Resonance

Multiple Choice Questions

- Q.1 A series resonant circuit has an inductive reactance of 1000Ω , a capacitive reactance of 1000Ω and a resistance of 0.1Ω . If the resonant frequency is 10 MHz, then the bandwidth of the circuit will be
 - (a) 1 kHz
- (b) 10 kHz
- (c) 1 MHz
- (d) 0.1 kHz

[ESE-1999]

Q.2 The circuit shown in the figure below, will act as an ideal current source with respect to terminals A and B, when frequency is

- (b) 1 rad/s
- (c) 4 rad/s
- (d) 16 rad/s

[ESE-2000]

Q.3 The value of the capacitance 'C' in the given ac circuit to make it a constant resistance circuit OR for the supply current to be independent of its frequency is

- (a) 1/16 F
- (b) 1/12 F
- (c) 1/8 F
- (d) 1/4 F

[ESE-2001]

Q.4 The resonant frequency of the given series circuit is

- (a) $1/2\pi \sqrt{3} \text{ Hz}$
- (b) $1/4\pi\sqrt{3}Hz$
- (c) $1/4\pi\sqrt{2}$ Hz
- (d) $1/\pi\sqrt{2}$ Hz

[ESE-2001]

Q.5 Assertion (A): A series $R_1 - L$ and a series $R_2 - C$ are connected in parallel. Parallel resonance will occur at all frequencies when $R_1^2 = R_2^2 = L/C$.

> Reason (R): An inductor must be operated below the self-resonant frequency.

- (a) Both A and R are true and R is the correct explanation of A
- (b) Both A and R are true but R is NOT the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true

[ESE-2002]

Q.6 The impedance of a parallel RLC network is

$$Z(s) = \frac{5s}{s^2 + 0.5s + 100}$$
. Then the value of R, L

and C are, respectively

- (a) 10 Ω , 1/20 H, 1/5F
- (b) 1Ω , 1/2 H, 1/5 F
- (c) 10Ω , 1/20 H, 1/2 F
- (d) 2Ω , 1/20 H, 1/5 F

[ESE-2003]

- Q.7 A series L-C-R circuit has a resonant frequency f_{Ω} , with $R = 1 \Omega$, L = 1 H and C = 1 F. If the components' values are tripled, the new resonant frequency will be
 - (a) $3f_a$
- (b) unaltered
- (d) $\frac{f_0}{3}$

[ESE-2012]

Q.8 Consider the following circuit:

For what value of ω , the circuit shown above exhibits unity power factor?

- (a) $\frac{1}{\sqrt{LC}}$ (b) $\frac{1}{\sqrt{LC + R^2C^2}}$
- (c) $\frac{1}{\sqrt{LC R^2C^2}}$ (d) $\frac{1}{RC}$ [ESE-2004]
- **Q.9** The transfer function $H(s) = \frac{V_0(s)}{V_1(s)}$ of an R-L-C

circuit is given by
$$H(s) = \frac{10^6}{s^2 + 20s + 10^6}$$
. The

Quality factor (Q-factor) of this circuit is

- (a) 25
- (b) 50
- (c) 100
- (d) 5000 [GATE-2004]
- Q.10 The condition on R, L and C such that the step response y(t) in the figure has no oscillations, is

- (c) $R \ge 2\sqrt{\frac{L}{C}}$ (d) $R = \frac{1}{\sqrt{LC}}$

[GATE-2005]

Q.11 In a series RLC circuit.

$$R = 2 \text{ k}\Omega$$
, $L = 1 \text{ H}$, and $C = \frac{1}{400} \mu\text{F}$.

The resonant frequency is

- (a) $2 \times 10^4 \text{ Hz}$ (b) $\frac{1}{\pi} \times 10^4 \text{ Hz}$
- (c) 10⁴ Hz
- (d) $2\pi \times 10^4 \text{ Hz}$

[GATE-2005]

Q.12 Which one of the following statements is not correct for the circuit shown below at resonant frequency?

- (a) The current is maximum
- (b) The equivalent impedance is real
- (c) The inductive and capacitive reactances are equal in magnitude
- (d) The quality factor equals $\frac{1}{R}\sqrt{\frac{C}{I}}$

[ESE-2005]

- Q.13 In a series R-L-C circuit, the maximum voltage across the capacitor occurs at a frequency
 - (a) double the resonant frequency
 - (b) equal to resonant frequency
 - (c) $\sqrt{2}$ times the resonant frequency
 - (d) below the resonant frequency

[ESE-2006]

- Q.14 A series R-L-C circuit, excited by a 100 V, variable frequency source has a resistance of 10 Ω and an inductive reactance of 50 Ω at 100 Hz. If the resonance frequency is 500 Hz, what is the voltage across the capacitor at resonance?
 - (a) 100 V
- (b) 500 V
- (c) 2500 V
- (d) 5000 V

[ESE-2006]

Q.15 In the circuit shown in the figure below, for what value of C will the current I be in phase with the sinusoidal source voltage $V_s = \sin 2t$?

- (a) $\frac{1}{4}$ F
- (b) $\frac{1}{2}$ F
- (c) $\frac{1}{\sqrt{2}}$ F
- (d) 1 F

[ESE-2006]

- Q.16 Width of resonance curve in an *R-L-C* network is determined by which one of the following?
 - (a) Ralone
- (b) Lalone
- (c) Calone
- (d) All R, L and C

[ESE-2008]

- Q.17 A series RLC circuit has a bandwidth of 300 rad/sec at a resonant frequency of 3000 rad/sec when excited by a voltage source of 100 V. The inductance of the coil is 0.1 H. The value of R and the voltage across C are, respectively
 - (a) 10Ω and 100 V
 - (b) 30Ω and 100 V
 - (c) 30Ω and 1000 V
 - (d) 300Ω and 1000 V

[ESE-2013]

- Q.18 Two magnetically uncoupled inductive coils have Q factors q_1 and q_2 at the chosen operating frequency. Their respective resistance are R_1 and R_2 . When connected in series, their effective Q factor at the same operating frequency is
 - (a) $q_1 + q_2$
 - (b) $(1/q_1) + (1/q_2)$
 - (c) $(q_1R_1 + q_2R_2)/(R_1 + R_2)$

(d)
$$(q_1R_2 + q_2R_1)/(R_1 + R_2)$$

[ESE-2013]

Q.19 In the circuit shown in the figure, the angular frequency ω (in rad/s), at which the Norton equivalent impedance as seen from terminals b-b' is purely resistive, is _____.

- Q.20 The low-frequency circuit impedance and the high-frequency circuit impedance for a series resonant circuit respectively are
 - (a) capacitive and inductive
 - (b) inductive and capacitive
 - (c) resistive and inductive
 - (d) capacitive and resistive

[ESE-2015]

Numerical Data Type Questions

Q.21 The quality factor of the circuit shown in figure is

Q.22 The resonant frequency of the circuit shown in figure is _____ rad/sec.

Q.23 For the circuit shown below resonant frequency f_0 is _____ kHz.

Try Yourself

T1. In the given network. Find the value of 'R' such that the reactive power generated by the source is zero. Value of 'R' in ohms_____

T2. Find the voltage across capacitor when voltage across resistor is maximum

- (a) $\frac{40}{\sqrt{2}}$ V
- (b) 40 V
- (c) 20 V
- (d) 10 V
- **T3.** In a series RLC circuit with frequency of resonance as f_0 , voltage across resistor, capacitor and inductor are V_R , V_C and V_L respectively. Then at any frequency f, which of the following is true

(i)
$$|V_C| > |V_L|$$
 if $f > f_0$

- (ii) $|V_C| < |V_I|$ if $f < f_0$
- (iii) V_R leads source voltage if $f < f_0$
- (iv) $|V_L| = |V_C| = |V_R|$ if $f = f_0$
- (a) (i) and (ii)
- (b) (iii) and (iv)
- (c) (iii) only
- (d) (*i*v) only

T4. Find impedance (*Z*) at resonance.

- (a) 1.28Ω
- (b) 12.8Ω
- (c) 2Ω (d) 128Ω
- **T5.** Find average power conumer by the circuits at resonance.

