CBSE Test Paper 02

CH-09 Sequences and Series

- 1. The product of first n odd terms of a G.P. whose middle term is m is
 - a. none of these
 - b. m^n
 - c. n^m
 - d. mn
- 2. Sum of an infinitely many terms of a G.P. is 3 times the sum of even terms. The common ratio of the G.P. is
 - a. 2
 - b. $\frac{3}{2}$
 - c. none of these
 - d. $\frac{1}{2}$
- 3. The sum of terms equidistant from the beginning and end in A.P. is equal to
 - a. last term
 - b. 0
 - c. first term
 - d. sum of the first and the last terms
- 4. If $a \in R$, then the roots of the equation an x = a are in G.P for what values of a
 - a. $\frac{1}{\sqrt{3}}, 1, \sqrt{3}$
 - b. 1,0,-1
 - c. H.P.
 - d. none of these
- 5. If a, b, c are in A. P. as well as in G.P.; then
 - a. a=b
 eq c
 - b. $a \neq b = c$
 - c. a = b = c
 - d. $a \neq b \neq c$
- 6. Fill in the blanks:

If
$$\sum n=210$$
, then $\sum n^2$ = _____.

7. Fill in the blanks:

A.M between
$$x - 3$$
 and $x + 5$ is _____.

- 8. Find the three terms of an AP whose sum is 9 and common difference is 1.
- 9. Which term of the sequence $\sqrt{3},3,3\sqrt{3}$, is 729?
- 10. Which term of the sequence $\frac{1}{3}$, $\frac{1}{9}$, $\frac{1}{27}$ is $\frac{1}{19683}$?
- 11. Let the sequence a_n is defined as follows a_1 = 2, a_n = a_{n-1} + 3 for $n \ge 2$. Find the first five terms and write corresponding series.
- 12. For what values of x, the numbers $\frac{-2}{7}$, x, $\frac{-7}{2}$ are in G.P.?
- 13. If a, b, c are in A.P.; b, c, d are in G.P. and $\frac{1}{c}$, $\frac{1}{d}$, $\frac{1}{e}$ are in A.P., prove that a, c, e are in G.P.
- 14. In an A.P., if p^{th} term is $\frac{1}{q}$ and q^{th} term is $\frac{1}{p}$, prove that the sum of first pq terms is $\frac{1}{2}(pq+1)$, where $p\neq q$.
- 15. If in an A.P. the sum of m terms is equal to n and the sum of n terms is equal to m, then prove that the sum of (m + n) terms is (m + n). Also, find the sum of the first (m n) terms (m > n).

CBSE Test Paper 02

CH-09 Sequences and Series

Solution

1. (b) m^{n}

Explanation:

Let the terms in a GP be a,ar, $a, ar, ar^2, ar^3, \ldots$

Product of odd number of terms (let number of terms be 'n', n is odd)

$$= a \cdot ar \cdot ar^2 \cdot ar^3 \dots ar^{n-1}$$

$$=a^n\cdot \left(1\cdot r\cdot r^2\cdot r^3\ldots\ldots r^{n-1}
ight)$$

$$=a^n, r^{1+2+3+\dots+n-1}$$

$$=a^n\cdot r^{rac{(n-1)n}{2}}$$
 [The sum of first n natural numbers = $rac{n(n+1)}{2}$]

We have the middle term $= m = a r^{rac{(n-1)}{2}}$ (i)

$$\therefore$$
 Product of odd number of terms = $a^n \cdot r^{\frac{n(n-1)}{2}} = \left(ar^{\frac{(n-1)}{2}}\right)^n$ = m^n [using (i)]

2. (d) $\frac{1}{2}$

Explanation:

Consider the infinite G . P $a, ar, ar^2, ar^3, \ldots$ with first term a and common ratio r

Then the even terms ar, ar^3, ar^5, \ldots is again an infinite G.P with first term ar and common ratio r^2

W e have
$$S_{\infty}=rac{a}{1-r}$$

Given $S_{\infty}=3$. Sum of even terms

$$\Rightarrow a + ar + ar^2 + ar^3 + \dots = 3. [ar + ar^3 + ar^5 + \dots = 3.$$

$$\Rightarrow rac{a}{1-r} = 3 \cdot rac{ar}{1-r^2}$$

$$\Rightarrow rac{1}{1-r} = 3 \cdot rac{r}{(1-r)(1+r)}$$

$$\Rightarrow 1(1+r) = 3.r$$

$$\Rightarrow 2r=1 \Rightarrow r=rac{1}{2}$$

3. (d) sum of the first and the last terms

Explanation:

Let the first term of the A.P be a , last term be l and the common difference be d Now the A.P will be of the form $a,a+d,a+2d,\ldots,l-2d$,l-d,l Sum of two term equidistant from the beggining and end (say r+1 t term) = a+r d+b-r d=a+b = sum of the first term and last term

4. (a) $\frac{1}{\sqrt{3}}$, 1, $\sqrt{3}$

Explanation:

We have $\tan 30^\circ=\frac{1}{\sqrt{3}}, \tan 45^\circ=1$ and $\tan 60^\circ=\sqrt{3}$ Also we have $\frac{1}{\sqrt{3}},1,\sqrt{3}$ are in G.P

5. (c) a = b = c

Explanation:

a,b,c are in A.P,
$$2b = a + c$$
....(i)

a,b,c are in G.P,
$$b^2=ac$$
....(ii)

from (i) and (ii), we get

$$\left(\frac{a+c}{2}\right)^2 = ac$$

 $\Rightarrow (a+c)^2 - 4ac = 0$
 $\Rightarrow (a-c)^2 = 0 \Rightarrow a = c$

using a=c in (ii)

$$2b = c + c$$
$$\Rightarrow b = c$$

- 6. 2870
- 7. x + 1
- 8. Let the three terms of AP are a d, a and a + d.

$$\therefore a - d + a + a + d = 9$$

$$\Rightarrow 3a = 9 \Rightarrow a = 3$$

Also, d = 1 [given]

 \therefore Required terms are 3 - 1, 3, 3 + 1

9. Here a =
$$\sqrt{3}$$
 , r = $\frac{3}{\sqrt{3}} = \sqrt{3}$ and a $_n$ = 729

∴
$$a_n = ar^{n-1}$$

$$\Rightarrow 729 = \sqrt{3} \times (\sqrt{3})^{n-1}$$

$$\Rightarrow (\sqrt{3})^{12} = (\sqrt{3})^n$$

$$\Rightarrow$$
n = 12

Therefore, 12th term of the given G.P. is 729.

10. Here a =
$$\frac{1}{3}$$
, r = $\frac{1}{9} \div \frac{1}{3} = \frac{1}{3}$ and $a_n = \frac{1}{19683}$

∴
$$a_n = ar^{n-1}$$

$$\Rightarrow \frac{1}{19683} = \frac{1}{3} \times \left(\frac{1}{3}\right)^{n-1}$$

$$\Rightarrow \left(\frac{1}{3}\right)^9 = \left(\frac{1}{3}\right)^n$$

$$\Rightarrow$$
n = 9

Therefore, 9th term of the given G.P. is $\frac{1}{19683}$

11. We have,
$$a_1 = 2$$
, and $a_n = a_{n-1} + 3$

On putting
$$n = 2$$
, we get

$$a_2 = a_1 + 3 = 2 + 3 = 5$$

On putting
$$n = 3$$
, we get

$$a_3 = a_2 + 3 = 5 + 3 = 8$$

On putting
$$n = 4$$
, we get

$$a_4 = a_3 + 3 = 8 + 3 = 11$$

On putting
$$n = 5$$
, we get

$$a_5 = a_4 + 3 = 11 + 3 = 14$$

Thus, first five terms of given sequence are 2, 5, 8, 11 and 14.

Also, corresponding series is 2, 5, 8, 11, 14, 17......

12. Given,
$$\frac{-2}{7}$$
, x , $\frac{-7}{2}$ are in G.P.

$$\therefore \frac{x}{\frac{-2}{7}} = \frac{\frac{-7}{2}}{x}$$

$$\Rightarrow x^2 = rac{-2}{7} imes rac{-7}{2}$$

$$\Rightarrow x^2 = 1$$

$$\Rightarrow x = \pm 1$$

Therefore, for $x = \pm 1$ th given numbers are in G.P.

13. Since, a, b, c are in A.P.

$$\therefore$$
 b - a = c - b

$$\Rightarrow$$
 2b = a + c

$$\Rightarrow b = rac{a+c}{2}$$

Since, b, c, d are in G.P.

$$\therefore \frac{c}{b} = \frac{d}{c}$$

$$\Rightarrow$$
 c² = bd....(i)

Also $\frac{1}{c}$, $\frac{1}{d}$, $\frac{1}{e}$ are in A.P.

$$\therefore \frac{1}{d} - \frac{1}{c} = \frac{1}{e} - \frac{1}{d}$$

$$\Rightarrow \frac{2}{d} = \frac{1}{c} + \frac{1}{e}$$

$$\Rightarrow \frac{2}{d} = \frac{c+e}{ce}$$

$$\Rightarrow d = rac{2ce}{c+e}$$

Putting values of b and d in eq. (i), $c^2 = \left(\frac{c+a}{2} \right) \left(\frac{2ce}{c+e} \right)$

$$\Rightarrow c^2 = \frac{\operatorname{ce}(c+a)}{c+e}$$

$$\Rightarrow$$
 c²(c + e) = ec(c + a)

$$\Rightarrow$$
 c² + ce = ce + ae

 \Rightarrow c² = ae which shows that a, c, e are in G.P.

14. Let a be the first term and d be the common difference of given A.P.

And
$$a_p=rac{1}{q}$$
 and $a_q=rac{1}{p}$

$$\therefore a + (p-1)d = rac{1}{q} ext{ and } a + (q-1)d = rac{1}{p}$$

$$\Rightarrow a+pd-d=rac{1}{q}$$
(i) and $a+qd-d=rac{1}{p}$ (ii)

Subtracting eq. (ii) from eq. (i), we get

a + pd - d - (a + qd - d) =
$$\frac{1}{q} - \frac{1}{p}$$

$$\Rightarrow$$
 pd - d - a - qd + d = $\frac{p-q}{pq}$

$$\Rightarrow (p-q)d = \frac{p-q}{pq}$$

$$\Rightarrow d = rac{p-q}{pq} imes rac{1}{p-q} = rac{1}{pq}$$

Putting value of d in eq. (i), we get

$$a + p \frac{1}{pq} - d = \frac{1}{q}$$

$$\Rightarrow a + \frac{1}{a} - d = \frac{1}{a}$$

$$\Rightarrow a = \frac{1}{a} + d - \frac{1}{a} = d = \frac{1}{na}$$

Now,
$$S_n=rac{n}{2}\left[2a+(n-1)d
ight]$$

$$A\Rightarrow S_{pq}=rac{pq}{2}\Big[2 imesrac{1}{pq}+(pq-1) imesrac{1}{pq}\Big]$$

$$ightarrow S_{pq} = rac{pq}{2} \Big \lceil rac{2}{pq} + rac{pq-1}{pq} \Big
ceil$$

$$\Rightarrow S_{pq} = rac{pq}{2} \Big\lceil rac{2+pq-1}{pq} \Big
ceil$$

$$\Rightarrow S_{pq} = rac{pq}{2} \Big\lceil rac{1+pq}{pq} \Big
ceil_- rac{pq+1}{2}$$

$$\Rightarrow S_{pq} = rac{1}{2}(pq+1)$$

15. Let a be the first term and d be the common difference of the given A.P. Then,

$$S_m = n \Rightarrow \frac{m}{2} \{2a + (m-1)d\} = n \Rightarrow 2am + m (m-1) d = 2n(i)$$

and
$$\Rightarrow$$
 S_n = m $\Rightarrow \frac{m}{2}$ {2a + (m - 1) d} = m \Rightarrow 2an + n (n - 1) d = 2m(ii)

Subtracting (ii) from (i), we get

$$2a (m - n) + \{m(m - 1) - n(n - 1)\} d = 2n - 2m$$

$$\Rightarrow$$
 2a (m - n) + {(m² - n²) - (m - n)} d = -2 (m - n)

$$\Rightarrow$$
 2a + (m + n -1) d = -2 [On dividing both sides by (m - n)] ...(iii)

Now,
$$S_{m+n} = \frac{m+n}{2} \{2a + (m+n-1)d\}$$

$$\Rightarrow$$
 S_{m+n} = $\frac{(m+n)}{2}$ (-2) [Using (iii)]

$$\therefore$$
 Sm + n = (m + n)

From (iii), we obtain

$$2a = -2 - (m + n - 1) d(iv)$$

Substituting this value of 2a in (i), we obtain

$$-2m - m (m + n - 1) d + m (m - 1) d = 2n$$

$$\Rightarrow$$
 d = -2 $\left(\frac{m+n}{mn}\right)$ (v)

Putting d = -2
$$\left(\frac{m+n}{mn}\right)$$
 in (iv), we obtain

$$2a = -2 + \frac{2}{mn}$$
 (m + n -1) (m + n)(vi)

Now,

$$S_{m-n} = \frac{m-n}{2} \{2a + (m - n - 1) d\}$$

$$\Rightarrow$$
 S_{m-n} = $\frac{m-n}{2}$ {-2 + $\frac{2}{mn}$ (m + n - 1) (m + n) - $\frac{2}{mn}$ (m - n - 1) (m + n)} [Using (v) and (vi)]

$$\Rightarrow$$
 S_{m-n} = {-2 + $\frac{4n}{mn}$ (m + n)} = $\frac{1}{m}$ (m - n) (m + 2n)