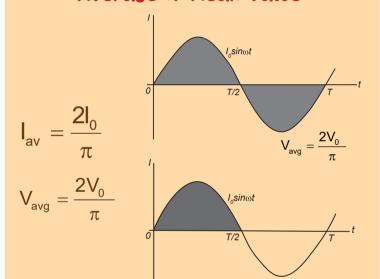

# ALTERNATING CURRENT


## when the magnitude and direction of current and voltage change continuosly with time, then current or voltage is said to be alternating.

ALTERNATING CURRENT AND VOLTAGE



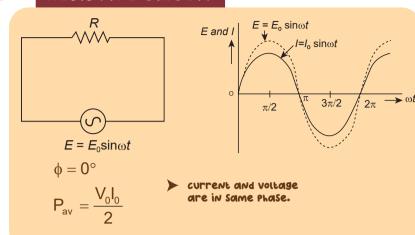
- $I = I_1 \sin(\omega t + \phi)$  or  $I = I \cos(\omega t + \phi)$
- | = instantaneous values of current
- | = Peak value or amplitude
- $\omega$  = angular frequency
- $\phi$  = initial Phase.

## Average or Mean Value

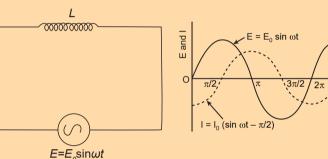


### ROOT MEAN SQUARE VALUE

$$I_{av} = \frac{2I_0}{\pi}$$

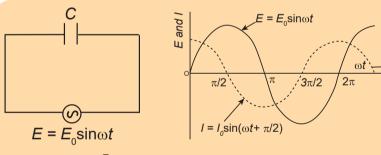

$$V_{av} = \frac{2V_0}{\pi}$$

 $\int_{0}^{\infty} \cos\omega t dt = 0$ 


t = 3T/4

## AC SERIES CIRCUIT ANALYSIS

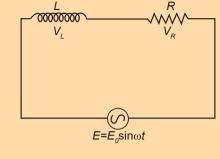
## RESISTIVE CIRCUIT

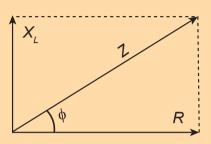



## INDUCTIVE CIRCUIT

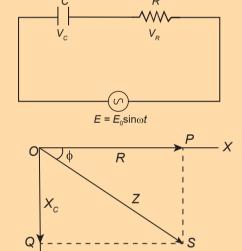


- ► Voltage leads current by  $\frac{\pi}{2}$ .
- $\triangleright$  Pay = 0


## CAPACITIVE CIRCUIT



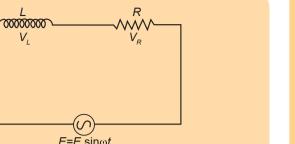

- $ightharpoonup I = I_0 \sin(\omega t + \frac{\pi}{2})$
- $\phi = -\frac{\pi}{2} \text{ or } \frac{\pi}{2}$
- ightharpoonup Current leads voltage by  $\frac{\pi}{2}$
- $ightharpoonup P_{av} = 0$

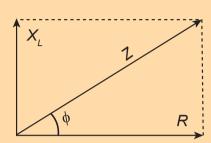

3*T/*4

## L - R CIRCUIT

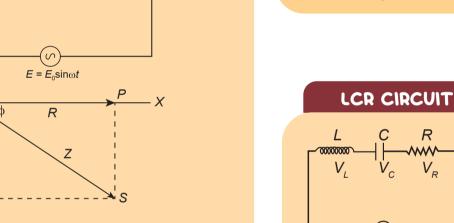





- ightharpoonup  $I = I_0 \sin(\omega t \phi)$
- $ightharpoonup Z = \sqrt{R^2 + X_1^2}$
- ightharpoonup Inductive reactance,  $X_1 = \omega L$
- ► Phase angle  $\phi = \tan^{-1} \left( \frac{X_L}{R} \right)$




- $ightharpoonup Z = \sqrt{R^2 + X_C^2}$
- ► Capacitive reactance,  $X_C = \frac{1}{\omega C}$


frequency,

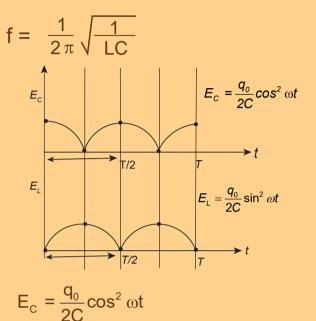
 $\Rightarrow \phi = \tan^{-1} \left( \frac{X_C}{R} \right)$ 





## R - C CIRCUIT




- $ightharpoonup I = I_0 \sin (\omega t + \phi)$



L C OSCILLATIONS

It is defined as the oscillation of energy between capacitor and inductor.

## Frequency of Oscillation.



 $\mathsf{E}_\mathsf{L} = \frac{\mathsf{q}_0}{2\mathsf{C}} \sin^2 \omega \mathsf{t}$ 

 $E = E_0 \sin \omega t$ 

 $I = I_0 \sin(\omega t \pm \phi)$ 

 $Z = \sqrt{R^2 + (X_L - X_C)^2}$ 

 $\cdot \quad \phi = \tan^{-1} \left( \frac{X_L - X_C}{R} \right)$ 

# Laminated sheets

TRANSFORMER

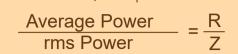
> Transformer ratio.

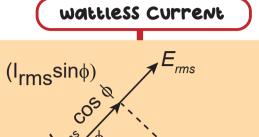
$$K = \frac{N_s}{N_p} = \frac{No. \text{ of turns in Secondary}}{No. \text{ of turns in Primary}}$$

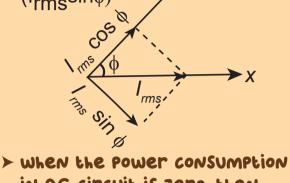
# **ASSUMPTIONS**

> No magnetic flux leakage.

$$\frac{E_s}{E_p} = \frac{N_s}{N_p}$$


> No power loss, efficiency (n) = 100%.


$$n = \frac{p_{Out}}{p_{in}} \times 100\% , P_{in} = P_{Out}$$


$$\frac{I_p = E_s = N_s}{I_s = E_p = N_p}$$

## POWER CONSUMED IN AC CIRCUIT

- ➤ Average Power dissipation,  $<P>=E_{rms}$   $I_{rms}$   $cos\phi$
- ➤ Power factor, cos =





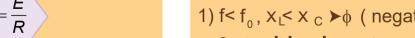



- in AC circuit is zero, then current is said to be wattless current.
- > wattless current is a sine component of current

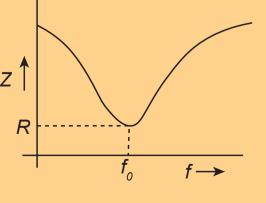
## Half power frequency

- > Frequency at which power becomes half of its maximum value.
- > At half Power frequency.

$$\cos\phi = \frac{1}{2} \text{ or } \phi = 60^{\circ}$$

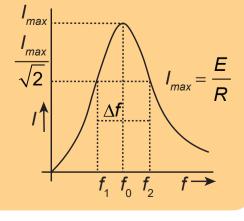

## Quality Factor

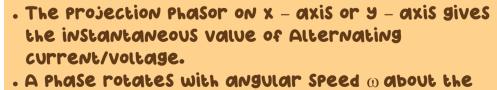



- > It represents sharpness curve (I vs f).
- > It is unitless and dimensionless.

- ➤ Sharpness ∞ Q

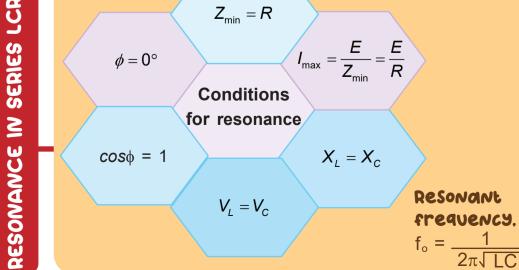
## Variation of Z with F



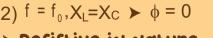


- 2)  $f = f_0, X_1 = X_C \rightarrow \phi = 0$
- > Resistive in nature
- 3)  $f > f_0$ ,  $X_L > X_C \rightarrow \phi$  (Positive)






- > AS frequency (f) increases current (1) decreases
- ► Band width,  $\Delta f = f_2 f_1$






- origin.
- . Arrow length of this vector is equal to the peak value of Alternating current/voltage.

