x>=a and integrable on
A

any interval [a, A]. Then lim Sf(x) dx is called the improper
A

>+® g

integral of the function f(x) in the interval [a, + oco] and is de-
+®

noted by the symbol S f(x)dx. We similarly define the integrals

a

B +®
Sf(x) dx and S f (x) dx.
" Thus, -
+ @ A
§ fx dx—Alln:m§f (x)dx;
B B
Sf(x dx = llm Sf(x)dx
+ o - c w A B
S f(x)dx= lim Sf (x)dx—+ lim Qf(x)dx.
- As—o g ;R

If the above limits exist and are finite, the appropriate integ-
rals are called convergent; otherwise, they are called divergent.

Comparison test. Let f(x) and g(x) be defined for all x>a and
integrable on each interval [a, A], AZ>=a. If 0<f(x)<<g(x) for

all x >a, then from convergence of the integral gg(x)dx it fol-
a

«®

lows that the integral Sf(x)dx is also convergent, and Sf(x) dx <
a

a
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&€

< Sg(x)dx; from divergence of the integral Sf(x) dx it follows that

a
@

the integral Sg(x) dx is also divergent.

Special con;parison test. 1f as x—oo the function f(x)>=0 is an
infinitesimal of order A > 0 as compared with ix then the integral

+ o

S f (x) dx converges for A > 1 and diverges for A<1.
’ Absolute and conditional convergence. Let the function f(x) be

defined for all x >a. If the integral S[f(x),ldx converges, then the

a
®

integral Sf(x) dx also converges and is called absolutely convergent.

a
In this case

»

(7 ax| < (1 (0)1ax.

@ ©

If the integral Qf(x) dx converges, and S|f(x)ldx diverges, then

a
€

the integral Sf(x) dx is called conditionally convergent.

The change of the variable in an improper integral is based on
the following theorem.

Theorem. Let the function f(x) be defined and continuous for
x>=a. If the function x=q(t), defined on the interval a <t <P
(o and B may also be improper numbers —oo and ), is monoto-
nic, has a continuous derivative @' (t)5=0 and llm(p () =a,

t> a+0
limg (f)= + oo, then

t>fp-0
B

{Fae= 1@ e @ar.
a a

Integration by parts involves no difficulties.

8.1.1. Evaluate the following improper integrals with infinite
limits or prove their divergence taking advantage of their defini-
tion.

. dx K .
(@) §x1n3 Sm, (c) E)g)csmxdx.
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Solution. (a) By definition,
® A

' odx . dx . 1 A
8—1—3—= llm 5\1—3= llH] (—_2|_?' "):
;2)6 nx A"'“”ezx nsx As+» =X e
. 1 1 1
= Jlim (’s‘—m—m)—"g-
(b) By definition,
tod ¢ ¢4
x . x . x
Sx2+2x—|—5_ lm_1 x2+2x+5+ lim Sx2—|-2x+5
—% B> wB A->+o.)0

(instead of the point x=0 any other finite point of the x-axis may
be taken as an intermediate limit of integration).

Compute each of the limits standing in the right side of the
above equality:

. dx T 1 x410 1 1 Tt
Blinjmgm_sliTw?arc tan 5 ‘B_ 5 arc tan 5 +T’
B
; d 1 114 | 1
i X = 1 Z x4 _=n 1 an —
AmiSm_Alerm 2arctan ) l0—4 2al‘cldn2.
0
Hence,
@
% dx o
,S x2F2x+5° 2°

(c) By definition,

® A
stinxdx: lim stinxdx.
§ A-»+w0

Putting u=x, dv=sinxdx and integrating by parts, we get

P A
lim stinxdx: lim —xcosx|A+Scosxdx =
Astos Aot ® 0 P

= lim (— Acos A+ sin 4).

A-> + »

But the last limit does not exist. Consequently, the integral

S xsinxdx diverges.
0
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8.1.2. Evaluate the following improper integrals with infinite
limits on the basis of their definition:

®

xdx . . ¢ xdx
(a) ‘§Tax;=_3)3’ (b) 5 pra (c) g Ve
¢ 4 ¢ 4 [
(d) sz(lfl_x); (e) S m; () Se *sin x dx.
I -® 0

Solutt’on (a) By deﬁnition

xdx — lim 1 (x2 3)—1/2 A _
V-()tz 3)8 A > + ® l’ )" A>+o| 2 —1/2 2

. ! )
= — l —_—— =1.
Al”lm[VAZ—s IJ :
8.1.3. Prove that the integrals of the form

+ o b
S e~P%dx and S eP* dx
a -

converge for any constant p > 0 and diverge for p < 0.
8.1.4. Test the integral

[}

S‘ dx
14 2x243x4

=1

for convergence.

Solution. The integrand
1

FO) = tooaram
is positive and is an infinitesimal of order A =4 as compared with
% as x—s oo. Since 4 > 1, the integral converges according to the

special comparison test.
8.1.5. Test the integral

®
S‘ dx
x—+sin? x
1
for convergence.

Solution. The integrand f(x)=

tive for x> 1.
As x— oo the function f(x) is an infinitesimal of order A=1

as compared with -)l?; according to the special comparison test the
integral diverges.

prarordls continuous and posi-
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8.1.6. Test the following integrals for convergence:

tan—
In (x2 +l) 5
dx; b —
(a) S O ) vy
R m3+arcsm— R
2—|—cosx x S - S arc tan x
©) 5 Vx %o (d) y 14X Vx 5 @) ; x dx

8.1.7. Test the mtegra]
\‘ (x+Vx4T1)dx
. 2427 M1

for convergence.
Solution. The integrand is continuous and positive for x>1.

Determine its order of smallness A with respect to '—x as x— 0o,

1 l
x+ Vil 1 < I+ ]/_

S/ 1 X

O Ay Ve

the order of smallness A=1. According to the special comparison

@®

test the integral S—i;}/xidx diverges.
lﬂ+2Vﬂ+l

8.1.8. Test the integral

since

S dx
) Vxx—1)(x—2)
for convergence.

Solution. Since the function

Fn) = ]/x3<1_;)(1_§) =:1%_X l/("%lﬂ‘"%)

is an infinitesimal of order 7»=-g— with respect to i as x— oo,

according to the special comparison test the 1r1tegral converges.
8.1.9. Test the integral

S :"/3—{-2x‘z dx
1/x3—l

for convergence.
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Solution. The integrand is continuous and positive for x>=2.
Determine its order of smallness with respect to —)17 as x— 4 oo:

: 3

V3t « 1/2"' X
_5_/:_—1 T /————

-1 — 1

v m V-

Since the second multiplier has the limit 17/2— as x— oo, we

have A:% < 1. Consequently, the given integral diverges.

8.1.10. Test the integral

®

S(l—cos%) dx

for convergence.
Solution. The integrand
1

f(x)= l—cos%:—.?sinz—x-

. e . . . 2
is positive and continuous for x > 1. Since 25m2-)l?~2 (%

the given integral converges (by the special comparison test).
8.1.11. Test the integral

IS

o

1
Slnex;’(ln—-ﬁdx, n>0
1

for convergence.
Solution. Transform the integrand:

1 1
f(x)=1n£#=1n[1+ e”“].
1

n

Since the function is an infinitesimal as x-— oo, then

1

e* —1 1 s fx) 1 .
~. In other words, lim e According to

f(x)~
the special comparison test the given integral diverges.

8.1.12, Test the integral

@

1 —4 sin 2x

—3 = dx
i x4+ |/x

for convergence.
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Solution. The function f(x):l—_‘i—ssﬁ changes its sign together
x3 x

with the change in sign of the numerator. Test the integral

gll——45m2xld
x3—|—|/x

for convergence. Since —HM< , and the integral
x3—|— l/x

1

sz converges, the integral Su_%;ﬂdx converges as well (ac-

i
cording to the comparison test). Thus, the given integral converges
absolutely.

8.1.13. Prove that the Dirichlet integral

sin x
—dx
X

| =

ot 38

converges conditionally.
Solution. Let us represent the given integral as the sum of two

integrals:
.Tl
@ ) o
. smx S inx
/_Og § g L

The first is a proper integral ( since 11m ¥=l>. Applying the
-0
method of integration by parts to the second integral, we have
A
)wd x = lim E'—)':—’fdx=

A-s®
"'l

But the improper integral SCOS* dx converges absolutely, since
n
2

% &
o
o
=i
<
o)
o
®
UJ

lcos*l <, and the integral | %
-;l/
2
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Therefore, the integral Ssm dx converges.

Reasoning in a similar way it is easy to prove that the integral

Coxsx dx also converges. Now let us prove that the integral

| sin x |

- dx diverges. Indeed,

ojac— g |08

| sin x| sinx _1—cos2x

but the integral

2 | Tde 1 (cos2
I —cos 2x . X €O0S 2x
[ tan= Jim o [F—g [P ar=
n k14 n
] 3 T

-

=+ liminA—4Ind —-‘-S°°52"dx
2 4uw 2 x
e
)

co s?x

diverges, since lim In A =00, and the integral dx converges.

A- @
n

2
8.1.14. Prove that the following integrals converge
(a) Ssin (x%) dx; Scos (x®) dx; (b) S?xcos (x*) dx.
0 0 0
Solution. (a) Putting x=V{, we find
jsm (x?) dx—-— ( :}'15 dt.

Let us represent the integral on the right side as the sum of two
integrals:

=

5[

n
j:‘sintdt s2$mtdt+°§smt
0 0 K
2

The first summand is a proper integral, since lim :}_ =0. Let
t++0
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us apply to the second summand the method of integration by
parts, putting B
u=1V'1, sintdt=do,

o ® @®
sin ¢ cos! |® 1 cos ¢t di 1 cos ! dt,
=l =——=| —5 =—
J Vi Vil 2 132 2 ) o2
n/2 n/2 /2
. . | cos ¢ 1
The last integral converges absolutely, since —ﬁ/—zg R and

the integral S converges. We can prove analogously that the

32
X
2
-

integral Scos(xz)dx is convergent. The integrals considered are cal-

0
led Fresnel’s integrals. They are used in explaining the phenome-
non of light diffraction.
(b) By the substitution x2=¢ this integral is reduced to the

integral Scos(tz)dt. The latter integral converges as has just been
0
proved.

Note. Fresnel’s integrals show that an improper integral can con-
verge even when the integrand does not vanish as x — oco. The last
convergent integral considered in item (b) shows that an improper
integral can converge even if the integrand is not bounded. Indeed,

at x=__f/7u—1 (n=0, 1, 2, ...) the integrand attains the values
+ /nx, ie. it is unbounded.
8.1.15. Evaluate the improper integral

o«

§(ﬂ-%" n natural number.
Solution. Make the substitution x=tan¢, where 0 << t<% Then
x=0 at t=0, x— 400 as t—»g-—-O and x;= slt#o Conse-

quently, by the theorem on changing a variable in an improper
integral

o|a

@

[
7
Sﬁ%f e Xsec”df=§c =2 d,
0 0

On changing the variab]e we obtain the proper integral which
was computed in Problem 6.6.9.
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Therefore,
® :n/2, n=1,
S 1.8.5..@n8) n
0

('+x‘)" m 2’

8.1.16. Compute the integral I-——Sl—j_%;dx.
0

Solution. Apply the substitution
x=1/t, dx=—(1/t?)dt

S [+« =5 RV RIS
0 0 0

If another integral / is added to the right and left sides then we

get
l+t‘ 1/¢241
2 = 1+t4 dt_Stwl/tldt

Make the substitutlon z=t—1/t, (14-1/2)dt =
t—+0, z— —o0 and as { — 400, z— -+ o0o. Hence

0
dz 1
_7[ lim g zl+2+ lqn:wSZ—i—?]

| ®
I=—2— S 22+2_ Bs-w
-

dz. Then, as

| |
— i t — li tan
2V 3 pon 2 anV 2V T anpeorerdn V
=2V"2"<2 ) .

8.1.17. Evaluate the following improper integrals:

¢ In x K 2

@) \ —=5dx; (b) \ e * x2m+1dy.
Jrets O]

8.1.18. Compute the integral

_TvETeT
’—5W:rd"

accurate to two decimal places.
Solution. Represent the given integral in the form of a sum of

two integrals
/ _75 l/-xd x*—l—l 1, _S Vx3——x3+l
1_-1 [T N
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Compute the former with the required accuracy, using Simpson’s
formula, and estimate the latter. Since for x =1 we have

VE—ZF1 _ o

X

0< PR < = =x-7/2,
then
0<12=Sx—7/2dx=-§-1v—5/2.
N
At N=7 we get the estimate 7, <% X 49—1}/:7: < 0.0031.
Computation of the integral
7
Ve
Il:' mdx
1

by Simpson’s formula for a step A=1 gives
S,=0.2155,

and for a step 4 =0.5
S,.; =0.2079.

Since the difference between the values is 0.0076, the integral I/,
gives a more accurate value S, ;= 0.2079 with an error of the order

0.0076
22 220.0005.

Consequently, the sought-for integral is approximately equal to
I ~ 0.208

with an error not exceeding 0.004, or /=0.21 with all true deci-
mal places.

§ 8.2. Improper Integrals of Unbounded Functions

" If the function f(x) is defined for a<Cx < b, integrable on any
interval [a, b —e], 0 < e < b—a and unbounded to the left of the
point b, then, by definition, we put
b b-¢
Sf(x)dx= lim S f(x)dx.
a e->+0 4
If this limit is existent and finite, then the improper integral is
said to be convergent. Otherwise it is called divergent.
Analogously, if the function f(x) is unbounded to the right from
the point a, then
b b
§Feyde=tim  § fode.

a €+1Ug4e
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Finally, if the function is unbounded in the neighbourhood of an
interior point ¢ of the interval [a, b], then, by definition,

b c b

Sf(x)dX=Sf(x)dx+ { F(x)dx.

a

Let the function f(x) be continuous on the interval [a, b] except
at a finite number of points. If there exists a function F(x) conti-
nuous on [a, b] for which F’(x)=f(x) except at a finite number
of points, then the Newton-Leibniz formula

b

V() dx=F (0)—F (a)
a
holds good.

Sometimes the function F(x) is called a generalized antiderivative
for the function f(x) on the interval [a, b].

For the functions defined and positive on the interval a<{x<b
convergence tests (comparison tests) analogous to the comparison
tests for improper integrals with infinite limits are valid.

Comparison test. Let the functions f(x) and g(x) be defined on
the interval a<{x <b and integrable on each interval [a, b—e],
0< s<b—a If 0<<f(x)<<g(x), then from the convergence of the

integral Bg x)dx follows the convergence of the integral Sf(x)dx,
b N b ¢

and Sf(x) dxggg(x) dx; from the divergence of the integral
a a

b
Sf (x)dx follows the divergence of the integral Sg(x) dx.
Special comparison test. 1f the function f (x)>0 is defined and
continuous on the interval a<Cx<b and 1s an infinitely large

quantity of the order A as compared with 53— 3 x—b—0, then

the integral Sf(x) dx converges for A <1 and diverges for A>1.

b
=

converges for A <1 and diverges for A > 1.
Absolute and conditional convergence. Let the function f(x) be
defined on the interval a<C{x <b and integrable on each interval

In particulgr, the integral
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b
[a, b—e]; then from the convergence of the integral Sl f(x)|dx

b
follows the convergence of the integral Sf(x) dx.

b

In this case the integral Sf(x)dx is called absolutely convergent.
a

b b
But if the integral gf(x)dx converges, and the integral S]f(x)]dx

b
diverges, then the integral S f(x)dx is called conditionally convergent.
a
b

Analogous tests are also valid for improper integrals Sf(x) dx,
a

where f(x) is unbounded to the right from the point a.

8.2.1. Proceeding from the definition, evaluate the following
improper integrals (or prove their divergence):

3_|_~5 *—2 d
(e) l/‘/xs X, (f) l_xxs_
Solution. (a) The integrand f(x) = =3 ll_ is unbounded in the
nx

neighbourhood of the point x=1. It is integrable on any interval
[1+4e¢, e], since it is a continuous function.
Therefore
¢ . 3 3
j = lim y = lim [ y/In? x ]=
] - x3Mmx e
/nx e +0+ /nx e—>+0 1te
= lim |23 V1n3(1+e)J=—

e->+0

(b) The integrand f(x):c—os—}- is unbounded in the neighbourhood

of the point x=2= and integrable on any interval [0, >—g| as
P D gr )
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a continuous function. Therefore

KA

2

dx
cos X

i
2
dx .
= lim
) e->+0

Sy

= lim In tan(%—}— ) 2-¢ = lim Intan (%—%) = oo.

e->+0 e—>+0

Hence, the given integral diverges.
(c) The integrand is unbounded in the neighbourhood of the points
x=1 and x=23. Therefore, by definition,

2 3
5‘ dx _‘S‘ dx +5‘ dx
Vix—x2—3 Vix—x2—3 Vixr—2—
i i 5

(instead of the point x=2 we can take any other interior point of
the interval [1, 3]). Let us now compute each summand separately:

dx . ) dx . N 2
— = lim —_—— = lim arc sin ()C-—-Q)

J V4x-—x2—3 e»+01,, VI=(x—22 ea+0 l+e¢

+e

= lim [0—arcsin(e—1)] =3

e->+0
3-¢ 3
. ) . N —¢
X——df.__:= 1111] s ——‘-‘d——-—_.._i(______.= llm arc sin ()C-—-Q) =
9 Vix—x2—3  cas0 9 VIi=(x—2? gaut0 9

= SIETO [arcsin (1 —e) —0] =.’2l,

Hence,
3

dx 44
S V4x—x2——3_ 2 -

1

N:I';l

= .

(d) The integrand f(x)= l_/ll—l_—‘_l is unbounded in the neigh-
—x

‘bourhood of the point x=1, which is an interior point of the
interval of integration. Therefore, by definition,

2

f —xZI jl/ll—xz +§ Vu—xz '

0




§ 8.2. Improper Integrals of Unbounded Functions 401

Evaluate each summand separately. If 0 <Cx < 1, then

l-¢
g dx (‘ lim g‘ dc
Vit—a=] ) Vl—xz Test0 ) Yi—a
0 0 0
= lim arc smx' ™ = lim [arc sin(1—e)—0] == .
e>+0 e>+0

If 1 <x<{2, then

2 2

g dx __g dx — lim 5 dx _
| Vll—x2| JV2—1 eaqt0 VxE—1
1 1

+€

= lim ln(x+V x*—1) ?

e>+0 I+

= 1im0[1n(2+y’§)—1n(1+e+|/(1+e)2—1)]=1n 24+ 1V'3).

Hence,

2
0

(e) Represent the given integral as a sum of three items, divid-
ing each term of the numerator by f’/x3,
1 1 1 1

x4 ?/7""2 ’ dx P dx
S—T—_—dx= xX12/5 dy xm—z Ik
0 0 0 0

Ve

The first summand is a proper integral evaluated by the Newton-

Leibniz formula:
1

5
12/5 —_— 17/6
Sx dx = 7 %
0

The second and third summands are unbounded to the right of the
point x=0. Therefore,

1

(=]
Slon

1
“ & lim D im 2B s | 215
x4/1o e>+0 4/15 e—>+0 [ i’
0 €
analogously,
1
dx X 1 5
= li S = lim +x¥%| =+,
j 3/8 e>+0 x"”’ € +02 & 2
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Hence,
5_ 6%
2 187*

(f) Represent the integrand f(x)=l—_lﬁ in the form of a sum
of partial fractions:

R 1 1 )
f(x)“l—xs“(l—x)(1+x+x2)“3 [1—x+1+x+x2]‘

1 1

dx 1 dx l x+2
Then Sl— S — T3 l+x+x2dr Since

0 0
1 -
. -
S 4 _ lim ‘S‘ ld — lim ln\l-—r)l f — oo,
H I—x e->+0 H - e->+0

the given integral diverges. There is no need to compute the second
summand representing a proper integral.

Note. Evaluation of the improper integrals from Problem 8.2.1
(a to f) can be considerably simplified by using a generalized anti-
derivative and applying the Newton-Leibniz formula. For instance,

in Problem 8.2.1 (a) the function F(x)=% /1n*x is continuous on

the interval [1, e] and differentiable at each point of the interval
1 < x<Ce, and F’(x)={(x) on this interval. Therefore

e

dx 3:‘3/—.0 3

S\———-—=— lnzx' = —
3 2 2

J xy/ Inx 1

1 l/

8.2.2. Proceeding from the definition, compute the following
improper integrals (or prove their divergence):
2xd o 1 d
' x dx . X
()S(ﬂ a7’ ® 581” B
0
1

6
7 dx dx
COS ) d 5""‘——_—;
(C) § ( )2 ( ) ) :‘3/(4—)6)‘
-2

2
) dx dx
© | sy O |5

-1
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8.2. 3 Evaluate the following improper integrals:
2

\ _odx T (b) ( gt_;‘dx.

0

Solution. (a) Find the indefinite integral

ﬂ_—.}_ 1 _x__ —_2
j‘/g__ﬂ_2(9arcsm3 V9 x)—i—C.

The function F (x) = %(9 arc sin%—-xVQ—-)ﬁ) is a generalized anti-

derivative for f(x)=—x—; on the interval [—3, 3], since it is
— X

continuous on this interval and F’(x)=f(x) at each point of the
interval (—3, 3). Therefore, applying the Newton-Leibniz formula,
we get

9

23‘E

6 V):ixxz <9 arc smg_x V9—-x2> :i

(b) Transform the integrand

. 2—i—x_ 2+x - 2 X
T =) = — e

The indefinite integral is equal to
‘Y l/gj—_ﬁ dx =2 arcsin %——Vﬁl—x?—l—C.

The function F(x) =2 arc sin%—-l/‘l—-—x2 is a generalized antideri-

vative for f(x) on the interval [0, 2], since it is continuous on
this interval and F’(x)=f(x) on the interval [0, 2).
Therefore, applying the Newton-Leibniz formula, we get
2

( 2+xd __(2 arc sm—_|/4_xz>

0
8.2.4. Test the integral 1
dx
S Y/ x
=1
for convergence.
Solution. At the pomt x=0 the integrand goes to infinity. Both

0
integrals S 3
A

= 2.

s 3 - dlverge since A= > 1. Consequent-
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ly, the given integral diverges. If this were ignored, and the New-
ton-Leibniz formula formally applied to this integral, we would
obtain the wrong result:

(a2

And this is because the integrand is positive.

= —6.

8.2.5. Test the following improper integrals for convergence:
1 1
ex . sin x-cos x
@ |pEmmds B [SpEe
0 0

Solution. (a) The integrand is infinitely large as x— 4 0. Since

Vl—cosx:l/'é-s'm% ~~1{2£x as x— -0,

the integrand has the order A =1 as compared with —)lc According

to the special comparison test the given integral diverges.
(b) Rewrite the integrand in the following way:

_ sin x4 cos x . 1
f(x) ‘;/r-{T-{-? ;)//]——_-}-

This function is infinitely large as x — 1, its order is equal
to 7»=% as compared with &C, since the first multiplier tends

to 1 as x— 0. Therefore, by the special comparison test, the given
integral converges.

8.2.6. Test the following improper integrals for convergence:

2 —
in(14+y/% VETI

(a) g___”esm-t—l{l )dx; (b) (a—»ﬁ—]—dx
/16— x4

LY

o-
—

1
f'
\ cos xdx
0

l/x—smx

Solution. (a) The integrand f(x)= In (I_H/ ") is positive in the

slﬂ X__

interval (0, 2) and is not defined at x=0. Let us show that
lim f (x) = oo. Indeed, since
2=+0

esinx__ ] ~sinx~x, In (1 +;)/)?’)~i/;’ as X—PO,
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we have

In (1—[—1/”3

E ] = lim

x>0

lim
x>0 e

= llm == 0.
-0/

Ve
x

At the same time we have shown that f(x) ~ %/l_ as x— 0, i.e.
=

that f(x) is an infinitely large quantity of order 7»=% < 1 as com-

pared with % Consequently, by the special comparison test, the
given integral converges.

(b) Determine the order of the infinitely large function f(x) =
_ VETF
= ?7____

1

in the neighbourhood of the point x =2 with respect

to 5— . To this end transform the expression for f(x):
F(x) = VT] Vil 1

/16— x+ l/4+x2 T+ x ,3/2—x'

Hence it is obvious that the function f(x) is an infinitely large
quantity of order }»=%<1 as x— 2. According to the special
comparison test the given integral converges.

(c) The integrand f(x)= o8 X is unbounded in the neigh-

X —sinx
bourhood of the point x=0. Since
Ccos x o CcOos x

f(x) =— .
) f/x——sinx Y x <]_s§;
as x— 0 the function f (x) is an infinitely large quantity of order
X:% <1 as compared with % and, by the special comparisen test,

the integral converges.

8.2.7. Investigate the following improper integrals for conver-
gence:

()Sedx‘ ()sl/(vdx .

dx

© S V/ T ds (@) jm

ln(l/x+l)dx.

tan x__

~= (x—10),
> z

(e) ‘ ;

x—sinx

°—"‘>w
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8.2.8. Prove that the integral
1

sinl

S X dx

0 Vx

converges.
Solution. For 0 < x <1
Sil’];
0 —_ .
<|7= <%

1
But the integral g% converges, therefore, by the comparison

sin (1/x)
Vx
the given integral converges absolutely.
8.2.9. Prove the convergence of the integral

i
test, the integral ( dx also converges, and consequently

7
= S Insinxdx
0

and evaluate it.
Solution. Integrate by parts, putting u=In(sinx), dx =dv:

31

T
rl 12'- 2
lnsinxdxlensin,\ g X cowd = — S
| tanx
0 ] 0
Since hmotanx=l' lim m=°’ the last integral is a proper

X %—0
one. Consequently, the initial integral converges.
Now make the substitution x=2¢ in integral /. Then dx=2dt;

x=0 at ¢, =0; x=§ at t2=%. On substituting we get:

n/2 /4 /4

S Insinxdx=2 S Insin2¢dt =2 S (In241Insinf+Incost)dt =
6 0
. n/4 ’ /4
=2¢1n QIM S lnsintdt—i—?S Incostdt =
0

n/4 /4
=%]n2—|—2 S Insin¢dt 2 S In cos ¢t dt.
0 0
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In the last integral make the substitution ¢=an/2—z. Then
dt=—dz; {=0 at z,=n/2; {t =n/4 at z, =n/4. Hence,

n<4 /4 m/2
2 S Incostdt =—2 S Incos (%—z)dz:? S Insin zdz.
0 w2 w4
Thus,
n/2 n/4 /2
I:S lnsinxdx=g—ln2+2 S Insintdt +2 S Insinzdz =
0 0 /4
/2
=% In2-2 S lnsintdt=%ln2—|—21.
0
Whence

[+

n/

[ = S lnsinxdx:—-gln 2.
0

8.2.10. Compute the integral
1
X" dx
‘s‘—V—I—_—xfz(n a natural number).

0
Solution. The integrand is an infinitely large quantity of order

——-—é— with respect to l—l—; as x —1—0. Therefore, the integral con-

verges.
Make the substitution x =sin ¢ in the integral. Then dx = cos?dt,
x==0 at =0, x=1 at {-=m/2. On substituting we get

1 d /2 n/e
M n > ginff. .
wdx sin® ¢ c‘osldt= sin” ¢ dt.
J VT = cos ¢ .
0 0 0
The last integral is evaluated in Problem 6.6.9:
— —3 1
2 "nl-fm...7%,neven,
j sin* ¢ dt = 1 .
n— n—
0 —n—‘n_Q...T}“,I’LOdd.

Consequently, the given integral is also computed by the same
formula.

8.2.11. Evaluale the following improper integrals (or prove their
divergence):

©
V=

w

x2 42

v ax todx
(@) J xinzs (D) 5)71—11——;’ (©) dx.

1

]
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8.2.12. Compute the improper integral

1

I,,=Sx"‘ In"xdx (n natural, m > —1).
0

Solution. At n=0 the integral is evaluated directly:

For n > 0 integrate /, by parts, putting

u=In"x, dv = x™dx;
dx xm+l
— n—1 4 %%, —
du=nln XTU V=g
We get
1
_xmtl 1. n myqn—1 — n
,,—”hL]lnxo m—_{_l.s‘x In xdx——-—erlI,,_1

0

This gives a formula by means of which one can reduce /, to [, for
any natural n:
n nn—1) (— )7 n!
Inz—m_—i—]["—l=+(71—-+——_])-éln_2= .« ——-(In—_i_l—);'lo
And finally,
_ (=lrn!
TN

8.2.13. Compute the integral

I

2.0
=5‘ e=*dx
% Eepy
0.3 l/ +x *
accurate to 0.03.
Solution. The integral has a singularity at the point x=2, since

24+ x—x2=(2—x)(14x). Let us represent it as the sum of two in-
tegrals:

2
5‘ e=*dx l_s‘ e=*dx
- 2+ x—xt 2_, o x —x2°
Vet RN ZA2s

Now compute the first integral to the required accuracy, and estimate
the second one. For £€<{0.1 we have

e—1.9

‘/29

__0115>< —-01538

o<, <
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Putting e=0.1, we get the estimate /, < 0.028. Evaluation of the

integral
1.9
e~*dx

2 —y2
0'3,/ +x—x

by Simpson’s formula with a step £#=0.8 gives
So.s=0.519,

and with a step #/2=0.4,
S,.4=0.513.

And so, integral /, gives the more accurate value, 0.513, with an
error not exceeding 0.001. Taking into consideration that integral /,
is positive, we round off the obtained value to

] ~0.52

with an error not exceeding 0.03.
Note. By putting e=0.01, we get the estimate /, < 0.005, but the
computation of the integral
1.99

1_5‘ e~*dx
1 45— x
A l/ +x—x

would involve much more cumbersome calculations.
8.2.14. Investigate the following integrals for convergence:

1
. dx .
(@) ngmx, (b) Xm,
0
1
cos? x dx tan xdx sin x dx
© j I () gl/l_xz, © jl,“

§ 8.3. Geometric and Physical Applications of Improper
Integrals

8.3.1. Find the area of the figure bounded by the curve y=
(the witch of Agnesi) and its asymptote.

Solution. The function y=ﬁ}3 is continuous throughout the en-
tire number scale, and lim y = 0. Consequently, the x-axis is the asymp-

tote of the given curJga&/hich is shown in Fig. 118. It is required
to find the area S of the figure that extends without bound along the

1
1+ x2
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x-axis. In other words, it is required to evaluate the improper integ-
ral S.—_S ldex By virtue of the symmetry of the figure about the

y-axis we have

r d ¢ dx . A
S=§ e =2.g l+x2_2 All:g arctanx| =2
0

v 2

= [T.

8.3.2. Find the surface area generated by revolving about the
x-axis the arc of the curve y=e~* between x=0 and x= + oco.
Solution. The area of the sur-

'y} face is equal to the improper in-
! tegral
+ @©
_/\ S=2nS e * )/ T+e ¥ dx.
-1 a 1 T 0
Fig. 118 Making the substitutione=*=1,

dt=—e* dx, we get x=0 at
t=1, x=00 at ¢t =0; hence

-

S=2n (VT Edt =2n-5 [t VITE+In(t+VTF0), =

¢

=a [V 2+In(14+V 2)]

8.3.3. Compute the area enclosed by the loop of the folium of Des-
cartes
x4 y*—3axy =0.

Solution. The folium of Descartes is shown in Fig. 86. Let us re-
present the curve in polar coordinates:

X=pcosg; y=psing.

Then p? cos® ¢ + p? sin® ¢ — 3a p? cos ¢ sin ¢ = 0, whence, cancelling p2,
we get

__3acos @sing

T cos3@+sind @’

Since the loop of the curve corresponds to the variation of ¢ between
0 and g the sought-for area is equal to

g

2
_ 1 9 g 9a% sin% @ cos? @
S=73 S prde =3
0

(sin® @ cos® ¢)? -

QL/j,\,Ia
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To evaluate the obtained proper integral make the substitution
tang =1, dq} =dt; =0 at =0, o= E at t=o00. Thus we get

cos? ¢
o
9a2 2 dt 9a2 2 dt 342 | a 3
S=7 orm =T e =T [m ], =3
0

8.3.4. Find the volume of the solid generated by revolving the cis-

soid y"=2aix about its asymptote x= 2a.

Solution. The cissoid is shown in Fig. 119. Transfer the origin of
coordinates to the point O’ (2a, 0) without changing the direction of
the axes. In the new system of coordinates
X =x—2a,Y =y the equation of the cissoid 4
has the following form:

s (X+2a)®
V=277

The volume of the solid of revolution about
the axis X=0, i. e. about the asymptote, is
expressed by the integral 7 7z

V=n{ X2dy =2a{X2av.
- ® 0

Let us pass over to the variable X. For this
purpose we find dY = Y’ dX. Differentiating the
equation of the cissoid in the new coordinates )
as an identity with respect to X, we get Fig. 119

s 3(X+2a)? X——(X+20)3 2 (X --2a)2 (X —a)
2YY' = e <

whence for Y >0 we have

V' — (X +2a)? (X—~a) __ (X+2a) (X—a)
XY XV —(X+2a)/X

Hence,

0
V=—2n g X12) (X—a) ;5
J V—=([X+2a/X
-2a
Make the substitution (X 4-22)/X =— 1% X = —2a at t=0, X =0 at
t=o00. Then:
X —— 2at?

2a 4at .
dx T

W; =(l_—|-—ﬁ)_3dt; X+2a=

_ 8a+at?,
X—a=—m;
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_ 20t (3a+-at?) 4atdt
V_Q“St T+ AT+
0

@® w

= 48na® g S dt + 16ma® dt.

(1+t2 \ 1+z)4

Putting f =tanz, df =sec®2dz, we get =0 at 2=0, = o0 at
z2=m/2. Hence,
/e /2
V = 48na? S sin? z cost zdz + 16na?® Scos“’z sintzdz =
0 0

/e /e
= 48na® S cos? z dz —48mna® S cos® zdz -+
0 /s 0 e
-+ 16ma® S sint zdz— 16na?® S sin®zdz.
0 0
2
Using the known formulas for the integrals S in"xdx,
0

/e

Scos”xdx (see Problemn 6.6.9), we get

0

31 1L3__ . I1x3%5 2 3
V =64na 55 64n T At = = 2n%a®.

8.3.5. Prove that the area of the region bounded by the curve
Y= , the axis of abscissas, the axis of ordinates and the

[ —x2

asymptote x=1 is finite and equals %

8.3.6. Prove that the area of the region bounded by the curve
Y= 3—1;—_, the axis of abscissas and the straight lines x=+1 is
o

finite and equals 6, and the area of the region contained between
the curve y=% , the axis of abscissas and the straight lines x= 41
is infinite.

8.3.7. Find the volumes of the solids enclosed by the surfaces
generated by revolving the lines y=¢= %, x=0, y=0(0 <<x <+ oo0):

(a) about the x-axis,

(b) about the y-axis.
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3

8.3.8. Compute the area contained between the cissoid y*=5—

and its asymptote.

8.3.9. Compute the area bounded by the curve y=e=2* (al x > 0)
and the axes of coordinates.

8.3.10. Find the volume of the solid generated by revolving, about
the x-axis, the infinite branch of the curve y=2 <%—xi> for x> 1.
8.3.11. Let a mass m be located at the origin O and attract a
material point M found on the x-axis at a distance x from O and

having a mass of 1, with a force F=% (according to Newton’s

law). Find the work performed by the force F as the point M moves
along the x-axis from x=r to infinity.

Solution. The work will be negative, since the direction of the
force is opposite to the direction of motion, hence

N

®
m . m m
A=§——; x= lim s‘——fz-dx=——.
,r X N—»m; X r

During the reverse displacement of the point M from infinity to
the point x=r the force of Newtonian attraction will perform posi-

tive work —':z— This quantity is called the pofential of the force

under consideration at the point x=r and serves as the measure of
potential energy accumulated at a point.

8.3.12. In studying a decaying current resulting from a discharge
“ballistic” instruments are sometimes used whose readings are pro-

portional to the “integral current intensity” g= S 1 dt or the “inte-

0
®

gral square of current intensity” S= S I*dt and not to the instan-

0

taneous value of the current intensity / or to its square /2. Here ¢
is time measured from the beginning of the discharge; / is alterna-
ting-current intensity depending on time. Theoretically, the process
continues indefinitely, though, practically, the current intensity be-
comes imperceptible already after a finite time interval. To simplify
the formulas we usually assume the time interval to be infinite in
all calculations involved.

Compute g and S for the following processes:

(@) I =1,e~* (a simple aperiodic process); k is a constant coeffi-
cient, which is greater than zero.
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(b) I =1 *'sinwt (simple oscillating process); coefficients £ and o»
are constant.
Solution.

R*

A
(a) g= loe"”dt— li glue ktdt =1, lim [ﬁe-kr]:=lo/k;

Y A—»oo

/2

0
S= jl e” 2’“dz‘————"-'
0

®

(b) g=Sl‘,e‘k’sin wtdl= lim gloe""sm ol dl =

0 A> g
=1 lim [(0cos of + ksin wt) e~k ]A = lo
04k, 0 wi4-k%2”
® 4
S= gl‘f,e'?’”sin‘z otdt = lim S I%e*z’”l——_—fw dt =
9 A*@h
=_# Alimw [1 2+k3 (k? cos 20t + wk sin th)] e~ 2kt ’A
[20*
TE T "

8.3.13. Let an infinitely extended (in both directions) beam lying
on an elastic foundation be bent by a concentrated force P. If the
x-axis is brought to coincidence with the initial position of the axis
of the beam (before the latter is bent) and the y-axis is drawm
through the point O (at which the force is applied) and directed
downwards, then, on bending, the beam axis will have the follo-
wing equation

y= Z—Ze‘“lxi(cosax—{- sina | x]),

where a and k are certain constants. Compute the potential energy
of elastic deformation by the formula

o«

W = Ee S (y")?dx (E, e const).

Solution. Find y":

Po? . .
= Tae‘“" [(cos ax + sin ox) — 2 (— sin ax -+ cos ax) -

. Po3 .
+ (— sinax—cos ax)] = Ta e~%x (sin ax— cos ax).
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Hence,
[
2-6
w=" :ZEG X e~ (1 —2sinaxcosax)dx =
0
__ PaSEe 1 20 __P%abEe
k2 200 4a?+4a? ak2

8.3.14. What work has to be performed to move a body of mass m
from the Earth’s surface to infinity?

8.3.15. Determine the work which has to be done to bring an
electric charge e,=1 from infinity to a unit distance from a
charge e,.

§ 8.4. Additional Problems
8.4.1. Prove that the integral

®

j‘ dx
xP In9 x
1

converges for p>1 and g< 1.
8.4.2. Prove that the integral

@®

Sxﬂsinqux, g+0

0

converges absolutely for ——1 < (p+1)/g <0 and converges condi-
tionally for 0<{(p+1)/g < 1.

8.4.3. Prove that the Euler integral of the first kind (beta func-
tion)
1
B(p, 9= xr-1(1—qpr-1dx
0

converges for p>0 and ¢g>0.
8.4.4. Prove that

T
lim %5 sinax-sin fxdx=0,

T »>»
if [o]==]|B].
8.4.5. Prove that

1 =§e""-x““dx -——fz—' (n natural).
0
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8.4.6. Prove that if the integral 5@& converges for any posi-

tive a and if f(x) tends to A as x-a—> 0, then the integral
\wdx (oc>0, ﬁ>())
.

converges and equals A ln (B/a).
8.4.7. Prove that

® &*
e~ X ——3x " cos ax — cosPx
j———dx:j cosox —cosBx gy _jn B
x x o
0 0
/2

8.4.8. At what values of m does the integral 5 I_Tfnos—xdx con-

0
verge?

kg
8.4.9. Prove that the integral S—(?‘?—J,; converges if &£ <1, and
0

diverges if k>1.

sinx (1—

COS X .
. ) dx converges if

8.4.10. Prove that the integral f

0<s<4, and converges absolutely0 if 1<s <4
8.4.11. Suppose the integral

§ Foax (1)
converges and the function ¢ (x) is bounded.

Does the integral
+ ®

§ 1o dr @)
necessarily converge? ’
What can be said about the convergence of integral (2), if integ-
ral (1) converges absolutely?

8.4.12. Prove the validity of the relation
f(x) = 2f (7/4 + x/2) —2f (n/4—x/2)—x In 2,
X

where f(x)=— S In cos y dy.

0
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Compute with the aid of the relation obtained

f (%) = —fln cos y dy.
0

8.4.13. Deduce the reduction formula for the integral
=
2

l,= S Incosx-cos2nxdx  (n natural)

0

and evaluate this integral.



ANSWERS AND HINTS

Chapter I

1.1.5. (b) Hint. Prove by the rule of contraries, putting 2—_——57;- , where p and g
are positive integers without common multipliers.
1.1.8. Hint. You may take =% %5 2

1.1.9. (b) x=4, x<<0; (¢c) 4<<x<2.
1.1.11. (a) x <—1 or x=1. Hint. The equality is valid for those values

of x for \vlnch :20 (b) 2<<x<3. Hint. The equality holds true for those
values of x for Wthh x2—5x+6<0.
1.1.13. (a) x<—§- or x>8 (b) x<O0or0<x<5. Hint. The inequality

| b& > |a|—|b| holds good when a and b are opposite in sign or when
_at2 3 3__
1.2.3. 0; @@T3ar3)’ (a3+a) (a®—1).
1.2.4. b>+ab+a?% %}1—1. 1.2.6. 4 V 2+1; ﬁ;'; 2 YV 10—5.
1.2.11. f(x)=10—i—54>5<2;. 5
 45x2 1] x -|-1
1213 f@)=———; [(*)= ;
15x —|—3 125x6—|—75,\4+|5x-+l
(=" TP =" rea—mn
: _ V3
1.2.14.f(2)=5,f(0)=4;f(0.5)=4,f(—0.5)=—— f(3)=8.

1.2.15. Hint. From X, 4, =x,d it follows that y, ., =a*n+1=qa*n+9 = g*n g4,
1216 x—= 1+ 2; £3. 1.2.17.F(x)=x>—5x+6. 1.2.18.f (x) = 23; ¢ (x) =527,

1.2.19. x<—1or x=2. 1.2.20. P=2l)+‘2<l——%> X S=b(l—%> X.

1.2.21. (b) (2, 3); (¢) (—w, —1) and (2, w); (d) x=%+2kn(k=0, £1,
42, ...). Hint. Since sinx<C1, the function is defined only when sinx=1;
(8) (—o, 2) and (3, o); (h) [1, 4); (i) (—2, 0) and (0, 1); (j) —%-F?kﬂ <x<

<%-|-2kn(k=o, £1, £2, ...).
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1.2.22, (d) The function is defined over the entire number scale, except the

points x=4+2.

1.2.24. (a) (—o, ®); (b) (3—2n, 3—m) and (3, 4); (¢) [—I, 3];
(d) (—1, 0) and (0, «). 1.2.25. (b) 5< x<6.

1.2.26. (a) 2kn<<x<<(2k+1)n (=0, 1, vl ) (b)[—i, ——l].

1.3.3. (b) Hint. Consider the difference —-2— __"_'2.
I4+x2 14x

1.3.4. (b) It increases for —-iél-l-kn< x < %-}-kn (=0, +1, +£2, ...)
and decreases on the other intervals.

1.3.7. The function decreases on the interval 0 < x<%‘- from -+ o0 to 2 and

increases on the interval %<x < -721 from 2 to + .

1.3.9. (c) The function is neither even, nor odd, (d) even.
1.3.10. (a) Even; (b) odd; (c) odd; (d) neither even, nor odd; (e) even.

1.3.12. (a) |A|=5 o=4, ¢=0, T=%: (b) | A |=4, 0=3, q>=%,
2n 1 4 . .X X
T=?, (c)|A|=5,m=7, cp=arctan—3—, T =4n. tht.35m7+4cos7=
= 5 sin -g-+q>>, where cos (p=%, sinq>=-§-. 1.3.13. (b) T=2m; (c) T =1.

1.3.16. The greatest value f(1)=2. Hint. The function reaches the greatest
value at the point where the quadratic trinomial 2x2—4x+3 reaches the least
value.

1.3.17. (a) Even; (b) even; (c) odd; (d) even.
.3.18. (a) T=m; (b) T=6ma.
.3.19. Hint. (a) Assume the contrary. Then

x+T+sin(x+T)=x-}sinx,
T

, which is impossible for any constant T,

whence cos (x—{—%—) =—

QSiHT

since the left side is not constant; (b) suppose the contrary. Then

cos Vx+T=cos V x, whence either Vx+T+ V x=2nk, OF e —
VFT+V x

= 2nk (k=0, +1, £2, ...), which is impossible, since the left-hand members
of these equalities are functions of a continuous argument x.
1

146, (@) x= T2 () i3 sing: (€ x=yTF5 (4> 0 (d) x=
=8y 108V 4 pcoor2<y<m)
logoy—1 ¥
0g2
3 11 11
1.6.3. (a)‘/_ V_ o,—‘/2 et ) = s — o
0 13

(©) 2 225 2555 2522, e0n

1.6.9. Hint. The inequality l——2|<e is satisfied for n> N =
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=E(%—-l)‘ At e=0.1 the inequality is fulfilled beginning with n= 10, at

£¢=0.01 beginning with n=100, at ¢=0.001 beginning with n=1000.

1.6.10. Hint. Verify that the sequence {x2n_1} tends to 1 as n-— oo,
and the sequence {x,,} tends to 0 as n— oo.

1.6.12. (a) It has; = (b) it does not have; (c) it has; (d) it does not have.

1.6.14. Hint. (a)|x,,|<—’2l—; (b) |x,,|<7.

1.6.19. Hin{. For a > | put V?:I—{—a,, (o, > 0) and, with the aid of the
inequality a=(1-a,)" > na,, prove that a, is an infinitesimal. For a < 1 put

V?:: ! (o, > 0) and make use of the inequality i:(l + a,)? > na,.
|+ a, 7

5 1 |
L7 () 70 ©0 (0 5. 1720 @ L 01
1.7.4. (b) 1I; (f) 0. Hinf. Multiply and divide by imperfect of a sum, square
4

and then divide by ne; (g —%; (h) 1. Hint. Represent each summand

of x, in the form of the difference
1 __]__l 1 1 . 1
Ix2 2’ 2%x3 2 3 """ ’na(n+1)
1
n+41°

1.7.5. (a) —;~; () 1, (c) 0, (d) —%. Hint. The quantity§171 is an in-

l
nt+1’

3| —-

which will bring x, to the form x,=1—

finitesimal, and cos n3 is a bounded quantity; (e) 0; (f) %

1.8.6. (b) Hint. The sequence is bounded due to the fact that n!=-1x2x
X3X ...Xn=2"-1 and therefore

0 1 1\2 1 \n-1 3 1\n-1

1.8.7. (b) 0. Hin{. Take advantage of the fact that x';“:m <.

1.8.9. Hint. For all n, beginning with a certain \;lalue, the inequalities
1 n/— n/ - H n/

7 <y a< P/, and lim J/ n=

% <a<n are fulfilled; therefore

1
Vv on
1 1

1.8.10. Hint. The sequence {y,} decreases, since y,4;=a®" "' =a?" X% =

= V—!—/r—t (.’/n > l)~
The boundedness of the sequence from below follows from a > I. Denote
lim y, by b and from the relation y,4,= ¥y, find b=1.

1 -+ ®

1.8.11. Hint. Ascertain that the sequence increases. Establish the bounded-
ness from the inequalities

U B S )

n? “n(n—1) n—1 n

o< 1+ (1= ) (3ot )t (= L) e

(n=2);
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2n

vm and take advan-

1.8.12. Hint. Transform x, into the form x,=
tage of the inequalities
2n < 2n
2n+1 " YVprfi+4n
1.8.13. Hint. Sce Problem 1.8.7 (a).
1.8.14. Hint. Establish the boundedness of the sequence by comparing x,

with the sum of some geometric progression.
1.9.2. (b) Hint. Choose the sequences

1 , 1

<L

and ascertain that the sequences of appropriate values of the function have
different limits:

1
1 7
— X

lim 2% = 4+ 0, lim2 " =0.

1.9.3. (e) Hin/. Take advantage of the inequality

2 2

(f) Hint. Transform the diflerence

I _arctanx < tan (i—-arctan x)=-)lc— (x > 0).

sinx L =sin x—sin x
2 6

into a product and apply the inequality |sina!<<|a].

1.10.1. (d) %; (e) —g—; ) — Hint. Multiply the numerator and de-

5
nominator by imperfect trinomial square (f/lO—x—i—Q): (8) ;—;; (h) log, 6.
. . —3 . (x—3)(Vx+6+3) L2
Hint. lim [lo X —]=lo {llm =log, 6; (i) = ;

Y I Va s Y Bl I x—3 8% ()3
i 7
( vk

1.10.2. (e) —;- . Hint. On removing the irrationality to the denominator divide
the numerator and denominator by x.
1.10.3. (b) 32. (o) % Hint. Put x=z2% (f) co. Hinl. Put =—

) X=z,

x=—;—[-z; 2—0 as x—»%; (g) —3. Hint. Put sinx=y.
1

1.105. (b) e?: (¢) et (d) emk;  (f) 4 (g) %: (h) 2.

cot a

1.10.7. (b) -JT 1.10.8. (b) 1; (c) el; (d) e

1

1.10.11. (a) —; (b)-—%; (C)g; (d)%: (e)0; () — 1

_.N;l.—-

L1012, (@) 555 (D) —2 © 55 @~ (@) —2a

P )
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1
1.10.13. (a) ¢4, (b) —1; (c) 2Ina; (d) e (e)e ®; (e (g I
L @99 O (k) a—p. Hint.

erx __ pgBx eta=3 x_ |

lim = lim e3*
X->0 X X0

1.10.14. (a) V2 . Hint. Replace arc cos (1—x) by arcsin V' 2x—x2; (b) 1; (¢) a,
1.11.5. (b) It is of the third order of smallness. Hint.

lim tan oc——sina=_l_‘
o -0 al 2
1.11.6. (b) They are of the same order; (c) they are equivalent.
1.11.8. (a) 100x is an infinitesimat of the same order as x; (b) %2 is an
infinitesimal ot an order higher than x; (c) 6sinx is an infinitesimal of the
same order asx; (d) sin®x is an infinitesimal of an order higher than x;

(e) f/tan‘x 1s an infinitesimal of an order of smallness lower than x.

1.11.9. (a) It is of the fourth order of smallness; (b) of the first order of
smallness;  (c¢) of the third order of smallness; (d) of the third order of
smallness; (e) of the first order of smallness; (f) of the order of smallness

%; (g) of the first order of smallness; (h) of the first order of smallness;

=o—f.

(i) of the second order of smallness. Hint. Multiply and divide the difference

Ccos X — ?/cosx by imperfect trinomial square;  (j) of the first order of smallness.
1.11.10. The diagonal d is of the first order of smallness; the area S is of
the second crder of smallness; the volume V is of the third order of smallness.

1.12.3. (b) 4 () 3 (g —12—; (i) 2. 1.126. (a) I; (b) 2.

I 3 4
L7 @) 5 () 5. LI28 @z (D) 25 (© 2_ (d) %; ©

2.
5
) %; @ —2 (0 L. 1129, 10.14. Hint. 1042=10° x (1 +-0.042).

1L13.1. (b)) f(1—0)=—2,  f(1+0=2 () f(2—0)=— o
F(240)= + . 1

L1338, (@) [ (O =54 [(+0)=0; (b) J(=0)=0, [(+0)=+eo;

(©) f(=0)=—1, f(+0)=1. ) o

1.14.2. (b) The function has a discontinuity of the first kind at the point
x=3. The jump is equal to 27.

1.14.3. (c) The function is continuous everywhere; (e) the function has
a discontinuity of the first kind at the point x=0; the jump equals n. Hint.
arc tan(—oo)=—-%, arctan(—l—oo):—{—%.

1.14.6. (b) At the point x,=05 there is a discontinuity of the first kind:
f(5—0)=—-’2l, f(5+0)=%; (c) at the point x,=0, a discontinuity of the
first kind: f(—0)=1, f(+0)=0; (d) at the point xo———g—, an infinite dis-
continuity of the second kind:

f(g'—-0>=-|—oo, f<—g—+0)=—oo.

1.14.7. (a) At the point x=0 there is a removable discontinuity. To remove
the discontinuity it is sufficient to redefine the function, putting f (0)=1; (b) at
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the point x==0 there is a removable discontinuity. To remove the discontinuity
it is sufficient to extend the function putting f(0)=1; (c) at the point x=0
there is a dlscontmulty of the second kind: f(—0)=0, f(40)= + o; (d) at

the points x=(2k ]—l)—2— (=0, £1, £2, ...), removable dlscontmulties, since

f(x)= lim (sin x)2r { 0 if |sinx| <1,
x)= lim (sin x)?" = ey ’
"o 1if |sinx|=1;
(e) at the points x=4kn (k=0. +1, +2, ...), discontinuities of the Ist kind,
since
|sinx| [ 1 if sinx>0,

f ()= sinx | —!1 if sinx <0;
(f) at the points x=n=0, +1, +2, ... removable discontinuities, since
—1 if x=n,
f(x):{ 0 if x # n.

1.14.8. (a) At the point x=1 there is an infinite discontinuity of the second
kind; (b) at the point x=—2, a discontinuity of the first kind (the jump
being equal to 2); (c) at the point x=0, an infinite discontinuity of the second
kind, at the point x=1, a dlscontmmty of the first kind (the jump being equal
to —4); (d) at the pomt x=1, an infinite dlscontmultv of the second kind.

3
L14.9. (a) f(O)=1; (b)) fO)=—5; (o) f(0)=—; (d) F(0)=2.
1.15.2. (b) The function is continuous on the interval (0 + o).
1.15.3. (b) The function is continuous everywhere. At the only possible point
of discontinuity x=0 we have

lim y= limu*=1, lim y= limul=1; y|lyo=Yly==1=10
X—> =0 u->1 X->+0 u--1

(c) at the points x=%+nn (n=0, £1, +2, ...) there are removable dis-

continuities, since limy= lim y=—1.

noou ©
X - = s

1.16.2. Yes. 1.16.12. 1.563. 1.16.13. No. For instance, the function y=x32
on the interval [—1, [].
1.17.1. (a) Hint. Multlply the obvious inequalities:

Vi< n+l :

V2<n—l)<—*2—‘~.

(b) Hint. Iet/l— X ==X —=X...X —/—,

. 2n— 2 B |
Then A < B since —2T < m and A < AB—§”'—_|'_—'.
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1.17.2. (a) Hint. Extract the 10lst root from both sides of the inequality
and reduce both sides by 1012,
(b) Multiply the obvious inequalities:

99 x 101 < 1007,
98 x 102 < 1007,

2 X 198 < 100%,
1 % 100 X 199 X 200 < 1004

1.17.3. (a) -3 <axa<—lor Il <x<3;, (b) x<-—%— or x>%; (c) the

inequality has no solutions, since it is equivalent to the contradictory system
x—2>0, x(4x2—x+4) < 0. 1.17.4. Yes. 1.17.5. (a) No; (b) Yes.

1.17.7. Hint. Apply the method of mathematical induction. At n=1 the
relation is obvious. Supposing that the inequality

(l+xl) (l+x2) (l+xn—l)> l—]—x1+x2+ e ‘|’Xn—l

holds true, multiply both its sides by 1+4x, and take into consideration the
conditions 14+x, >0, x;-x, >0 (i=1, 2, ..., n—1).
1.17.8. (a) [1, + «); (b) 2nn)?<<x<<(2n4-1)*n* (n=0, 1,2, ...);

() x=0, 1, +2, ...; (d) (—o, 0) for f(x); g(x) is nowhere defined;
() [—4, —2] or (2, 4]; () x=(2n—i—l)% (n=0, +1, £2, ...).

1.17.9. (a) No: ¢ (0)=1, and f(0) is not defined; (b) No: f(x) is defined
for all x #0, and @ (x) only for x > 0; (c) No: f(x) is defined for all x, and
@ (x) only for x=0; (d) Yes; (e) No: f(x) is defined only for x > 2, and ¢ (x)
for x > 2 and for x < 1.

1.17.10. (a) (0, o); (b) [I, ov). 1.17.11. V=8x (x—3) (6—x), 3 < x < 6.

1.17.12. (a) x=>5. Hint. The domain of definition is specified by the incqua-
lities x+2=0, x—5=0, 5—x=0, which are fulfilled only at the point
x="5. Verify that thc number x=25 satisfies the given inequality. (b) Hint.
The domain of definition is specified by the contradictory inequalities x—3 > 0;
2—x > 0.

1.17.17. (a) f(x)=

blem 1.17.16).
1.17.18. An even extension defines the function

q>(x)={

An odd extension defines the function

wm={

1.17.21. Hint. If the function f(x) has a period T;, and the function ¢ (x)
has a period T, and Ty=n,d, Ty=n.d (ny, n, positive integers), then the pe-
riod of the sum and the product of these functions will be T =nd, where n is
the least common multiple ot the numbers n; and n,.

1.17.22. Hint. For any rational number r

aX¥d-q=%  g¥—q=%

(b) ax== 5 - 2a (see Pro-

2 X
[Eareu ey

f(x)y=x*+x for 0<<x<3,
f(—x)=x>—x for —3<<x < 0.

f(x)=x>+x for 0 <<x<3,
—f(—x)=—x>+x for —3<x<O.

| for rational x,
0 for irrational x.

A(x—]—r):?»(x):{

But there is no least number in the set of positive rational numbers.
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1.17.23. Hint. 1f we denote the period of the function f(x) by T, then from
F(Ty==F(0)=F(—T) we get
sin T+ cos aT = 1 =sin (—T)4-cos (—aT),

whence sin T=0, cosaT =1, and hence T =kn, aT =2nn, a=2—: is rational.

1.17.25. The difference of two increasing functions is not necessarily a mono-
tonic function. For example, the functions f(x)=x and g(x)=x? increase for
x=0, but their difference f(x)—g (¥)=x—x2 is not monotonic for x=0: it

1
g and decreases on 5 oo>.
1.17.26. Example:

increases on [0
K if x is rational,
Y=Y —x if x is irrational.
1.17.27. (a) x=%ln
(b)

'ty .
—, (Ch<y <y

y for — o <y<l, Ay /,'S’/

x=3 Vy for l<<y<16, \\3/
log, y for 16 < y< . J/
1.17.28. Hint. The functions y=x2+ y f(z)
492+ 1 (x =>—1)and y=— 1+ Vx Y
(x=0) are mutually 2inverse, but the VZ
equation y=x, i. e. x¥242x+ 1 =x has
ng real roots (see Problem 1.4.4). ///' f[f{.z)]
1.17.30. (c) Hint. 1f E is the domain H
of definition of the function [ (x), .
then the function y=Ff[f (¥)] is defi- 0 flx) Z
ned only for those x€E for which .
f (x) EE. How the pointsof the desired Fig. 120
graph are plotted is shown in Fig. 120.
1.17.32. Hint. The quantity T=2 (b—a) is a period: from the conditions of
symmetry f(a4-x)=[(a—x) and f(b+x)=f (b—x) it follows that

flx+2(—a)]=[[b+(+x—2a)]=f(2a—x)=f [a+(a—x)] =] (»).
1.17.33. (a) It diverges; (b) it may either converge or diverge. Examples:

1 14 (—1)» .
oy = yn=¥; lim (x,y,)=0,
n - o
x,,=l Yp=n? lim (xpy,)= .
n n-> o
1.17.34. (a) No. Exa;nple: Xp=n, y,=—n-+1; (b) No.
1.17.35. a,,=“("n— ) (n=3, 4, ...). 1.17.36. Hint. Take into account
that ||x,,|—|a||<|x,,—a|. The converse is incorrect. Example: x,=(—1)1+!,
1.17.38. Hint. The sequence «, may attain only the following values:
0, 1, ..., 9. If this sequence turned out to be monotonic, then the irrational

number would be represented by a periodic decimal fraction.

1.17.39. Hint. 1f the sequence ‘Z—" increases, then

n
a; < A+

,lhe byya; < apqah; (=1, 2, ..., n),
b; by +1
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whence it follows that
bn+1(a1+a2+'--+an) < an+l(bl+b2+-"+bn)»
and hence
a8t .. tapey atat...ta,
biFbyt .o Fbprr bbby
____an+1 (bl+bz+ +bn)—‘bn+1(al+a2+-~+an)
o (b1 +bo+ .o . +bp41) (b1 + by ... +by)

1.17.40. (a) 2; (b) 0; (c) O. 1.17.41. Hint. From the inequalities

nx—1 < E (nx) < nx it follows that x—1 < x—% < ELnx)Qx.

> 0.

1.17.42. Hint. From the inequalities

i x—l)<2E(kx) 2 kx,
k=1

it follows that

1
1.17.43. Hint. Take advantage of the fact that lim a” = lim Va =1 (see

n - o Hn - x
1
Problem 1.6.19), lim a " =———-—==1,and for a > 1, |h| < 1 the ine-
ne lim 7/ a n
n - o
1 B

qualities a "—1 <afk—1 < a” —1 take place.
1.17.45. Hin¢. Divide the numerator and denommator by xm.

1.17.46. (a) a=1; b=—1; (b) a=1, b——— Hint. To find the coefficient

a divide the expression by x and pass over to the limit.
1.17.47. (a) o 0 |
lfor 0<x<|,
Foo={

x for x > 1.
(b)
n
0 for x;é—2—+mt,
f(x)= - (n=0, £1, £2, ...).
1 for x=7+nn

1.17.48. Hint. Take advantage of the identity

(I—x)(14+x) (14+x2). .. (14+22")=1—x"
1.17.49. Generally speaking, one can’t. For example,
lim ln(l+x)+ln(1~—x) lim ln(l—x2)=_

X -0 x? X =0 x?

and if we replace In(1+4x) by x and In(1—x) by —x we will get the wrong

result: lim *=*_o.
X=->0 X
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1.17.50. % Hint. 1f a is a central angle subtended by the arc under con-

sideration, then the chkord is equal to 2R sm—2—~Ra and the sagitta to
2
R (l—cosa) ~ a

1.17.51. 2. Hint. The diflerence of the perimeters of a circumscribed and
inscribed regular n-gons is equal to

tana—sina

2Rn<tan-——~sm—)——2 R nRa?,
n n

where a:%, and the side of an inscribed n-gon is
Lo .
2R sin 7=2R sin o ~ 2Ra.

1.17.52. On the equivalence of (1+a)®—1 and 3a as o — 0.
In (1+x) x

1.17.53. No, log (1 4+x)= 10 10

1.17.54. (a) Yes. Hint. If the function q>(x)=f(x)—|—g(x) is continuous at
the point x=x,, then the function g (¥)=¢ (x)—f (x) is also continuous at this
point; (b) No. Example: f(x)=—g (x)=signx (see Problem 1.5.11 (p)); both
functions are discontinuous at the point x=0, and their sum is identically
equal to zero, and is, hence, continuous.

as x — 0.

1.17.55. (a) No. Example: f (x) = x is continuous everywhere, and g(x):sin—z-
for x # 0, g (0)=0 being discontinuous at the point x=0. The product of these

functions is a function continuous at x=0 since lim xsin == 0; (b) No. Exam-

X=+0
1 for x=0, . . .
ple: f(x)=—g(x) = 1 for x < 0; both functions are discontinuous at the
point x=0, their product f(x) g (x)=—1 being continuous everywhere.

1 if x is rational,
1.17.56. No. Example: f(x)= 1 if x is irrational.

f (x)=2\ (x)—1, where A (x) is the Dirichlet function (see Problem 1.14.4 (b)).
1.17.57. (a) x=0 is a discontinuity of the second kind, x==1 is a disconti-
nuity of the first kind; (b) x=1 is a discontinuity of the first kind: f(1—0)=0,
f(1+0)=1; (c) ¢ (x) is discontinuous at all points except x=0.
1.17. (a) x=n=0, +1, +2, ... are discontinuities of the first kind:
lim0y=1, llm y Y |x=n=0. The function has a period of 1; (b) x= 4+ Vo
X—->n-=

(n=41, £+2, . ) are points of discontinuity of the first kind:

We may write

lim y=2n—1; lim y= yl_v;‘=2”

x-»VrT—O x—ﬁVﬂ-\ru

The function is even; (c) x=4Vn (n=4+1, +2, ...) are the points of
discontinuity of the first kind; at these points the function’ passes over from the
value 1 to —1 and returns to 1. The function is even;
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(d)
. . ) T n
(x if |sinx]| < 5 Le _K'*"m <x<—6—+nn,
y= % if |sinx|=%, i
|

lO if |sinx| >

e x=4 g—{—nn.

. Fud 5n
5 e g-{—nn <x< T_Hm'

x=4 %—{—nn are discontinuities of the first kind.

1.17.59. The function f[g(x)] has discontinuities of the first kind at the
points x=—1; 0; ++1. The function g|[f(x)] is continuous everywhere. Hint.
The function f(u) is discontinuous at u=0, and the function g (x) changes sign
at the points x=0, +1. The function g[f (x)}=0, since f(x) attains only the
values 0, +1.

1.17.61. Hint. Write the function in the form

x4+ 1 for —2<<x <0,
F(x) = ?0 for x=0,

(x+ 1)2—_“- for 0 < x<<2.
Make sure that the function increases from —1 to I on the interval [—2, 0)
and from 0 to 5 on the interval [0, 2]. Apply the intermediate value theorem

to the intervals [—2, —1] and [0, 2]. The function is discontinuous at the point
x=0; f(=0)=1, f (+0)=0. , _
1.17.62. Hint. Suppose € > 0 is given and the point x,€la, b} is chosen. We

may consider that . .
e<<min [f (x0)—f (@), [ (b)—F (x0)].
Choose the points x; and x,, x; < %, < X, so that

) =F(x)—e, | (x)=F(x0)+e,
and put 8 =min (xo— %3, ¥3— %)
1.17.63. Hint. Apply the intermediate value theorem to the function
g(x)=Ff(x)—x. . , L
1.17.64. Hint. Apply the intermediate value theorem to the function f(x) on
the interval [xq, x,], noting that

min (] (o) - o f )] o [ (60) - (60) oo ()] < maX 1 (51)s oy /()
1.17.65. Hint. Apply the intermediate value theorem to the function g (x) =
X 1 !
1.17.66. Hint. At sufficiently large values of the independent variable the
values of the polynomial of an even degree have the same sign as the coefficient

at the superior power of x; therefore the polynomial changes sign at least twice.
1.17.67. Hint. The inverse function

=2x——1— on the interval

—V—y—l for y < —1,
X= 0 for y=0,

Vy—1 fory>1

is continuous in the intervals (—o, —1) and (1, o) and has one isolated point
y=0.
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Chapter II
2.1.1.  (b) _g_(l)" 2.1.2. (b) y'=10x—2. 2.1.5. v,, =25 m/sec.
2.1.6. (a) y'=3x% (b) y'=—}2-3. 2.1.7. The function is non-differentiable at

7

5
the indicated points.  2.2.1. (b) y'=—%ax 3 +%bx_ 3. 222 (y =
—ovarctanx-1. 2.2.3. (b) —9000. 2.2.4. (a) y'=6x>+3; (b)y'=—0b —

2V x
, —3x242x2 , 3Vix+8Vix+2 Vi,
40 (@ y =R () = Vits Va2 Vi,
Y V\f (x*—x+1) 6(x—2 /x)
,_cosg—sing—1, P YT ' — e . e
@ V' =—T—sqr + O ¥=%"F5i (@ y'=2%rcosx () y
_x (cos x— sin x) — sin x— ex
.ex
2.2.5. (1) 30Iné (tan® ¥)——; (@) sin s - ——1
sin 6x Vi—x EN
2(1—x) 2
. 2cos x 2sinx
2.2.6. (b '=—3(3—sinx)?cosx; (c 'z .
® v ( © v 3 sin x‘?/sinzx cos® x
2ex +-2% In 2 51n4 x |
d = — H e) y’=3cos3x — = sin =
(d v 3?/(29x_2x+])2+ . (e) 5 5+
2 ’ (9 2 __ _a . 2a. ‘.
2V__ sec2V'x; () y' = (2x—5)cos (x2—5x+1) 7 sec® — 1 (h) y
1 1 X 1 3
= +— + 55 (i) y'=2Inarctan » ——— « /.
XVH-lﬂzx arctanx ' 1+4x? arctan—g— 9+x
2.28. (b) y'=— —l- sec? x4 cosec?x; (d) y'=3xX

sinh? (tan x) cosh? (cot x)
% (x sinh 2x3+cosh x2-sinh 2x2); (e) y’ = eSiNNax (bx(acoshax+h)

3,— l—x 1 2x
’ 3 2 in3 2 —_— J— M
2.29. () y'=)/x [ Sin?xcos x(Bx—l == —+3cotx 2tanx) ;
(x+1) | 1
, 2 x+
(d) y'=(tanx) (—- In tan x 4- sn 2x>

2.2.13. (a) [ (x)——-]— (cosh——{—ﬂmh ); (b) f'(x)=tanhx; (c) f'(x) =

= Vioshx+1; (d) f (X)_coshx.
X (cosh bx-+sinh bx) = (ab) eta+0)%,
2.2.14. (a) y’ = (cos x)*'" ¥ (cos x In cos x— tan x sin x);

(e) f' (x)=4sinh 4x; () [’ (x)=(a+b)es* X

(b) o = cos 3x .
4 i’/s—in:2 3x (I —sin 3x)8
) Bx? 4 x—24
© ¥ = i B :

5
36— wt+2° x+3?
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In3 tan V arc sin 3%

V811 V arcsin 3-2%
sin In3 x-In2 x

5x 3/ costIn® x (14 j/ cos? lrﬁ’x)"f/(arc tan 3/ cos In? ) )
2.3.1. (b) knekx;  (e) 2n-1lsin (Zx—l—n %) ) -i-sin (x—f—n-g—) +
+3—’2’—zsin (3x+n )—i— 4 sin <5x—l—n—>

2.2.17. (a) y'=

(b) ¥y =—

2.3.4. (b) e* (x2--48x--551); (c) e** {sinPx [oc"—'—l—(-rll.—_é—l-) an=2p2 4 J +

neip  (n—l(n—2)
—I—COSBX [na lﬁ —]>'<"—2'X3—a” 353—(—...]}.
2x2 4 3x (1 +2x?) arc sin x 3x 2
2.3.6. —; b 55 20—
(a) (l+x2)V‘l+x2 () i +(l_x3)3 (C) (4 X
(1—x2) 2
X (2x2—1).
2.3.8. (a) x®sinx—60x%cos x— 1140 x sin x-- 8640 cos x; (b) 2e—*% x

X (sin x4cosx); (c) e*[3x2+6nx-+3n(n—1)—4]; (d) (—1)?[(4n*+2n +
-+ 1 —x2) cos x—4nx sin x].
1 1 IX3X5X...xX197x(399—
2.3.9. (a) 100! [ G (x_l)m] . () &5 %)
2100 (] —y) 2

1 1
Hint. y=2(1—x) %2 —(1 —x)?

" 4 cos x
241 (0 == GFTIsmae

2.43. (b) y,—= —cotk%lt; (d) y,—— 2e=2et,
4.4. (b 4 A

244 OV =3mry © YeTg o

2.4.5. (b) y,, =—3sintsec?t.

Yy —_
L , 9 , 3
2.4.6. (b) !/;=—i—+e *5 © yx=§_—’5‘; (d) yy=— ]/%

. _eF—e)) (1—ev+Y) der ™ 2ot
2.4.7. (b) y = TE4E PO g= (ex—y+1)3_(x+y+y{)3‘

2.4.9. (2) 2a—2x—y . (b ) x+y © _ersinytersinx

1
@ x-+2y—2a’ e¥ cosy+te-Y cosx ’ @ e
20+ 2 lll csint {
2.4.10. (a) —_ y5 H (b) 256 2.4.11. (a) —m, (b) ?,
. {
© £yl o - of? ' © (acos t—bsint) cos3§ '
413’ 2t (222t +1)° o !
4 sin 5

(f)—]/2 tz, ©® —VIi-2.

2.5.1. (b) 6x+2y—9=0; 2x—6y-t37=0.
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2 10
2.5.2. M ——=, 5 — M, = , 0— — ).
© ‘( V3’ +3V> (V 3 3)
2.53. (b) ¢=arctan2)2. 2.58. (b) x4y—2= y==x. \
2.5.15. (a)-;i; (b) y=1, x4+2y—2=0; (©) +E=__§_<x+_i_);

() % 2.5.16. 11.

a8, - =
2.5.17. 26,450.  2.5.19. s-—at—T ; v=a—gt; smax——s’t= a =3

2.5.20. U:,;Z_?ﬂpf}*_: sin M (14+2ecos M). 2.6.3. Ay = dy=0.05.
2.6.5. (b) log 10.21 =~ 1.009; (d) cot 45°10’ ~ 0.9942.
2.6.7. (c) Ay=|cosx|Ay (d) Ay=(1+tan®x)A,.
4Inx—4—In3x , ,

2.6.9. (a) ¢12y:4-"¢22ln4(2x2 In4—1)dx? (b) d%y W_——_—Tﬁdx-;
x n’x—
(c) d3y=—4 sin 2x dx3.
s 443y o, 2 _ 443 L, 4 2.
2.6.10. (a) d*y =)y dx?;  (b) d’y= =) dx l__x‘!dx H

in particular at x=tan ¢, d?y= — dt2.

cos? 2¢
2.6.11. AV =4nr2 Ar+4nr Arz—l-% nAr3 is the volume contained between

two spheres of radii r and r+Ar; dV=4nr? Ar is the volume of a thin layer
with a base area equal to the sphere’s surface area 4mr? and a height Ar.

2.6.12. As=gt At-{—?gAﬁ is the distance covered by a body within the

time Af; ds=g! At =vdt is the distance covered by a body which would move at
a velocity v=gt¢ during the entire interval of time.
2.7.1. (a) It does not exist; (b) it exists and equals zero.
2.7.2. 90°. Hint. Since
{ex, x=0
y:

e—* x <0,
L0 =—1, [, (0)=1.
273. [ (@=—9(@); [, @=0¢ (.
2.7.4. Hint. For x # 0 the derivative

f’ (x) =— cos (%—) +2x sin (%) .

At x=0 the derivative equals zero:

Ax? sin KI);
f (0= lim —————=0.
Ax - 0 Ax
Thus, the derivative f’(x) exists for all x, but has a discontinuity of the
second kind at the point x=0.

2.7.5. a=2x,, b=—xi 2.7.7. Hint. The formula for the sum of a geo-
metric progression represents an identity with respect to x. Equating the deri-
vativés of both sides of the identity, we get

n41___ n
14 2x 4352+ ... faxn—1="% (l(i_)t);)x +! ;
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multiplying both sides of this equality by x and diflerentiating again, we get
—_ - 1)2 290 — Al pen+2
242t . i1 LEXZ0HD "'ﬂf’f_j;f” D! —nent s
2.7.8. sinx+3sin3x4-...4+2n—1)sin (2n—1)x—
_(@n+1D)sin@n—1)x—(2n—1) sin (2n+1) x
- 4 sin2 x :

Hint. To prove the identity multiply its left side by 2sinx and apply the
formula 2 sin a sin § = cos (a—B)—cos (2 +P). To deduce the desired formula
differentiate both sides of the identity and equate the derivatives.

2.7.9. (a) sin 2x [f’ (sin2 x) — ' (cos? x)]; (b) e/ X [exf" (e¥) [ (x) f (e¥)];

© Y, X Indx
P(x) Ing(x) @) InPex)’

2.7.10. (a) No; (b) No; (c) Yes; (d) No.

2.7.11. Hint. Differentiate the identity [(—x)=f(x) or f(—x)=—Ff(x).
This fact is easily illustrated geometrically if we take into consideration that
the graph of the even function is symmetrical about the y-axis, and the graph
of the odd function about the origin.

2.7.12. Hint. Differentiate the identity f (x4-T)=f (x).

2.7.13. F' (x)=6x2. 2.7.14. y’'=2|x|. 2.7.15. The composite function
f (9 (x)] may be non-differentiable only at points where ¢’ (x) does not exist
and where @ (x) attains such values of @ (x)=u at which [’ («) does not exist.
But the function y=u?=|x|* has a derivative y’=0 at the point x=0,
though at this point the function u=|x| has no derivative.

" __ . " _ A l z 1 L . I ,
2.7.16. (a) y"=6|x|; (b) y"=2sin Ty ST Esiny at x #0,
y” (0) does not exist, since y’ (x) is discontinuous at x=0.
2.7.17. Hint. (a) Verify that f”“%:cﬁ (k=0, 1, ..., n) and take advan-
tage of the property of the binomial coefficients. (b) Designate: [(x)=u,;
show that u,=(n—1)u,—1—u,—, and use the method of mathematical

induction.
2.7.18. Hint. Apply the Leibniz formula for the nth derivative of the pro-
X

duct of the functions u—e ¢ and v= 2.
0 at n=2k
27.19. ) (0)= | [1X3X.. X (2—1)J* at n=2k+ 1
(k=1, 2, ...).

Hint. Differentiate the identity n—2 times and, putting x=0, obtain
Y (0)=(r—22 4= (0) (n=2).
2.7.21. Hint. Take advantage of the definition
e~ Hpqq ()= (e~ ")+ D= (—2xe~*¥*)m)
and the Leibniz formula for1 the nth derivative of the product u=e-%* and

v=—2x. 2.7.22. y;=m~

27.23. x5y , =1V 1+ VI—y (—= <y<)),
x5, =2V 1—Vi—y O=<y<,
1

x‘=4—x;m;2—) (l=], 2, 3, 4) fOr x,';éO, :!:l.
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Hint. Solve the biquadratic equation x*—2x?+y=0 and find the domains
of definition of the obtained functions x; (y).
2.7.25. (a) x;=—3; x,=1; (b) x=4+1.
2.7.26. Hint. Note that the function x=2{—|1{|= £, =0, has no deri-
3, t<0
x, x=0,

vative at f=0. But t:\ic_ <0 therefore we can express y=1241{|f|=

912, 120, Sy x>0, N, .
= { 0, 1<0 through x: y—{ 0, x<0 This function is differentiable eve
rywhere. 2.7.27. a=c=—l—- b=—. 2.7.28. Hinf. The curves intersect at the

4° 2
points where sinax=1. Since at these points cos ax=0,
y,=1"(x) sinax+[ (x)acosax=[" (x)=y;,

i.e. the curves are tangent.
2.7.30. Hint. For t # nin the equations of the tangent and the normal are
reduced to the form: -

y=-cot % (x—at)+2a; y=— tan % (x—at),

respectively. For {=n (2k—1) (k=1, .) the tangent line (y=2a) touches
the circle at the highest point, and the normal (x=at) passes through the high-
est and lowest points; for {=2kn (k=0, .) the tangent line (x=at) pas-

ses through both pomts and the normal (y=0) touches the circle at thelowest

. a%y . _Al\, 2dg
point. 2.7.34. bre +y. 2.7.35. The relative error 6= 7 Snog
reliable result, i.e. the result with the least relative error, corresponds to the
value ¢=45°.

The most

Chapter III

3.1.2. (b) Yes; (c) No, since the derivative is non-existent at the point 0.
3.15. E=e—1. 3.1.7. No, since g(—3)=g(3). 3.1.9. (d) Hint. Consider
the functions

f(x) =arc sin

H— 2—{-2arctanx for |x| > 1,

g(x)=arcsin

I+x2 —2arctanx for | x| < 1.
7 _
BLIS. () E=v; () E=rmi () g:&;L”; (@ it is not appli-

cable, since the function has no derivative at the point x=0.
3.1.16. 1.26 < In(1+e) < 1.37. Hint. Write the Lagrange formula for the
function f(x)==Inx on the interval [e, e—|—l] and estimate the right-hand side

in the obtained relation: In(l-{-¢)=1 +€ (e<E<et).

3.1.17. Hint. Apply the Lagrange formula to the function f (x)=1In x on the
interval [1, 1+x], x >0, and estimate the right-hand side in the obtained re-

lation In(14+9=>+ (I<fi<ltn. 325 (2% @0 () —i.

2
1  x—tanx 1
H r —_—— T ——— —_ e&eDe 1—
3.2.3. (b) 0. Hint. Represent cot x Y Yo (c) 5 - 3.2.5. (b) el =e.
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32.6. (a) I; (b) 1. 3.2.9. (a) ;; () lna—1; (9 2 (d) “{3; @

a

..mz_n_
Mo @1 t)na @e > () %; W1 Me (m =
(n) i (0) a. (p) e_;l"—' l; ! 3.3.5 b) 0.34201
27 '§" p ’ (q) ’ (r) —'-2_ 9.0, () . .

1

4
3.3.6. 1/ 83 ~ 3.018350. Hind. 1/83—1/81+2—3<1—|-8l> . Apply the bi-

nomial formula and retain four terms. -
3.3.7. Hints. (b) Write the Maclaurin formula for the function f(x)=tanx
with the remainder R, (x); (c) write the Maclaurin formula for the function
1

fy= +x)—2_ with remainders R, (x) and Rj (x).

1 1 1 x ¥ xt
e x2 L 43 __ - B 5): T
1-43-(3)/’(16) g ¥ g =g to®); () [W=x—-F+F—1
X
* 5
+ 5o ().
l . 1 . 1 .
343. (b) —55 (O —qi @z @ L
2 5 1 xz  xt xS X
4.4, Y T S S XXX _
3.4.4. (a) 1 +2x+x 3 5 15x,(b) 5 12—}—45,(0)1 2—!—
x2  xt
127 720°
3.5.1. (d) The function decreases on the interval (—o, 0) and increases on
(0, o); (e) the function increases on the intervals | —oo, §> and (3,-+ o)
and decreases on (—; s 3>; (f) the function increases over the entire number
scale.

3.5.2. (b) The function increases on the intervals <0, %) and (511 2n>

and decreases on (% R E%

3.5.8. (a) The function increases throughout the number scale; (b) the func-
tion increases on the interval (—1, 0) and decreases on (0, 1); (c) the function
decreases throughout the number scale; (d) the function increases on both
intervals (—oo, 0) and (0, o) where it is defined; (e) the function decreases
on the intervals (0, 1) and (1, e) and increases on (e, + oo); (fy the function
decreases on the intervals (—oo, 1) and '(l, ), increases on (—I, I).
3.5.10. a<<0. 3.5.11. b=>1. 3.6.1. (b) The minimum is f(1)==f(3)=3, the

maximum [ (2)=4; (d) the minimum f (—7—>::——l 3.6.2. (b) The minima

5 24
are f (£1)=V 3; the maximum f (0)=2.
3.6.3. (b) The maximum is f(—2)= 160 the minimum f (0) =
3.6.7. (b) The minimum is f(0)=0.

3.6.8. (b) On the interval [0, 2xt]: the minimum is f<g>=—4; the maxi-

mum f T =4. 3.6.10. (a) The minimum is f (0) =0, the maximum [ (2) =4e-2,

(b) the minimum is f(—2)=—1, the maximum f (2)=1; (c) the maximum is
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5 S
/(0)=0, the minimum f(%):—?g—S ‘/31, (d) the maximum is f (£2) = —1,

the minimum f(O) 7;  (e) the maximum is f(—3)=3?/ 3, the minimum

F2)=— 1/ 4.

3.6 11. (a) There is no extremum; (b) there is no extremum; (c) the ma-
ximum is [ (0)=0; (d) the minimum is f(0)=

3.7.1. (c) The greatest value is f(1)=—, the least value f(0)=0; (d) the

greatest value is f(j: —;—-) =—V—§, the least value f(41)=0.

3.7.2. (b) The greatest value is y(0)=%, the least value y (i —Q) =%;
(c) the greatest value is y(4)==6, the least value y (0)=0.
3.7.6. (a) The greatest value is f(—2)=§, the least value f(3)=—377;

(b) the greatest value is f (0)=2, the least value f(42)=0; (c) the greatest
value is f(———): +0.25 In 3, the least valuef(l/_é):%-o.% In 3;(d) the

I
vs)Te
greatest value is f —g- =3 V3
est value is f(1)==1, the least value f(2)=2(1—In2); (f) there is no great-
est value, the least value is fO)y=1.

3.83. H=R V?, where H is the height of the cylinder, R is the radius of
the sphere. 3.8.7. x=asina, y=acos o, where & =0.5 arc tan 2.

Hint. The problem is reduced to finding the greatest value of the function

==4xy -+ 4x (y — x) = 4a? (sin 20 —sin? o)

, the least value f(%):—?; (e) the great-

in the interval 0 < a < -f:- 3.8.8. Ppg = ﬁv at W=W, 3.89. h=2R=
3/ 3v . . . R
=2 B 3.8.10. The radius of the cylinder base is r=-=, where R

is the radius of the cone base. 3.8.11. The equation of the desired straight

line is —+ 7 J—1.
3.8. 12 x=a—p fo for a > p and x=0 for a<<p.

3
3.8.13. v= 2b Hint. It will take % hours to cover one knot. The

appropriate cxpenses are expressed by the formula T=a—f;b.v =vi—|-bv2.

3.8.14. (p:%. Hint. At the board width a the cross-sectional area of the

trough is equal to a2 (l+-cos @) sin ¢. where @ is the angle of inclination of the
walls to the bottom.
3.8.15. % Hint. The point of fall of the jet is at a distance of o V2H

the tank base, where H-—=h—x is the height at which the orifice should be
located, v is the rate of flow; therefore the length of the jet is determined by
the expression

from

2(h— x) (h

V 2gx ]/ =2 V x(h—x).
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8.8.16. After —— hours the least distance will be equal to —g— km.

2v
3.9.1. (b) The intervals of concavity are | — o, %) and (l, o), of conve-
xity (%, l); the points of inflection are (%—, 12;—;), (1, 13); (c) the in-
tervals of concavity ate (— ¥ "3, 0) and (V 3, o), of convexity (—oo, — V3)
and (0, ¥ 3); the points of inflection are(—]fg, —Ké , (0, 0), <V§:
10
o ; (e) the curve is concave everywhere; (f) the intervals of concavity are
3-Vs 3+V5
(0, x,) and (x;, o), of convexity (x,, x,), where x;=e 2, xo=e % ; the
points of inflection are (x;, y), (x,, y,), Where
V5-3 - 3+V'5
3—1V'5\* 3+ VB\* ~3

3.9.5. (a) The point of inflection is (3, 3); the curve is convex for x < 3 and

concave for x > 3; (b) the abscissa of the point of inflection x= arc sin V51 :

2 ’
the curve is concave in ( —_i;- , arcsin J%), and convex in <arc sin Vi——l .
n

3.10.1. (c) y=0; (d) x=0; (i) y=2x as x— 4w and y=—2x as

X —>— 0. 3.10.3. (a) x=3, y=x—3; (b) y== %’5*1: (¢) y=x;
d) x=4 2; (e)y:?x——g—.

3.11.2. (a) The function is defined everywhere, it is even. The graph is sym-
metrical about the y-axis and has no asymptotes. The minimum is y(0)=1,

maxima y(l)=y(——l)=—2§-. The points of inflection are <:}; Q 23>; (b) the

* 18
function is defined in (—o0, —1) and (—1, - ). The graph has a vertical
asymptote x=—1 and an inclined asymptote y=x—3. The minimum is y (0)==0,
. 56 . . . 3296
maximum y(——4)=——27. The points of inflection are { —86, ~ 15 and

<2, é—g) (c) the function is defined in (— o0, 0) and (0, + o). The graph

has a vertical asymptote x=0. The minimum is y<%)=3. The point of inflec-

3
2
tion is <-——2— R 0) ; (d) the function is defined in the intervals (— o0, —1),

(—1, 1) and (1, oo); it is odd. The graph is symmetrical about the origin, has
two vertical asymptotes x= 11 and an inclined asymptote y=x. The minimum
. = 3 3V 3

is y(V3)=+3V Vv

5 the maximum y(—]/Tﬁ)'_——T. The point of
inflection is (0, 0); (e) the function is defined everywhere, it is even. The
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graph is symmetrical about the y-axis and has a horizontal asymptote y =0. The
minimum is y (0)= 3/4, the maxima y (+ V" 2)=2 3/2. The points of inflec-
tion are (j: 2, ‘3/74-); (f) the function is defined in (—2, 4 o). The vertical

asymptote is x= —2. The minimum is y (0)=0, the maximum y (—0.73)=0.12.
The point of inflection is (—0.37; 0.075); (g) the function is defined everywhere.

The horizontal asymptote is y=0as x — -+ 0. The maximum is y (—i—) = <%>3 .
The points of inflection are (0, 0),

3—V3 (3— V3) v3os) (3+ V3 <3+ N
) e , , e 5
4 4 4 4
(h) the function is defined and continuous everywhere. The horizontal asymptote
is y=1. The minimum is y (0)=0, the point (0, 0) being a corner point on the
. - b/

graph: y_ (0) =~ 4, (0) =+

3.12.6. 4.4934. 3.12.8. x; = —2.330; x,=0.202; x3==2.128. 3.12.11. 0.6705.
3.12.12. (a) 0.27; 2.25; (b) 0.21.  3.12.13. (a) 1.17; (b) 3.07.  3.12.14. 1.325.
3.12.15. 0.5896 and 2.2805. Hint. To approximate the smaller root more precisely
write the equation in the form x=e?-8%¥-1, to find a more accurate value of the
larger root represent it in the form x= 1.25 (14-Inx).

3.13.1. No. Hint. Show that at the point x=1 the derivative is non-exis-

tent: f_ ()=1; f+ ()= —1. .

3.13.2. Hint. Check the equality f(b)—f (@)=(b—a) f’ a—gb .

3.13.3. Hint. Apply the Rolle theorem to the function f(x)=ax"+...
...-ta,—1(x) on the interval [0, x,].

3.13.4. Hint. Make sure that the derivative f’(x)=4(x3—1) has only one
real root, x=1, and apply the Rolle theorem.

3.13.5. Hint. The derivative f’ (x)=nx"-1-+p has only one real root at an
even n and not more than two real roots at an odd n.

3.13.6. Hint. The derivative is a polynomial of the third degree and has
three roots. Take advantage of the fact that between the roots of the polyno-
mial lies the root of its derivative.

3.13.7. Hint. From the correct equality lim cosl=0 (0 < &< x), where g is
x>0

S

determined from the mean value theorem, it does not follow that lim cos%:O,
x>0

since it cannot be asserted that the variable  attains all intermediate values

in the neighbourhood of zero as x — 0. Moreover, £ takes on only such a sequ-

ence of values E for which lim cosi=0 (EEE).

3.13.8. Hint. The mistake is that in the Lagrange formula one and the same
point E is taken for f(x) and @ (x).

3.13.9. Hint. Apply the Lagrange formula to the function Inx on the interval
[b, a]; (b) apply the Lagrange formula to the function 27 on the interval [y, x].

3.13.10. Hint. With the aid of the Leibniz formula ascertain that the
coefficients of the Chebyshev-Laguerrc polynomial alternate in sign, the odd
powers of x having negative coefficients. Whence deduce that L, (x) > 0 for
x<0.
3.13.11. Hint. Using the Rolle theorem, show that inside the interval [x,, x,]
there are at least n rcots of the first derivative, n—1 roots of the second deri-
vative, and s0 on.

3.13.12. Hint. The L’'Hospital rule is not applicable here, since the deriva-
tives of both the numerator and denominator vanish at all points where the
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factor sinx (which we cancelled in computing the limit ot the ratio of deriva-
tives) vanishes.
3.13.13. Hint. Write the Taylor formula with the remainder R,:

h? h3
Fla+h)=F (@)+hi’ @ + 57 I (@55 1" (a+01h).

Comparing it with the expansion given in the problem, get the equality

L(“_i‘izﬂ—_-'_f"' (@-6,h) and pass over to the limit as h— 0.
3.13.14. Hint. Prove by using the rule of contraries. Suppose that e=— p

q’
where p and ¢ are natural numbers, p > ¢ > 1, and, using the Taylor formula,

get for n > p
p_ 1 1 1 1 p\*®
AR U TR e Y +1)'(7> @<b<l).

P

Multiply both sides of this equality by n!, and noting, that n! and

1 1 e I p\?o 1 p
(1—|——1T—|-...—f—n—!> n! are positive integers and P <7) < | -7< I,
obtain a contradictory result.

3.13.15. Hint. Verify that the tunction
sin x

f(x)—]

1 0< x< 2’ is continuous on the interval [0. —g—] .

x=0
Ascertain that the derivative ' (x) < O is inside the interval.
3.13.16. Hint. Show that [’ (x) = 0. Ascertain that

_ >0 fora< 1,
f(O)_l——a{ <0 fora>l,

and take advantage of the fact that the function increases.

3.13.17. Hint. Show that the function f (x)=xe¥ —2 increases and has oppo-
site signs at the end-points of the interval (0, I)

3.13.18. Hint. Show that the derivative

L] 1 1 ,
f(x)—-g-—l-?xsnn—)c——cos; (x #0)

. 3 . o 1 . 1
is equal to 5 at the points x_(2n+l)n (n=0, +1, £2, ...), and to—-‘? at
the points x:ﬂlﬁ-’ i.e. the derivative changes sign in any vicinity of the

origin.

3.13.19. Hint. Ascertain that the auxiliary function { (x)=f(x)—¢ (x) in-
creases.

3.13.20. Hint. Make sure that at all points of the domain of definition of the
functlon the derivative retains its sign if ad—bc £ 0. But if ad—bc=0, i.e.
a

== d , then the function is constant. 3.13.21. p=—6, ¢g=14.
3.13.22. A mimum f(xo)—O if @(x) >0 and n is even; a maximum
[ (x)=0 if @ (x) <0 and n is even; the point x, is not an extremum if n

is odd. Hint. At an even n, in a certain neighbourhood of the point xy the func-
tion retains its sign and is "either rigorously greater than zero or rigorously less
thian zero, depending on the sign of @ (x,). At an odd n the function changes
sign in a certain neighbourhood of the point x,.
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3.13.23. Hint. For x #0 f(x) >0, hence f(0) is a minimum. For x >0

L Vi . - - . _
the derivative f (x)—2—sm—x-+7 cos — s positive at the points r=g—

. . 1 A .
and negative at the points x_ml—)—n' The case x < 0 is investigated ana-

logously. 3.13.24. (a) 1 and 0; (b) 1 and —2.

3.13.25. (a) The least value is ncn-existent, the greatest value equals 1; (b)
the function has necither the greatest, nor the lcast value.

3.13.30. Yes. Hint. Since f” (x) changes sign when passing through the point x,,
the latter is a point of extremum for the function [’ (x).

3.13.31. The graph passes through the point M (—1, 2) and has a tangent

line y—2=—(x+1); M is a point of inflection, the curve being concave down-
ward to the left of the point M, and upward to the right of it. Hin¢{. The func-
tion f”(x) increases and changes sign when passing through x=—I1.

1
3.13.32. h= — .
aV?

3.13.33. Hint. According to the Rolle theorem, between the roots of the first
derivative there is at least one root of the second derivative. When passing
through one of these roots the second derivative must change sign.

3.13.35. Hint. The polynomial has the form agx®?+a;x2n =2+ ... 4-a,_x*+a,.
Polynomials of this form with positive coefficients have no real roots.

3.13.36. Hint. Take advantage of the fact that a polynomial of an odd degree
(and, hence, also its second derivative) has at least one real root and changes

sign at least once.
4 3
3.13.37. Hint. Find lim [ 2ot X4 1)
x3—2x—-1

X > ®

Chapter IV
4.1.2. | =x34x24+05In|2x—1|+C.
3 3

2 — —
4.1.7. I=E-(x—|— 1) 2 —{-—g—x 2 +C. Hint. Eliminate the irrationality from the
denominator.

4.1.14 I——Larctan%—t- C

A 1= =+C.

4.1.15. I=-—2—_—arctan 2x+_]+C.

3 V3

4.118. I=In|x+3+ VL6 L1 [fC.
4120 1= 1|V 10x= VT +cC.
2V70 |V Iox4+V7

4.1.21. (a) 7arctanx—;—3+c; (b) %(x—4) ;’/;—}—C: (¢) 3tanx--

+2cotx4+C; (d) — —%—-{—arc tanx--C.

4.1.22, (a) In (x4 V 14 x?)--arc sin x+C; (b) sinx—cos x4C;
2 __ 1 . . ; .
(c) —RS X+ m? ¥4C; (d) —0.2cosbx—xsinba+C.
37

| vo—e5 ., 5 o
423. [==V (&%—50 +5 Vo —b———eetC
5V P tsV Va= "
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2
428, |=—2 YV @0sx+C. 4.2.10. I=%(x3+3x+l)3 +c.
4.2.13. (2) 0.75 3/ TF IR +C; (b) In|nx|+C; (o) larc sin —— V_
(d) n—]-aarctan %——FC' () —2cos Vx-+C; () Lln‘* x-+1In|lnx|+C.

4.2.14. (a) (35—40x + 14x2) (1 —x) 3 +C;

140
(b) —3—(lnx-—-5) V 14 1nx4-C;

() (%—3 sin? x-|——— sin4 x) V sind x-C;
(d) ——(8+4x2+3x4) Vi=x+cC.

4.3.2. xarcsinx+ VY 1—x21-C.
4.3.14. — cos x In tan x4 1n | tan (%) |—|-C'.

4.3.17. xIn(x+V1+2)—VI1Fx4-C.

3 - S 9
4.3.18. T* ,3/x [(ln x)‘——g— In x+—8—] +C.
4.3.19. 2V 1+x arc sinx+4 Y 1—x+C.

4.3.20. —0.5 STy +cotx | +C.
3% (sin x+4-cos x In 3)
4.3.21. (3 +C.

4.3.22. <%x3——x2—|—% x+ |3> e3x - C.

4.3.23. (x“—101c2-1—2!)sinx—{-x(4x2 —20) cos x+C.

2 —_
4.3.24. 9x2 4 18x 2x+

= C.
57 s 3x-+ sin 3x +

3
4.3.25. (%—xq-sx) In x——+——~3x+C

4.3.26.

—1
3 arctanx—ﬁ—|————|—C
4.3.27. 2arccosx— +x V1i—x2+C.

3
4.3.28. (a) ——'8"%

1
sin (6x+42)— 6x7-2|-l cos (6x+2)—|—— x4

=,

2
bR x G (b)) (2 —Ta 1) @a )P g (26— T) (264D ® +

27 -
+ 355 2+ 1) ° +C.

4.4.2. (d) Hint. Apply the generalized formula for integration by parts and
express [, from the relation thus obtained

2

erx n(n—1) n
l,--— sin*=ly(asinx—ncosx) +———— lpes——5 'n:
T oa ( ) a? i at
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cos x n—2
443y =— (n—1) sint=1y o= ln-e (n=2);
cos x 1 cos x 1 X
Lb=—gamz T =" gguxTz " ‘a"7|+c-
4.44. (a) I,= _ltan"—lx——l,,_g; ly=—In|cosx|+C; [y=x+C;

l,= cott=tx—1I, o Iy=In|sinx|+C; [l,=x+C; (¢} [,=

n—1

= %x"—‘ V x? —1—a——’-1—;—l-al,,_2; /= Vx"—l—a—}-C; Io=lnlx+ Vx2+al+C.

Chapter V

x? 1 x—1 16
5.1.2. -2——2)(—!——5111 m '—— In |X+2 |+C-

5.1.5. 2In|x—1|—In|x|— = l)2+C

5.1.8. —;—_— arc tan 2—]/_|_—7——;-arc tan (x+2)+C.
5.1.10. 5x+41In x* (x4-2)* |x—213—1—C

RT 9x2 -+ 50x 468 | (x41) (x4-2)18
M e T E | e

5.1.12. —x_2——arc tan (x—2)4-C.
S B IS,
6(14+x) "6 " T—x+tax?
—5—‘—/—_3? arc tan );/._ +C.
x+2 Vx+l
Q—(xZ—_F—l)—“{—QaTC tanx—|—ln f/;i_l—l—c
5.2.2. 41/ x4+6 5/ k424 /%424 In | P/ x—1]|+C.
B 3/t +2)°
I_ arc tan 2 *-_l -+ 3 /( +2
V3 V3 V=1 Ve i+

g
+C, where (= l/-x L
5.2.7. ]/x+'+c 5.2.8. = ]/:f;‘

529 (]—%x> Vi—=x* —X'-—%arc sin x-+C.
5.3.3. —2arcian (—@4—1)

+C.

5.1.13.

-|-— arc tan x—

5.1.14.

5.24. —

+cC.
3 —
20V 2 2 +4d—x—1)

— |V EFE T —e—1] + C.

5.3.5. 2In| VX2 f2x+4—x |~
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5.3.6 .V 1—=% '/' IEV =% | garc tan ]/'J”
x—l (x+ l/-l—i-xl)“
5-3-7~ Ry —a— C. 5-3-8. _— C-
Vox—x2 * 15 *
5.42. 5V +2x +5—In(x+ 1+ V¥*F2x 15)+C.
2 J—
5.4.5. %—-' V3 _ox L 14C.
5.4.6. QX;H Veterl —i—% In|2x+142 Vxzgyxt1]|+C.
5.4.8. %( 2 M4x 4+ 1) V¥ F4x+3—661In|x+2+ Vx: +4x+3|+C.
1 —_— 3297
5.4.9. — (3242 —20x —373) V 2x? 165+ 7 In|4x+5
ga B% ) +x++[8V21x—|-—|—
+2 ]/4x2+10x+14|+C
3x+5
5.4.10. ———— é(x‘;—l)z V¥ +2x +2x—garc sm( -l—l)
x? —4x+3 . 1
5.4.11. —-————;——l——Qarc Sln 2+C.
x+2 8xl+12x—!—7
5.4.12. — = ]/x+| TEmE +C.
2 4 2
5.4.13. In|* +'+V;‘ 3 |+c. Hint. First make the substitution
x2=1.
_ 2 _9_ ]2 2 5
5.5.2. 3arctan / x+C. 5.5.4. —<2+ >4 <2+ >4+C.
ll 8
2(l I—x°)°‘——(l+x2) + 0(l-l-x”) +C.
12
5.5.7. —i/(l—i—l/x) —31/ (1+4/ %) +cC.
‘V X 3
5.5.8. 31n _+
1+,/ x 1+,/
2 2 2 __
5.5.9, (¥ lf_)‘o’x D e
Vi+a @e—1)
5.5.10. 50 +C
7 —3\8
5.5.11. o /(l—l—/x*) +C.
4 9
5 I\5 b5 1\3
5.5.12. T<l+7> —§<1+7> 1C
1 1
— — {an3 x-
5.6.2. TSy 551n5x+c 5.6.6. tan x-- 3 tan3 x--C.
5.6.10. (a) ——cotx-{——cot3 x——51—coi5x——,\¢—|—C:

(b) %

tan2 x—— In (14 tan® x)—|—C-~——tdn x+4-In|cos x|4-C.
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. | S I 1+ sinx
— —— sin® - — ol R
5.6.12. —sinx 3 sin® x+ lnll S x +C.
1+2tan \

2
5.6.14. ——— arc tan <
Vs V15

2 tanh 2 41
5.6.22. (a) — +S'“h e, () ]/2_3 arc tan <T2—3>+C'
5.7.3. —§ n(x-+ sz—l ix(zx'z—l) V¥=1+C.
Vx 41

574. nx+ Ve F1)—F=T"1cC.

'+c.
x—1
Ve
582 /=4 YV 1—x+2In(2—x—2VT1—x)—2(1+ ¥V 1—x) Inx+C.

5.8.5. [ ==en erc, where f= arc tan x.

5.7.7. [ =arc sin x—;

5.78. [ =

a1
Chapter VI
6.1.9. /= .§—{2—_19=44 as the area of a trapezoid whose height is 5—1=4
and bases 4X1—1=3 and 4X5—1=19.
6112 5, =160 — 04 100 g 16t +127,f’+ﬁf
3

6.2.2. (a) 1; (b) —; (o) %. 6.2.10. (a) 7—2-; (b)%ln 'zi ©) m

5
7 k4 T nooo 14
(d) z —are tan—; (e) In2; (f) I; (g) arc tan e—7 (h) E’ (i) 5’

(J)%: (k) M. 6.3.1. (c) 3</ <5. Hint. M=} (0)= 2, m=
=f(2)=%. 6.3.11. ()5‘“2" (b) —V1-|-x4 6.3.14. (b)—4—.63.15. (b)d—yz
—_—e-¥sinx. 6.3.23. (a) Inx; (b) 7. 6.3.24. (a) yi:l:;—t (b) yr— t‘mt
6.3.25. (a) The maximum is at x=1, the minimum at x=—1; (b) the
minima are at x__—2 0; 2, the maxnma at x—i L
6.4.3. (a) (substltutlonx—-asmt) (b) ————— V (substitution x=tan ¢).
24+ V'3 V3
6.4.6. (a 29— —=—t1n Z: (b) 2(1/_3—1); .
<>V l/3+ oV
. m
sin —
24 =
6.4.15. (a) 2—21In2; (b) 0.2 In 112 (c) — (d)V3—05 In 2+
sin - sin

8§12
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+ V' 3):, () 0.25In3  (substitution  sinx—cos x=1); (f) a3 (—4“——%)

(substitution x=acos{); (g)% (substitution x=2asin?¢); (h) —f;—-i——;

6.4.16. (a) %; (b) -4’1; © %m?—g(subsmution M=) (d) li;-(substi-
tution x2=a? cos? ¢+ b2 sin? ¢).

6.4.17. The substitution x=—ll- will not do, since this function is disconti-
nuous at /=0.

6.4.18. The substitution ¢ =tan % will not do, since this function is discon-

tinuous at x=nm.

6.4.19. Hint. The inverse function x=+ } 5 is double-valued. To obtain
the correct result it is necessary to divide the initial interval of integration into

two parts:
S /xzdx-g |/x2dx+s 1/x2dx

and apply the substltutlons x=— Vt5 in —2 < ¥<0 and x=—+ V15 in0<
<x< 2
6.4.20. It is impossible, since sec =1 and the interval of integration is

[0, 11.
6.4.21. It is possible; see Problem 6.4.12.

a 0 a

6.4.22. Hint. On writing S f(x)dx = S f (x) dx 4+ S f (x) dx, make the sub-
stitution x=l—l in the first i;{:egral. - 00
6.4.23. Sf(arc sin ¢) dt -+ Sf(n—arc sin ¢) dt + S f (@n 4 arc sin £) dt.
Hint. Roepresent the givenlintegra] as the sum of—lthree integrals for the in-

tervals: (0 2) (n 3—“), (-S—n 2n> and substitute the variable: x =

2 2’
= arcsin{, x=n—arc sinf, x=2n-} arc sin f respectively.
6.5.3. (1) If f(x) is an even function, then
1 11 o
( f(x) cos nxdx=2 S f (x) cos nx dx, and S f(x) sin x dx==0.
J
-5 0 -7

n a
(2) If f(x)isan odd function, then S f (x) cos nxdx-=0, and S f(x)sinnxdx=
-7

-n

J
=2gf(x)sinndx.
0
6

5.4.0. 6.63. 6—2%. 665 71V 24 6.6.6. 1—2. 6.6.13. (a)-g——l;
1 x V3 13
) =55 © T——ﬂ'l‘?ln”z‘,

6 _
@ 21 ) 2)3,

v ] . 2 .
(d) T (c) ]ﬂ2—7, (f) In —;
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6.6.14. Hint. Integrate by parts twice, putting u=(arccosx)? the first
time and u = (arc cos x)?=1 the second time.
6.6.15. Hint. Integrate by parts, putting u=x.

6.7.4. (a) 0.601. Hint{. Estimate | f!V (x)| on the interval [%, %—] and put
2n=6; (b) 0.7462. 6.7.5. 0.96
6.8.1.

|f"_2"2 for 0<<x<1,

F(x):i %for 1< x<<?,
(x—2)3

3 —|—— for 2< x<<8.

Continuity is checked directly. The assertion concerning the derivative re-
quires checking only at the points x=1, x=2.
6.8.2. Hint. Make sure that the function f (x) is continuous bolh inside the
interval (0, 1) and at the end-points ( hm f(x)_f(O) and lxm f)y=Ff1)).
X l—
6.8.3. No. Hint. Consider the functlon
() = 1 if x is rational,
PI=N if x is irrational on the interval [0, 1]

6.8.4. 1— V3. Hint. Sf” (x)dx=f' (b)—F" (a).

a
6.8.5. Hint. Putting for definiteness x > 0 and
E(x)=n<x<n+l,
take advantage of the additivity of the integral

X 2 X
SE(x)dx—SE(x)dx+SE(x)dx—|— + ( E(x)dx—l—SE(x)dx
0 0 l n

6.8.6. The antiderivative F; (x) will lead to the correct result and F, (x) to

the wrong one, since this function is discontinuous in the interval [0, =}
X

6.8.7. F (x)= yo-l-g f(¢)di. Hint. Any antiderivative F (x) can be represen-

Xo
x

ted in the form F(x):S/‘(t) d{+C. Putling x=x,, find C=:y,.

Xq
1 e‘”’——e-“
6.88 £=7In 55— -

6.8.9. The functxon is defined on the interval [—1, 1], it is odd, and in-
creasing; convex on the interval [—1, 0] and concave on the interval [0, 11;
the point [0, 0] is a point of inflection.

6.8.10. Hint. The function

R x* at 0 < x|
-
I at x=0

is continuous on the interval, it reaches the least valuec m=e ¢ a0.692 at
x=—:’— and the greatest value M =1 at x=0 and at x=1.
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6.8.11. Hint. Integrate the inequality %g—gl.
6.8.12. Hint. Integrate the inequality

s ) B ) 1o x
V xsinx > ]/x 5 =* 1 5 at 0<x<6

and write Schwarz-Bunyakovsky inequality

_n
2V 2
6.8.14. Hint. Apply the Schwarz-Bunyakovsky inequality in the form

b, l 2 b b |
[S ]/I(x).mdx] <§f(x)dx§mdx.

-a

U 7T a

5 /3 3 _
S l/xsinxdxg]/ Sxdesinxdx: %
0 0 0

6.8.15. Hint. Make the substitution arc tan x=%.

X

6.8.16. Hint. If f(x) is an even function, then F(x):Sf(t) di is an odd
0
function, since
-X X
F(—x) = S F (1) dt:—Sf(—z)dz:—F(x) (t=—2).
ul o
X
And if f(x) is an odd function, then F(x)=:Sf(t)dt is an even function,
n

since
—-X X

Fien=(fwa=—(i—ada=rFw (=—2

all the remaining antiderivatives have the form F (x)+4C and, therefore, are

also even functions.
6.8.17. Hinf. The derivative of the integral / with respect to a equals zero:

dl
aa=f(a+T)—“f(a)=0-

Chapter VII

7.1.4. (a) In2; (b) %-(2 Vo—1) (c) —‘Z—; (d) 1; (e) %
| 1 1 2 I 2i

2.2, - —+4+ —In —— & 0.283. 2.5, —. 7.2.10. ———.
7.2.2. (a) 5 (b) 2+ 5 In . 0.2 7 7 0 Y
. _ 5, - . 8 20 21,

7.2.13. (d) “—? N (b) w= In2; (C) H—m—g—*—?. 7.2.15. ? . 1.2.16. -T[— .

35 2 5 .3 8 1
7.3.4. 5 7.3.6. —3——|—7 arc smg. 7.3.11. 5 7.3.13. 9. 7.3.16.,711—1.
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7.3.19. %. 7.3.20. %. 7.3.21. 2n— (2 V3) In (2+ V3).  7.3.22. 0.75x.
128 1 4 8 1 91
7328 1. 7324 & 73.25. . 7.3.26 z. 7.3.27. 5. 7.3.28. 5.

7.4.6. % 7.4.8. 0.75nab. Hint. The curve is symmetrical about the coordinate

axes and intersects them at the points x= ta, y= +0b.

7.4.9. (a) T85 Hint. The curve is symmetrical about the x-axis, intersecting
it twice at the origin at f= 4 1. The loop is situated in the second and third
quadrants; (b) = Hint. The points of self-intersection of the curve are found
in the following way: y=tx (), therefore y (f;) =1{,x ({;) =tyx ({5) at {; # ¢, and
x(t)=x(ty), only if x({{)=x(£,)=0, ie. {;=0; {,=2; () 8 ]5/3 .

7.4.10. 0.25mab. Hint. The curve is symmetrical with respect to both axes of
coordinates and passes twice through the origin forming two loops. Therefore, it
is sufficient to compute a quarter of the desired area corresponding to the variation

of ¢t from 0 to % and multiply the obtained result by 4.
4
7.4.11. ng;:. Hint. The curve resembles an astroid extended in the vertical

direction.

2
7.5.2. (a) 3?“; (b) %. Hint. The curve is a circle of radius —;— passing

through the pole and symmetrical about the polar axis, —%
, [ 5m na® na? o [ T =

7.5.6. 2.a (-8——1>. 758. () =i (b) . 7.5.9.a <W"V3 )
7.5.10. r;_a-‘ Hint. The curve passes through the pole forming two loops located
symmetrically about the y-axis in the first and fourth quadrants. 1t is sufficient
to calculate the area cnclosed by one loop corresponding to variation of ¢ from 0

<o<

to % and double the result thus obtained.

7.5.11. %na'z. Hint. The curve passes through the pole, it 1s symmetrical
about the polar axis and situated in the first and fourth quadrants. It is sufficient
to calculate the area of the upper portion of the figure which corresponds to

variation of ¢ from 0 to % and double the result thus obtained.

7.5.12. @ <1+%-K;—>.

7.5.13. %. Hinf. The curve is symmetrical about the coordinate axes and

intersects them only at the origin, forming four locps—one in each quadrant
(a four-leaved rose). Therefore, it is sufficient to find the area of one loop corres-

ponding to the variation of ¢ from 0 to % and multiply the result by 4.

7.5.14. V'2 ma®. Hint. The curve is symmetrical about the axes of coordi-
nates and the biscctors of the coordinate angles; it cuts off equal intercepts on
the axes. The origin is an isolated point. It is sufficient to compute the area of
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one-eighth of the figure corresponding to variation of ¢ from 0 to % and mul-
tiply the result by 8.

7.6.2. 93 n. Hint. A plane perpendicular to the x-axis at the point x will
cut the sphere along a circle of radius 7 = ) 16— 2, therefore the cross-sectio-
nal arca S (x)=mn (16— x2).

7.6.5. 0.5ma%h. Hint. The area of a triangle situated at a distance x from
the centre of the circle is equal to h Va®>—x2.

7.6.10. 2n%a%. 7.6.11. % (see Problem 7.3.9). 7.6.14. 5n%as.
Y. 16 Lo 2
7.6.16. (a) 2nab<l-{—3—6z>, (b) T (c) 7abk n.  7.6.17. 7 tan a.
7.6.18. (a) 12m; (b) i—gn; (c) %431; (d) n%  (e) 6?n; ) —4—na3.
2c 2¢
l 1 3( a "'—) 2, Ta® gc
7.6.19. % 7.6.20. o 7.6.21. T e® ¢ “+natc= 5 sinh — +
+ ma%. 7.6.22. 210(61[—;—5 V' 3). Hint. The abscissas of the points of intersec-
. . .. m 19 127 168
tion are: x;= —F =g 7.6.23. R 7.6.24. — . 7.6.25. T0Bab2"

Hint. Represent the evolute of the ellipse parametrically as follows: x:% cos® ¢;
2
y=——i—)—sin3t, where c¢=V a2 —b2. 7.6.26. gnad 7.6.27. V_;

3 — —
n;z [VQIH(H‘ )/2)_% . Hint. Pass over to polar coordinates.

4 112 eb— -t — S —

_Z nad < - G .
7.6.28. ;o @, 77257 174 Ing——. 1.7.8. (a) V6+1n (Ve V3
a(a+-2)

o 1t 21/-3
2 2

P Xe=gi (c) —3 - 7.7.9.
7.7.10. 10 <;—l— V—5> 7.8.2. 8a. 7.8.5. 3. Hinf. The curve intersects the

(b) 21n (2— V' 3). Hint. x;= —

3
axes at 1,—=0 and ,—=1/ 8. 7.8.7. 41 3. 1788. 16a. 7.8.9. 8na. Hint.
3

3__pH3
Sce Fig. 79.  7.8.10. 4-%7[’—2 7.8.11. % 7.8.12. At t=%“ the point
2t V3\ 3a 5 3 .
M {a (T"T) —2-]. 79.5. 15ma.  7.9.9. 55+ In 5. 7.9.10. 2V 2 na.
Hint. The curve p=2 ¥ 2 acos <q>——% is a circle.
_ — 145 6
7.9.11. p[VermOG+vV2]. 17108 (a) —?1; (b) %
1
7.10.5. 2n _ 7.108. =. 7.10.14. (MY 17—2) X
V3> 2 9
7.10.15. 23‘[[V2+ln(l+ VvV 2)]. 1.10.16. 53—6na2. 7.10.17. 2 V a(er—2).
7.10.18. 29.67.  7.10.19. 4x%q%.  7.10.20. l—2§na . 7J0L7. 16a* where a 1s

5
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the radius of the cylinders base. 7.11.8.  1.5m. 7.11.10.  (a) %;
7 1 1 na? p? =Y.
(b) z5— arctan . TILIL () = b) = (344 V79);

() —18-(5n+6 V 3). 7.11.13.%(2 In3—1). 7.11.14. % 5V5—2V79).

) 3
7.11.17. 2n 1{53 . 7.11.18. 7:a* ¥V pgq. 7.11.19.  zab <3ic__,—~l+2—30>.

7.11.20. :|1(13bh . 71121 12n. 7.11.22. (%—_—g> nba.  7.11.23. -24—1 mad.

7.11.24. (a) n [(Vﬁ— V) (Vi) V“Z—l]; (by ne <2|V13+

243
3_’*‘,51/-__@’); (c) 2nrh.  7.12.2. -:23—?133. 7.12.4. nR . 7.42.9. Mii;w;.

+21In

7.12.11. mabhd.  7.12.12. mrdh:. 7.12.13. -1—2nR2H. 7.13.3.  0.257R3.
7.13.7. sz%(s Vi5—1); My=% 1/'5+-1%1n(2+ V5. 7.138. M, =

=_g_ Vate: My=o Va+5. 7.189. V2+in(14+V2). 7.13.10. 0.15.

_ab® | _adb (a4 3b) h3 o
7.13.11. Ix_T2—, y=T5" 7.13.12. — 7.13.16. x,=y.=0.4a.
1 =4

7.13.19, xc:yc=%. 7.13.26. x,=R 2%, 4, —0. 7.13.28. xcz%"; Yo ==0.

2T__pT 2n__ Qpm
7.18.29. x,—— L2EA) g =222 74330 45ma

el e ne?

4R m—n]| m—n| . ]
7.13.31. x,.=0; Ye=737- 7.14.1. l +n ; 4 mIn if both m and n are
even; 2‘ —1'if both m and n are odd; if m and n are of different

m--n

evenness. Hint. The curves y? =x" and y?=x" have two common points (0, 0)
and (I, 1) in the first quadrant. The area of the figure situated in the first

n m
quadrant is equal to S <x'" —x" )dx . Depending on evenness and oddness
0

of m and n this figure is mapped symmetrically either about the coordinate
axes (m, n even) or about the origin (m, n odd). If m and n are of different
evenness, then the curves enclose only the area lying in the first quadrant.
7.14.3. Hint. Take advantage of the formula for computing the area in
polar coordinates.
7.14.4. Hint. Since the figures are ofbequal area, the function S (x) appear-

ing in the formula for the volume V= S S (x) dx is the same and, consequently,

a
the values of the integrals are also equal.
7.14.5. Hini. The formula follows directly from Simpson’s formula

Su») dr=g |10+ (3 )+f(h>],
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nrex?
for a sphere S(x)=m(r2—x2); for a cone S (x)= s

; for a paraboloid of

revolution S (x)=2npx and so on.

7.14.6. Hint. Divide the curvilinear trapezoid into strips Ax wide and write
an expression for the element of volume AV =2mn xy Ax.

7.14.8. Hint. Use the formula for calculating the length of a curve represen-
ted parametrically.

7.14.9. ln-’—;—. Hint. The point (f=1) nearest to the origin with a vertical
tangent corresponds to t:g—.
7.14.13. 2n-1£53. 7.14.14. V2. 7.14.16.  (a) 0.5In(x+y);

(b) ——05arc sin x.
Chapter VIII
8.1.2. (b) %ln 2, (¢)1; (d) 1—Ing; (e) m; () i

8.1.6. (a) It diverges. Hint. ln(x +l) — for x > Ve—1; (b) converges;

(c) diverges. Hint. ?+C—?_Sx > V.—l_; (d) converges; (e) diverges.
x

8.1.17. (a) 0. Hmt Represent the integral as the sum of two items:
1

In x Inx ) - b
l—|—x2d Sl—l—x‘d -I—SI .dx. Make the substitution x== r in the se-
| 1
nx m!
cond summand and show that (l—|— 5 dx= — S sdx;  (b) 5

0
2

8.2.2. (a) Qa?; (b) it diverges; (c) diverges; (d) 6|3/2_, (e)
(f) converges for p < | and diverges for p=>=1.

8.2.7. (a) It converges; (b) diverges; (c) converges; (d) converges;
(e) diverges; (f) converges. 8.2.11. (a) It diverges; (b) 2V In2; (o) 5—71
8.2.14. (a) It converges; (b) diverges; (c) diverges; (d) converges;
(e) converges. 8.3.7. (a) i' (a) 2n.  8.3.8. 3ma®.  8.3.9. % 8.3.10. %

8.3.14. mgR. Hint. The law of attraction of a body by the Earth is deter-
mined by the formula f= gffz, where m is the mass of the body, r is the

distance between the body and the centre of the Earth, R is the radius of the
Earth.

8.3.15. e;. Hint. Electric charges interact with a force ‘-2%, where e; and e,
are the magnitudes of the charges and r is the distance between them.
8.4.1. Hint. Represent the integral in the form of the sum

+ o a

+ @
dx dx dx
S xPln‘Ix—le’ln‘Ix + S xF1n?x (@>1
1 1 a

n.
3’
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and apply special tests for convergence, taking into consideration that in the
first integral Inx=In[14(x—1)]~x—1 as x— 1, and in the second integral
the logarithmic function increases slower for ¢ < 0 than any power function.

8.4.2. Hint. Making the substitution x9=¢, reduce the given integral to the

2 pel vyl
form + 7 S t9=1 sint di. Represent the integral S t9=1sintdt as the sum

0 0
1

+ >

S%’:—tdt + S S;%ldt, where a:l—’iql, and show that the integral conver-
1

ges absolutely for | < @ < 2 and conditionally for 0 < << 1. Note that at

%—_—0 the integral is reduced to the conditionally converging integral

sin ¢
7 dt.

v +
5‘ —-s”t”dt, and at _p—;l = —1 to the diverging integral
§ 0

1/2
8.4.3. Hint. Represent the given integral as the sum S xP=1(1—x)7-'dx+
0

i
—+ S xP=1 (1 —x)9-1dx and apply the special comparison test.
/

1/2

T
8.4.4. Hint. If |a| # |8, then S sin ax-sin Bx dx is bounded.

0
8.4.5. Hint. By substituting f=x2 the integral is reduced to the Euler
gamma-function.

® ® @ af
8.4.6. Hint. S‘fﬁx);—f——(ﬁx)—dng f—ﬁcﬁdx—g fi—x)dx=g -f-—iﬁdx=
a ax aB ao

Ba
=A lng—l—‘s‘ f(xi——'qu. Applying the generalized mean value theorem, show
aa

that the last integral tends to zero as a — 0.
8.4.7. Hint. Take the function f(x)=e=* for the first integral, the function
f(x)=rcos x for the second and take advantage of the results of Problem 8.4.6.
8.4.8. It converges for m < 3 and2 diverges for m = 3. Hint. Take advantage

of the equivalence of 1—cos x and -Zf—- as x — 0.

2
t
A 3
. dx

8.4.9. Hint. Represent S—"as the sum of two integrals S -

g (sin x) J (sin )k
4

+ 5’ .dx k; reduce the second integral to the first one by making the substi-

Y (sin x)
2

tution x=n—1 and take advantage of the equivalence of sinx and x as x — 0.
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1
L 3
8.4.10. Hint. Ss_'i’f_%jcﬂzdngsinx(l?cosx) v+
X
b 0

4 S sﬂq_f(_l,x___?ms")dx. The integrand of the first summand on the right side is
2

an infinitely large quantity of order s—3 as x — 0. By the special comparison
test the first integral converges absolutely for s—3 < 1,i.e. s < 4, and diverges
for s=4. The second integral in the right side converges absolutely for s > 1,
since the function sin x (1 —cos x) is bounded. But if 0 < s<C 1, the second in-
tegral converges conditionally as the difference of two conditionally converging

integrals S Smxdx and Swdx (see Problem 8.1.13).

2 2
8.4.11. Hint. Integral (2) can diverge. For example, let

)_{ I, 2nn<<x<<(2n--1)m,
PO=Y 1 @+l m<r< @ito)m

sinx

® 0
The integral S’S’%Cdx converges (see Problem 8.1.13). But S P (x)dx=
0

»

®
SI sin x| dx diverges (see the same problem). But if the integral Sf(x) dx con-
0

a

verges absolutely, then the integral S f (x) @ (x) dx also converges absolutely: if

a
| (x)] < C, then |f(x)@(x)| < C|f(x)], and it remains to use the comparison
theorem.

8.4.12 Hint. Transform the integral [ (x) into f(x)= S In sinzdz by the
J
Kl

substitution y-—%—z Taking into account that sinz=2sin %- + COS — 2 , reduce

the above to the sum ol three integrals.
8.4.13. Hint. Putling u=In cos x, cos 2nx dx=dv, integrate by parts and get

dx, n # 0. Sir.ce

2
the equality / ?l S sin 2nx
n
0

sin 2nx = sin (2n—2) x-cos 2+ sin 2x-cos (2n—2) x,
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ron
1 : i
. sin x
I,,_.% —Ssm (2n—2)xcosxdx+
L0
1

a 49

) o

-+ S sin (2n — 2) x-sin 2xdx+25‘sin2x-cos 2n —2) xdx
0 0

|

Check by direct calculation that for =2 the second and the third summands
equal zero. Therefore, for n=2

n
2 . |
1 . osinx . n—
I,,=—§71S5m (2n—2)>.cosxdx-— P l,—1.
0
5
. 1 . sinx , @ _ I n __? 1 = ad
Since /, = - Ssm 2x as--;dx.a-"— we have [,= — R l3== 3T T T3
0

and by induction, I,,:(_])n-n%.



