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Historically computer work human clerks who 

calculated in accordance with effective methods. The 
term computing machine used increasingly from the 

1920s, refers to any machine that does the work of a 

human computer , i.e., any machine that calculates in 

accordance with effective methods. During the elate 
1940s and early 1950s, with the advent of electronic 

computing machines, the phrase 'computing machine' 

gradually gave way simply to computer, initially usually 
with the prefix electronic or digital. This entry surveys 

the history of these machines .  

Charles Babbage was Lucasian professor of 

Mathematics at Cambridge University  from 1828 to 

1839 (a post formerly held by Isaac Newton). 

Babbage's proposed difference engine was a special-
purpose digital computing machine for the automatic 

production of mathematical tables (such as logarithm 

tables, tide tables, and astronomical tables.  
Babbage exhibited a small working model in 1822.  

The Swedes George and Edvard Scheutz constructed a 

modified version of Babbage's Difference engine. 

Charles Babbage 
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 9.1.1 Introduction. 

 The modern digital computer or simply a computer is a general purpose electronic machine 

which can process a large amount of information at a very high speed. A computer can perform 

millions of computations in a few minutes. It can also perform arithmetical and logical 

operations.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 A computer has five major components : 

 (1) Input unit   (2) Memory unit   (3) Control unit 

 (4) Arithmetic logical unit (5) Output unit 

 (1) Input unit : The input unit is the means where the user communicates data or 

information to the computer. 
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 (2) Memory unit : The memory unit stores instructions, data and intermediate results. It 

supplies, when required, the stored information to the other units of the computer. 

 (3) Control unit : The control unit controls all the activities in the computer by sending 

electronic command signals to other components of the computer. 

 (4) Arithmetic Logical Units (ALU) : ALU is the unit where the arithmetic and logical (e.g., less 

than, greater than) computations are carried out. Control unit and ALU taken together is called 

Central Processing       Unit (CPU). 

 (5) Output unit : The output unit receives the stored result from the memory unit converts it 

into a form. The user can understand and produces it in the desired format. 

 A computer may have more than one input and output units. For example, printer and 

display screen are two different output units attached to the same computer.   

 9.1.2 Memory. 

 Our aim is to see how we can use the computer to solve some problems. For that purpose, 

it is useful to know a little more about main memory. From the users point of view, main 

memory can be thought of as a collection of compartments (or locations) as shown in fig. (i) 

Each compartment is assigned a number called its address (starting with zero as shown in the 

fig. (ii). The total number of compartments gives us the size of the memory. 
 

0 1 2 

3 4  

   

   

   

 

 

 

 

 

 Each compartment of memory (as well as a register in ALU) consists of sub-compartments 

fig. (ii). Each sub-compartment can store either a zero or a 1. Any information to be stored 

inside a computer is put using zeros and 1’s. The digits 0 and 1 are called binary digits (bits in 

short). The acronym bit is formed by taking the letter b from the word ‘binary’ and the letters i, 

t from the word ‘digit’. Similarly, we have the acronym dit for decimal digit, hit for hexadecimal 

digit etc. The number system that uses only two digits is called binary number system. 

Computers use binary number system for computation. 

 9.1.3 Algorithms. 

fig. (i) Main memory as a collection of compartments (locations) 

0 1 2 

fig. (ii) Bits in a memory 
location  
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 An algorithm is defined as a finite set of rules, which gives a sequence of operations for 

solving a specific type of problem. 

 In other words, algorithm is a step-by-step procedure for solving problems. 

 An algorithm has following five important features: 

 (1) Finiteness   (2) Definiteness (3) Completeness  (4) Input and       (5) 

Output 

 (1) Finiteness: An algorithm should always terminate after a finite number of steps. 

 (2) Definiteness: Each step of algorithm should be precisely defined. This means that the 

rules should be consistent and unambiguous. 

 (3) Completeness : The rules must be complete so that the algorithm can solve all problems 

of a particular type for which the algorithm is designed. 

 (4) Input : An algorithm has certain inputs. 

 (5) Output : An algorithm has certain outputs which are in specific relation to the inputs. 

 An important consideration for an algorithm concerns its efficiency. Some algorithms are 

far more efficient than others in that, when programmed, one may require fewer steps or 

perhaps less memory than another and will therefore, be more satisfactory or economical in 

actually solving problems on a computer. We shall often deal with considerations of this type in 

the subsequent work. 

 In the development of an algorithm, sequence, selection and repetition (or interaction) 

play an important role.   

 (1) Sequence : Suppose that we want to find the value of the expression 23 4 baba   for 

given values of a and b. Algorithm (i.e., step by step procedure) for achieving this will consist of 

steps given in fig. to be carried out one after the other. 

  

 

 

 

 

 

 

 
 

 

 

 This algorithm, you will agree, is very straightforward, consisting of simple steps which 

are to be carried out one after the other. We say that such an algorithm is a sequence of steps, 

meaning that 

 (i) At a time only one step of the algorithm is to be carried out. 

1. Get the value of a 

2. Get the value of b 

3. Calculate 3a , call it S 

4. Calculate ab4 , call it T 

5. Calculate 2b , call it V 

6. Find the sum VTS  , call it 

M 

7. Write the value of M as 
answer. Steps of an algorithm to evaluate 

23 4 baba  , given the 

values of a, b 
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 (ii) Every step of the algorithm is to be carried out once and only once; none is repeated 

and none is omitted. 

 (iii) The order of carrying out the steps of the algorithm is the same as that in which they 

are written. 

 (iv) Termination of the last step of the algorithm indicates the end of the algorithm. 

 Here afterwards we shall follow the convention that (i) the successive steps in a sequence 

will be written on successive lines and hence (ii) steps will not be necessarily numbered as they 

are in fig. 

 (2) Selection: An algorithm which consists of only a sequence, is not sufficient for solving 

any type of problem. Let us consider the problem of solving an equation of the type rnxm   

(where m, n, r are given integers) for integral values of x. We immediately use laws of algebra 

to find 0,)(  nnmrx . Let us call an algorithm that works for only some (not necessarily all) 

possible sets of input values, a semi-algorithm. 

 Semi-algorithm (for the above problem) : 

 Step 1: Get the values of m, r and n. 

 Step 2: Subtract m from r, call this difference b. 

 Step 3: Divide b by n; print this result as the value of x. 

 The above steps are certainly efficient, As an example, let 5,9  nm  and 24r , in which case 

we have 2459  x . Then in step 2, we have b 924  i.e., 15b  and in step 3, we have 3
5

15


n

b
, 

and so we print x = 3. 

 The above steps have two fatal flaws, however. First, if n equals 0, then either rm   and x 

can have any integral value, or rm   and no solution is possible i.e., there is no integer x which 

may satisfy the given equation. Second, if there is a non-zero remainder when b is divided by n 

then again there is no integer x which may satisfy the given equation. So we must modify our 

algorithm to deal with all such situations as may arise. Given below is the modified algorithm 

which suits all the possible situations that may arise.         

              

 

 

 

 

 

 

 

 

 

Step 1 : Get the value of m, n and r 

Step 2 : If 0n  and m r 

        then go to step 7 

        else go to step 3 

Step 3 : If 0n  and m r 

          then go to step 6 

         else go to step 4 

Step 4 : Subtract m from r, call this 

difference b  (i.e.,   mrb  ) 

Step 5: Divide b by n; 

    If there is a remainder 

      then go to step 6 

    else print the value of 
n

b
, which is the 
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 The above algorithm provides the person or computer that will execute the algorithm with 

an ability to choose the step to be carried out depending upon the values of m, n and r (and 

subsequently, the value of b). This ability is called selection. The power of selection is that it 

permits that different paths could be followed, depending upon the requirement of the problem, 

by the one who executes the algorithm. 

 In the above algorithm, selection is expressed by using the special words ‘if, ‘then’, ‘else’. 

Further, it may be noted that all that is written using these special words (once) constitutes one 

step. Note the way it is written. Nothing appears below the word ‘if’ till that step is over. This is 

known as indentation. The words ‘then’ and ‘else’ come with exactly same indentation with 

respect to the word ‘if’. 

 (3) Iteration or Repetition : In forming an algorithm certain steps are required to be repeated 

before algorithm terminates after giving an answer. This is known as iteration or repetition. 

 Let us consider the problem of finding the just prime number greater than a given positive 

integer. The following list of steps shows the step by step procedure to be followed for solving 

the problem. 

     

 

 

 

 

 

 

 

 

 

 

 

 

Consider the given integer 

























.......

essfor primennumber  new test

 it  to1 add 

stop and down it  write

 prime,is it 

 essfor primennumber  new test

it  to1 add

stop and down it write

 prime,is it 

essfor primennumber  new test

it  to1 add

if

e lse

then

if

else

then

if

S

S

S

 

Algorithm for finding a prime 
number greater then a given 

positive integer 
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  We see in the above procedure that the steps  

   “add 1 to it 

   test new number for primeness 

   if it is prime 

      then write it down and stop ” 

 are repeated again and again till (after a finite number of repetitions) we get a prime 

number and print it. If this sequence (which involves a decision also) is denoted by S, then S is 

repeated again and again till, we get the result and print the result. This is technically known as 

iteration or repetition. The way of writing adopted in fig. poses a problem as we do not know 

the number of times S is repeated. This number depends upon the given positive integer. The 

difficulty presented above is overcome by introducing a new way of writing iterations in 

algorithms. The algorithm shown in fig. is (in new ways) then written as shown below 

      

 

 

 

     

 

 

 

 

 

 

 9.1.4 Pseudo language. 

 The languages used by human beings for talking and writing among themselves are called 

natural languages. Expression in a natural language can be ambiguous. 

 Computer, being a machine, requires that there should be no ambiguity at all when we give 

instructions to it. Languages used to communicate with a computer are known as programming 

languages. 

 We shall use meaningful mnemonic variable names, assignment, symbol  constructions 

employing If-then-else, Repeat-until, While-Do and other constructions employing word For 

for writing an algorithm. We shall also require instructions to input data in an algorithm as 

well as instructions to output computed results from an algorithm. All these will constitute our 

language to present any algorithm. This language will not resemble in total with any actual 

existing programming language but will have desirable characteristics of a good programming 

language. We shall call it a pseudo-language.  

Two different ways of writing 
iteration occuring in fig. 

Consider the given 
number  
repeat 

add 1 to it 

until the new number is 
prime 
write the new number 

Consider the given number  
add 1 to it  
while the new number is not 
prime  
     do add 1 to it 
write the new number  
 

Or 
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 9.1.5 Pseudo language Constructs. 

(1) If-then-else construct : The general form of this construct which is used to provide 

selection of actions is  

 

 

 

when an instruction using this type of construct is executed, condition determines which of 

the step 1 and step 2 is to be executed. If condition is true, step 1 is executed, otherwise (i.e., if 

condition is not true) step 2 is executed. 

 A particular case of this construct does not have the word else. The general form of this 

construct is 

  

 
 

 Clearly when this form is used, no action is taken when condition is false, and step is 

executed when condition is true. In other words the following constructs are equivalent as they 

do the same thing. 

  

 

 

 

   (2) Repeat until construct : The general form of this construct is  

  

 

 
 

 This construct is used when repetition of certain action is required. Note that “Part of 

algorithm” is always executed at least once as the condition is tested at the end, unlike the 

'while-do' construct where the condition is tested in the beginning. 

 (3) While-do-construct : This construct is an alternative to the 'repeat-until' construct. The 

general form of this construct, which is also used to provide repetition of instruction is  

      

 

 Where T is a sequence of instructions. When this construct is executed, condition is 

evaluated first. If the condition is true, the sequence T of instructions is executed and the 

condition is evaluated again and so on. If the condition is false, execution of T is skipped and 

the execution of algorithm proceeds with the portion that appears after T. Thus condition is 

tested again and again till it is false. Every execution of T modifies some variables in the 

algorithm and eventually after some repetitions, the condition becomes false. This completes 

If condition 
   then step 
1 
   else step 
2 

If condition 
   then step  

If condition  If condition 
   then step and     then step 

  else do nothing  

Repeat 
   Part of the 
algorithm 
until condition 

while        
condition 
  do         T 
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the execution of the 'while-do-construct', the execution proceeds to the portion appearing after 

T. 

 (4) For construct : When we know in advance how many times a part of the algorithm is to 

be executed we use 'for construct', whose general form is  

 For identifier = initial value to test value by increment Do S. 

 The word, For, To, By and Do are reserved words for this construct. Initial value gives the 

starting value that the identifier should take, when the S is executed. The value of identifier is 

increased by the increment after each execution. The execution of S continues until the value of 

identifier exceeds the test value. 
 

Example: 1 An algorithm must terminate in       [DCE 1997] 

(a) One iteration   

(b) One step  

(c) Finite number of steps   

(d) Finite number of steps but sometimes in infinite number of steps 

Solution: (c) It is obvious. 

Example: 2 The WHILE-DO control structure executes the loop at least     [DCE 1995] 

 (a) Thrice (b) Twice (c) Once (d) None of these 

Solution: (d) It is obvious. 

Example: 3 The control structure IF-THEN is a       [DCE 1994] 

 (a) Multiple selection (b) Double selection (c) Single selection (d) None of these 

Solution: (c) It is obvious. 

Example: 4 REPEAT-UNTIL control operation executes the loop at least    [DCE 1996] 

 (a) 3 times (b) 2 times (c) 1 time (d) None of these 

Solution: (c) It is obvious. 

Example: 5 Write an algorithm to find the first prime number greater than given number using the fact that even 

integers (except 2) are not prime 

Solution: Step I  get n 

Step II  If  n is even  

   then 1 nm  

   else nm   

Step III repeat 2mm  

   test m for primeness 

  until m is prime 

Step IV Output m  

Example: 6 Write an algorithm to find n ! for given n 

Solution Step I  get n 

Step II If 0n  

      then output “factorial is not defined” 

Step III If 0n   

   then Fact 1  

Step IV Fact 1  

Step V For 1I  to n  

   do Fact  Fact * I 

   1 II  

Step VI Output Fact 

Example: 7 Write an algorithm to multiply two matrices  

Solution: Step I get A, B 
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Comment:   A (i, j) and ),( jiB  are nm   and pn  matrices respectively, 

 Step II For 1i  to m 

   do 

   For 1j  to p 

   do 

   C (i, j) 0  

   For 1k  to n 

   do 

   ),(*),(),(),( jkBkiAjiCjiC   

 Step III Output  C 

Comment :  ),( jiCC   is an m  p matrix. 

Example: 8 Write an algorithm to find the solution of a system of simultaneous linear equations. 

  1321 dzayaxa   

  2321 dzbybxb   

  3321 dzcycxc   

Solution: Step I get a (1), a(2), a(3), d(1), b(1), 

   b(2), b(3), d(2), c (1), c(2), c (3), d(3),   

 Step II 0)1(,0)1(,0)1(,1  ZYXI  

 Step III Repeat 

   ])1()3()()2()1([
)1(

1
)1( ZaIYad

a
IX    

   )]1()3()1()1()2([
)2(

1
)1( ZbIXbd

b
IY   

   )1()3([
)3(

1
)1( cd

c
IZ   

   1 II  

 Until  |  |)1()( IXIX  

    |)1()(| IYIY  

    |)1()(| IZIZ  

 Step IV  Output )(),(),( IZIYIX . 
   

 9.1.6 Flow Charts (Presentation of Algorithm) 

 A graphic representation of an algorithm is called a ‘flow-chart’. A flow chart constitutes a 

schematic and pictorial representation of the sequence of steps, which are to be executed in 

solving a problem. 

 A flow-chart consists of some boxes linked by arrows. In each box, some instruction to be 

carried out is mentioned. Arrows on the lines connecting the boxes indicate the direction, in 

which we should proceed. 

 The boxes are of different shapes. Each particular shape is associated with a specific type 

of instruction as shown in fig. 

 Flow-chart conventions: 

 While drawing a flow-chart, the following conventions are observed. 

 (i) The general direction of flow is from left to right and from top to bottom. 

 (ii) Only one flow-line should leave a process symbol. 

 (iii) Only one flow line should enter a decision box and atleast two lines must leave it. 
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 (iv) A flow line that goes in upward direction, completes and iteration (or repetition) or a 

loop. 

 Basic operations and flow-charts:  

 The three basic operations are: (1) Sequence   (2) Selection   (3) Iteration 

 The selection of a flow-chart corresponding to an iteration, or the Repeat-Until construct 

or the While-Do construct gives rise to a cycle, usually called a loop. There are two types of 

loops : 

 (i) When an operation is repeated, a fixed number of times, whatever the value of the 

variables involved may be, then the corresponding section of the flow diagrams gives rise to a 

fixed loop. 

 (ii) When the number of times an iteration is to be carried out depends upon the values of 

the variables, then the corresponding section of the flow diagrams gives rise to variable loop. 

This loop is also known as backward jump.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BASIC SYMBOLS 

TERMINAL SYMBOLS 

INPUT OUT PUT 

SYMBOLS 

COMMENT 

ANNOTATION SYMBOLS 

CONNECTOR 

PROCESS 

DECISION 

Examples of 

Use 

Start 
Stop 

Read New 
Value for X 

If these appear on a flow 
chart they represent the 

same point 

1A 
1A 

Write 

the value 

of W 

This flow line 
can be 

omitted 

if X = Y 

This block 
is entered 

15 times 

each pass 

X < Y 
 

X = Y 

X > Y 

Is X 
< = > 

Y 

X = 
A

CB
22


 

 

X  Z + 4 
A  B × C 

Is 
X = Y 

? 

No Yes 
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Example: 9 Write an algorithm and flowchart to obtain H C F of two given positive integers using Euclid's 

algorithm           

Solution: We know Euclid's algorithm. Therefore we can express it in pseudo language :  

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

get M, N 
comment M, N are two given positive integers, M > N 
NUM  M 
DEN  N 
QUOT  integral part of NUM/DEN 
REM  NUM – QUOT * DEN 
while REM  0 
         do NUM  DEN 

   DEN  REM 
               QUOT  integral part of NUM/DEN 
               REM  NUM – QUOT * DEN 
output DEN 
comment HCF is the value of denominator when 
remainder is zero. 
 

OBTAIN M, 

N. 

NUM  M 

DEN  

N 

QUOT  INTEGRAL PART 
OF RATIO  NUM / DEN 

REM  NUM – QUOT 
* DEN 

IS  

REM = 0? 

OUTPUT DEN STOP 

NUM  DEN 

DEN  

REM 

NO 

START 
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                Yes 

 

 

 

 

 9.1.7 Number system. 

 (1) Decimal system : Number system which we use in our daily life is the decimal system. In 

decimal system we use the digits namely 0, 1, 2,.......8, 9 and with the help of these 10 digits we 

are able to write any rational number. The decimal system is a place-value system, meaning 

thereby that the value represented by a digit depends upon the place of the digit within the 

numeral. The value assigned to consecutive places in the decimal system are 

.....10,10,10,......10,10 21034   (from left to right) 

 Example : Number 3864. 342 can be written as  

 3864.342 = 3 × 103 + 8 × 102 + 6 × 101 + 4 × 100 + 3 × 10–1 + 4 × 10–2 + 2 × 10–3 

 As ten basic symbols are used for representing the numbers, ten is called the base of the 

system and the system is called base-ten system or decimal system. 

 (2) Binary number system : The number system for which the base is two is called the binary 

system. In this system numbers are represented with the help of two basic symbols namely 0 

and 1. The values assigned to consecutive places in the system are (when expressed in the 

decimal system)..... ....2,2,2,2,2,2,2 2101234   where 02  place is the unit place. The binary 

numeral can be converted into the decimal numeral and vice-versa. 

 (3) Octal number system : As the name implies this is base eight )2( 3  system. The numerals 

are written with the help of eight basic symbols namely 0, 1, 2,......,7. The value (expressed in 

the decimal system) assigned to consecutive places are ....... .....8,8,8,8,8,8 210123  , where 08  

place is the unit's place. The procedures for converting a decimal numeral into an octal numeral 

and the other way round are similar to the procedures discussed in connection with binary 

system. 

 (4) Hexadecimal system : As the name implies, this is the base sixteen system. The numerals 

are written with the help of sixteen symbols, namely 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. 

Note that the symbol A represents ten (in decimal system). Similarly B, C, D, E, F represent 

respectively the numbers 11, 12, 13, 14 and 15. The value assigned to consecutive places are 

........, .....16,16,16,16 1012   (as expressed in decimal system), where 016  place is unit's place.  

 

Example: 10 74.1875 in binary is       [DCE 2001]                                                                                    
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 (a) 10010010.0011 (b) 1001010.0011 (c) 1001010.0101 (d) 1001100.0101 

Solution: (b) For integral part 

 

1

01

022

142

092

1182

0372

742 

 

 = (1001010)2 

 For fractional part 

 

0000.

2
5000.

2
7500.

2

3750.

2

1875.0

1

1

0

0








= (0.0011)2 

 Therefore 74.1875 in binary is (1001010.0011)2 

Example: 11 (1101101)2 is        [DCE 2001] 

 (a) 81 (b) 121 (c)  109 (d) 92 

Solution: (c) 2)1101101(  = 0123456 21202121202121   

              = 64 + 32 + 0 + 8 + 4 + 0 + 1 = 109. 

Example: 12 What is the octal equivalent of binary number 111001     [DCE 1999] 

 (a) 69 (b) 70 (c) 71 (d) 82 

Solution: (c) (111001)2 =   

  

     1   1   1                0   0   1 

 

 1 × 22 + 1  × 21 + 20      0 × 22 + 0  × 21 + 1 ×  20    

 

                        7     1   

 = (71)8 

Example: 13 The decimal equivalent of (264)8 is      [DCE 1995] 

 (a) 180 (b) 170 (c) 166 (d) None of these 

Solution: (a) (264)8 = (.......)10 

           = 012 848682   = 128 + 48 + 4 = 180. 

Example: 14 What is the hexadecimal equivalent of decimal number 785.    [DCE 1994] 

 (a) 1A2 (b) 311 (c)  AB5 (d) None of these 

Solution: (b) (785)10 = (........)16 



 

 

 

 
Computing 413 

 

3

13

14916

78516

 

 Thus 1610 )311()785(  . 

 

 

*** 
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 9.2.1 Definition. 

 A binary operation on a non-empty set A is a mapping which associates with each ordered 

pair (a, b) of elements of A, a uniquely defined element c  A. This is a mapping from the 

product set A × A to A. Symbolically, a map : A  A  A, is called a binary operation on the set A.  

 The image of the element (a, b)  A  A is denoted by a * b. If a set A is closed with respect 

to the composition, then we say that * is a binary operation on the set A.  

 Let, a  N, b  N  a + b  N for all a, b  N. 

 Multiplication on N is also a binary operation, since  a  N, b  N  a  b  N for all a, b  

N  

 But subtraction on N is not a binary operation, since  3  N, 5  N but 3 – 5 = – 2  N.  

 Note  :  It is obvious that addition as well as multiplication are binary operations on each 

one of the sets Z (of integer), Q (of rational number), R (of real number) and C (of 

all complex number). 

          Subtraction is a binary operation on each of the sets Z, Q, R and C. But it is not binary 

operation on N.  

          Division is not a binary operation on any of sets N, Z, Q, R and C.  

 9.2.2 Types of Binary Operation 

 (1) Commutative binary operation : A binary operation * on a set S is said to be commutative 

if  

    a * b = b * a for all a, b  S  

 Addition and multiplication are commutative binary operations on Z but the subtraction is 

not a commutative binary operation, since 2 – 3  3 – 2. 

 (2) Associative binary operation : A binary operation * on a set S is said to be associative if  

        (a * b) * c = a * (b * c) for all a, b, c  S 

 Addition and multiplication are associative binary operations on N, Z, Q, R and C. But 

subtraction is not an associative binary operation on Z, Q, R and C.  

 (3) Distributive binary operation : Let * and o be two binary operations on a set S. Then * is 

said to be  

 (i) Left distributive over o if  a * (b o c) = (a * b) o (a * c) for all a, b, c  S;  
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 (ii) Right distributive over o if (b o c) * a = (b * a) o (c * a) for all a, b, c  S.  

 If * is both left and right distributive over o, then * is said to be distributive over o.  

 Example : The multiplication () on Z is distributive over addition (+) on Z, since  

    a  (b + c) = a  b + a  c and (b + c)  a = b  a + c  a for all a, b, c  Z.  

 But addition is not distributive over multiplication.  

 9.2.3 Identity and Inverse elements 

 (1) Identity element : Let * be a binary operation on a set S. An element e  S is said be an 

identity element for the binary operation * if  a * e = a = e * a for all a  S.  

 For addition on Z, 0 is the identity element, since a + 0 = a = 0 + a for all a  Z.  

 For multiplication on R, 1 is the identity element, since 1  a = a = a × 1 for all a  R.   

 (2) Inversible element for a binary operation with identity : An element a of a set A is said to be 

inversible for a binary operation * with identity e if  b  A such that a * b = e = b * a. 

 Also, then b is said to be an inverse of a and is denoted by a–1. The inversible elements in A 

are also called the units in A. The identity element is always inversible and is its own inverse, 

since e * e = e * e = e. Thus e–1 = e.  

 9.2.4 Composition Table 

 A binary operation on a finite set can be completely described by means of a table known 

as a composition table. Let }.....,,,{ 21 naaaS   be a finite set and * be a binary operation on S. Then 

the composition table for * is constructed in the manner indicated below.  

 We write the elements a1, a2, ….. ,an of the set S in the top horizontal row and the left 

vertical column in the same order. Then we put down the element ai * aj at the intersection of 

the row headed by ai (1  i  n) and the column headed by )1( nja j   to get the following table.  

 

* a1 a2 ….. ai ….. aj ….. an 

a1 a1 * a1 a1 * a2 ….. a1 * ai  ….. a1 * aj ….. a1 * an  

a2 a2 * a1 a2 * a2 ….. a2 * ai  ….. a2 * aj ….. a2 * an  

          

ai ai * a1 ai * a2 ….. ai * ai  ….. ai * aj ….. ai * an  

          

aj  aj * a1 aj * a2 ….. aj * ai  ….. aj * aj ….. aj * an  

          

an  an * a1 an * a2 ….. an * ai  ….. an * aj ….. an * an  
 

 From the composition table we infer the following results : 
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 (1) If all the entries of the table are elements of set S and each element of S appears once 

and only once in each row and in each column, then the operation is a binary operation. 

Sometimes we also say that the binary operation is well defined which means that the operation 

* associates each pair of elements of S to a unique element of S, i.e. S is closed under the 

operation *. 

 (2) If the entries in the table are symmetric with respect to the diagonal which starts at the 

upper left corner of the table and terminates at the lower right corner, we say that the binary 

operation is commutative on S, otherwise it is said to be not commutative on S. 

 (3) If the row headed by an element say aj, coincides with the row at the top and the 

column headed by aj coincides with the column on extreme left, then aj is the identity element 

for the binary operation * on S. 

 (4) If each row except the topmost row or each column except the left most column 

contains the identity element then every element of S is invertible with respect to *. To find the 

inverse of an element say aj, we consider row (or column) headed by ai. Then we determine the 

position of identity element e in this row (or column). If e appears in the column (or row) 

headed by aj, then ai and aj are inverse of each other. 

 It should be noted that the composition table is helpless to determine associativity of the 

binary operation. This has to be verified for each possible trial. 
 

Example: 1 Let S be a finite set containing n elements. Then the total number of binary operations on S is   [EAMCET 1992]  

(a) nn  (b) 
2

2n  (c) 
2nn  (d) 2n  

Solution: (c) Since a binary operation on S is a function from S × S to S, therefore the total number of binary 

operations on S is the total number of functions from S × S to S, which is 
2nn . 

Example: 2 The identity element for the binary operation * defined by a * b = 
2

ab
, 0, Qba   (the set of all non-zero 

rational numbers) is 

(a) 1 (b) 0 (c) 2 (d) None of these    

Solution: (c) Let e be the identity element for the binary operation * on 0Q defined by 
2

*
ab

ba   

 Then, aeaea **   for all 0Qa  

  a
ae


2

 for all 0Qa   2e . 

Example: 3 Let z be the set of integers and o be a binary operation on z defined as abbaboa   for all zba , . 

The inverse of an element za  )1(  is 

 (a) 
1a

a
 (b) 

a

a

1
 (c) 

a

a 1
 (d) None of these 

Solution: (a) Let e be the identity element for the binary operation o defined on z given by abbaboa   

 Then aoeaeoa   for all za  

  aaeea   for all za   0)1(  ae  for all za   0e . 

 So, 0 is the identity element for the binary operation o and z. 

 Let x be the inverse of za . Then, 0 aoxxoa  

  0 axxa   aax  )1(   
1


a

a
x  )1( a  
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 Thus, 
1a

a
 is the inverse of za  )1( . 

Example: 4 * is defined on the set of real numbers by abba 1* . Then the operation * is    [CET 1991] 

 (a) Commutative but not associative  (b) Associative but not commutative 

 (c) Neither commutative nor associative (d) Both commutative and associative 

Solution: (a) We have abbaabba *11*   

  So, * is commutative on R. 

 For any, a, b, c   R, we have abcccbacabcba  1)1(1*)1(*)*(  

 and abcabcabcacba  1)1(1)1(*)*(*  

  )*(**)*( cbacba   

 So, * is not associative on R.  

 

*** 
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