

 Computing and Binary Operations 399

CONTENTS

9.1 Computing

9.1.1 Introduction

9.1.2 Memory

9.1.3 Algorithms

9.1.4 Pseudo language

9.1.5 Pseudo language constructs

9.1.6 Flow chart's (Representation of algorithm)

9.1.7 Number system

9.2 Binary Operations

9.2.1 Definition

9.2.2 Types of binary operations

9.2.3 Identity and Inverse elements

9.2.4 Composition table

Assignment (Basic and Advance Level)

Answer Sheet of Assignment

Chapter

9

399

Historically computer work human clerks who

calculated in accordance with effective methods. The
term computing machine used increasingly from the

1920s, refers to any machine that does the work of a

human computer , i.e., any machine that calculates in

accordance with effective methods. During the elate
1940s and early 1950s, with the advent of electronic

computing machines, the phrase 'computing machine'

gradually gave way simply to computer, initially usually
with the prefix electronic or digital. This entry surveys

the history of these machines .

Charles Babbage was Lucasian professor of

Mathematics at Cambridge University from 1828 to

1839 (a post formerly held by Isaac Newton).

Babbage's proposed difference engine was a special-
purpose digital computing machine for the automatic

production of mathematical tables (such as logarithm

tables, tide tables, and astronomical tables.
Babbage exhibited a small working model in 1822.

The Swedes George and Edvard Scheutz constructed a

modified version of Babbage's Difference engine.

Charles Babbage

400 Computing

 9.1.1 Introduction.

 The modern digital computer or simply a computer is a general purpose electronic machine

which can process a large amount of information at a very high speed. A computer can perform

millions of computations in a few minutes. It can also perform arithmetical and logical

operations.

 A computer has five major components :

 (1) Input unit (2) Memory unit (3) Control unit

 (4) Arithmetic logical unit (5) Output unit

 (1) Input unit : The input unit is the means where the user communicates data or

information to the computer.

400

DISPLAY
DEVICE

INPUT
UNIT

OUTPUT
UNIT

ALU

CONTROL
UNIT

PUNCHED

PAPER

TAPE

CONSOLES

OR
TERMINALS

PUNCHED
CARDS

MEMORY

MAGNETI

C
TAPE

MEMORY

MAGNETIC

DRUM
MEMORY

MAGNETI

C

DISK
MEMORY

PRINTER

BLOCK DIAGRAM OF A GENERAL PURPOSE COMPUTER

Computing 401

 (2) Memory unit : The memory unit stores instructions, data and intermediate results. It

supplies, when required, the stored information to the other units of the computer.

 (3) Control unit : The control unit controls all the activities in the computer by sending

electronic command signals to other components of the computer.

 (4) Arithmetic Logical Units (ALU) : ALU is the unit where the arithmetic and logical (e.g., less

than, greater than) computations are carried out. Control unit and ALU taken together is called

Central Processing Unit (CPU).

 (5) Output unit : The output unit receives the stored result from the memory unit converts it

into a form. The user can understand and produces it in the desired format.

 A computer may have more than one input and output units. For example, printer and

display screen are two different output units attached to the same computer.

 9.1.2 Memory.

 Our aim is to see how we can use the computer to solve some problems. For that purpose,

it is useful to know a little more about main memory. From the users point of view, main

memory can be thought of as a collection of compartments (or locations) as shown in fig. (i)

Each compartment is assigned a number called its address (starting with zero as shown in the

fig. (ii). The total number of compartments gives us the size of the memory.

0 1 2

3 4

 Each compartment of memory (as well as a register in ALU) consists of sub-compartments

fig. (ii). Each sub-compartment can store either a zero or a 1. Any information to be stored

inside a computer is put using zeros and 1’s. The digits 0 and 1 are called binary digits (bits in

short). The acronym bit is formed by taking the letter b from the word ‘binary’ and the letters i,

t from the word ‘digit’. Similarly, we have the acronym dit for decimal digit, hit for hexadecimal

digit etc. The number system that uses only two digits is called binary number system.

Computers use binary number system for computation.

 9.1.3 Algorithms.

fig. (i) Main memory as a collection of compartments (locations)

0 1 2

fig. (ii) Bits in a memory
location

402 Computing

 An algorithm is defined as a finite set of rules, which gives a sequence of operations for

solving a specific type of problem.

 In other words, algorithm is a step-by-step procedure for solving problems.

 An algorithm has following five important features:

 (1) Finiteness (2) Definiteness (3) Completeness (4) Input and (5)

Output

 (1) Finiteness: An algorithm should always terminate after a finite number of steps.

 (2) Definiteness: Each step of algorithm should be precisely defined. This means that the

rules should be consistent and unambiguous.

 (3) Completeness : The rules must be complete so that the algorithm can solve all problems

of a particular type for which the algorithm is designed.

 (4) Input : An algorithm has certain inputs.

 (5) Output : An algorithm has certain outputs which are in specific relation to the inputs.

 An important consideration for an algorithm concerns its efficiency. Some algorithms are

far more efficient than others in that, when programmed, one may require fewer steps or

perhaps less memory than another and will therefore, be more satisfactory or economical in

actually solving problems on a computer. We shall often deal with considerations of this type in

the subsequent work.

 In the development of an algorithm, sequence, selection and repetition (or interaction)

play an important role.

 (1) Sequence : Suppose that we want to find the value of the expression 23 4 baba  for

given values of a and b. Algorithm (i.e., step by step procedure) for achieving this will consist of

steps given in fig. to be carried out one after the other.

 This algorithm, you will agree, is very straightforward, consisting of simple steps which

are to be carried out one after the other. We say that such an algorithm is a sequence of steps,

meaning that

 (i) At a time only one step of the algorithm is to be carried out.

1. Get the value of a

2. Get the value of b

3. Calculate 3a , call it S

4. Calculate ab4 , call it T

5. Calculate 2b , call it V

6. Find the sum VTS  , call it

M

7. Write the value of M as
answer. Steps of an algorithm to evaluate

23 4 baba  , given the

values of a, b

Computing 403

 (ii) Every step of the algorithm is to be carried out once and only once; none is repeated

and none is omitted.

 (iii) The order of carrying out the steps of the algorithm is the same as that in which they

are written.

 (iv) Termination of the last step of the algorithm indicates the end of the algorithm.

 Here afterwards we shall follow the convention that (i) the successive steps in a sequence

will be written on successive lines and hence (ii) steps will not be necessarily numbered as they

are in fig.

 (2) Selection: An algorithm which consists of only a sequence, is not sufficient for solving

any type of problem. Let us consider the problem of solving an equation of the type rnxm 

(where m, n, r are given integers) for integral values of x. We immediately use laws of algebra

to find 0,)( nnmrx . Let us call an algorithm that works for only some (not necessarily all)

possible sets of input values, a semi-algorithm.

 Semi-algorithm (for the above problem) :

 Step 1: Get the values of m, r and n.

 Step 2: Subtract m from r, call this difference b.

 Step 3: Divide b by n; print this result as the value of x.

 The above steps are certainly efficient, As an example, let 5,9  nm and 24r , in which case

we have 2459  x . Then in step 2, we have b 924 i.e., 15b and in step 3, we have 3
5

15


n

b
,

and so we print x = 3.

 The above steps have two fatal flaws, however. First, if n equals 0, then either rm  and x

can have any integral value, or rm  and no solution is possible i.e., there is no integer x which

may satisfy the given equation. Second, if there is a non-zero remainder when b is divided by n

then again there is no integer x which may satisfy the given equation. So we must modify our

algorithm to deal with all such situations as may arise. Given below is the modified algorithm

which suits all the possible situations that may arise.

Step 1 : Get the value of m, n and r

Step 2 : If 0n and m r

 then go to step 7

 else go to step 3

Step 3 : If 0n and m r

 then go to step 6

 else go to step 4

Step 4 : Subtract m from r, call this

difference b (i.e., mrb )

Step 5: Divide b by n;

 If there is a remainder

 then go to step 6

 else print the value of
n

b
, which is the

404 Computing

 The above algorithm provides the person or computer that will execute the algorithm with

an ability to choose the step to be carried out depending upon the values of m, n and r (and

subsequently, the value of b). This ability is called selection. The power of selection is that it

permits that different paths could be followed, depending upon the requirement of the problem,

by the one who executes the algorithm.

 In the above algorithm, selection is expressed by using the special words ‘if, ‘then’, ‘else’.

Further, it may be noted that all that is written using these special words (once) constitutes one

step. Note the way it is written. Nothing appears below the word ‘if’ till that step is over. This is

known as indentation. The words ‘then’ and ‘else’ come with exactly same indentation with

respect to the word ‘if’.

 (3) Iteration or Repetition : In forming an algorithm certain steps are required to be repeated

before algorithm terminates after giving an answer. This is known as iteration or repetition.

 Let us consider the problem of finding the just prime number greater than a given positive

integer. The following list of steps shows the step by step procedure to be followed for solving

the problem.

Consider the given integer

























.......

essfor primennumber new test

 it to1 add

stop and down it write

 prime,is it

 essfor primennumber new test

it to1 add

stop and down it write

 prime,is it

essfor primennumber new test

it to1 add

if

e lse

then

if

else

then

if

S

S

S

Algorithm for finding a prime
number greater then a given

positive integer

Computing 405

 We see in the above procedure that the steps

 “add 1 to it

 test new number for primeness

 if it is prime

 then write it down and stop ”

 are repeated again and again till (after a finite number of repetitions) we get a prime

number and print it. If this sequence (which involves a decision also) is denoted by S, then S is

repeated again and again till, we get the result and print the result. This is technically known as

iteration or repetition. The way of writing adopted in fig. poses a problem as we do not know

the number of times S is repeated. This number depends upon the given positive integer. The

difficulty presented above is overcome by introducing a new way of writing iterations in

algorithms. The algorithm shown in fig. is (in new ways) then written as shown below

 9.1.4 Pseudo language.

 The languages used by human beings for talking and writing among themselves are called

natural languages. Expression in a natural language can be ambiguous.

 Computer, being a machine, requires that there should be no ambiguity at all when we give

instructions to it. Languages used to communicate with a computer are known as programming

languages.

 We shall use meaningful mnemonic variable names, assignment, symbol  constructions

employing If-then-else, Repeat-until, While-Do and other constructions employing word For

for writing an algorithm. We shall also require instructions to input data in an algorithm as

well as instructions to output computed results from an algorithm. All these will constitute our

language to present any algorithm. This language will not resemble in total with any actual

existing programming language but will have desirable characteristics of a good programming

language. We shall call it a pseudo-language.

Two different ways of writing
iteration occuring in fig.

Consider the given
number
repeat

add 1 to it

until the new number is
prime
write the new number

Consider the given number
add 1 to it
while the new number is not
prime
 do add 1 to it
write the new number

Or

406 Computing

 9.1.5 Pseudo language Constructs.

(1) If-then-else construct : The general form of this construct which is used to provide

selection of actions is

when an instruction using this type of construct is executed, condition determines which of

the step 1 and step 2 is to be executed. If condition is true, step 1 is executed, otherwise (i.e., if

condition is not true) step 2 is executed.

 A particular case of this construct does not have the word else. The general form of this

construct is

 Clearly when this form is used, no action is taken when condition is false, and step is

executed when condition is true. In other words the following constructs are equivalent as they

do the same thing.

 (2) Repeat until construct : The general form of this construct is

 This construct is used when repetition of certain action is required. Note that “Part of

algorithm” is always executed at least once as the condition is tested at the end, unlike the

'while-do' construct where the condition is tested in the beginning.

 (3) While-do-construct : This construct is an alternative to the 'repeat-until' construct. The

general form of this construct, which is also used to provide repetition of instruction is

 Where T is a sequence of instructions. When this construct is executed, condition is

evaluated first. If the condition is true, the sequence T of instructions is executed and the

condition is evaluated again and so on. If the condition is false, execution of T is skipped and

the execution of algorithm proceeds with the portion that appears after T. Thus condition is

tested again and again till it is false. Every execution of T modifies some variables in the

algorithm and eventually after some repetitions, the condition becomes false. This completes

If condition
 then step
1
 else step
2

If condition
 then step

If condition If condition
 then step and then step

 else do nothing

Repeat
 Part of the
algorithm
until condition

while
condition
 do T

Computing 407

the execution of the 'while-do-construct', the execution proceeds to the portion appearing after

T.

 (4) For construct : When we know in advance how many times a part of the algorithm is to

be executed we use 'for construct', whose general form is

 For identifier = initial value to test value by increment Do S.

 The word, For, To, By and Do are reserved words for this construct. Initial value gives the

starting value that the identifier should take, when the S is executed. The value of identifier is

increased by the increment after each execution. The execution of S continues until the value of

identifier exceeds the test value.

Example: 1 An algorithm must terminate in [DCE 1997]

(a) One iteration

(b) One step

(c) Finite number of steps

(d) Finite number of steps but sometimes in infinite number of steps

Solution: (c) It is obvious.

Example: 2 The WHILE-DO control structure executes the loop at least [DCE 1995]

 (a) Thrice (b) Twice (c) Once (d) None of these

Solution: (d) It is obvious.

Example: 3 The control structure IF-THEN is a [DCE 1994]

 (a) Multiple selection (b) Double selection (c) Single selection (d) None of these

Solution: (c) It is obvious.

Example: 4 REPEAT-UNTIL control operation executes the loop at least [DCE 1996]

 (a) 3 times (b) 2 times (c) 1 time (d) None of these

Solution: (c) It is obvious.

Example: 5 Write an algorithm to find the first prime number greater than given number using the fact that even

integers (except 2) are not prime

Solution: Step I get n

Step II If n is even

 then 1 nm

 else nm 

Step III repeat 2mm

 test m for primeness

 until m is prime

Step IV Output m

Example: 6 Write an algorithm to find n ! for given n

Solution Step I get n

Step II If 0n

 then output “factorial is not defined”

Step III If 0n

 then Fact 1

Step IV Fact 1

Step V For 1I to n

 do Fact  Fact * I

 1 II

Step VI Output Fact

Example: 7 Write an algorithm to multiply two matrices

Solution: Step I get A, B

408 Computing

Comment: A (i, j) and),(jiB are nm  and pn matrices respectively,

 Step II For 1i to m

 do

 For 1j to p

 do

 C (i, j) 0

 For 1k to n

 do

),(*),(),(),(jkBkiAjiCjiC 

 Step III Output C

Comment :),(jiCC  is an m  p matrix.

Example: 8 Write an algorithm to find the solution of a system of simultaneous linear equations.

 1321 dzayaxa 

 2321 dzbybxb 

 3321 dzcycxc 

Solution: Step I get a (1), a(2), a(3), d(1), b(1),

 b(2), b(3), d(2), c (1), c(2), c (3), d(3), 

 Step II 0)1(,0)1(,0)1(,1  ZYXI

 Step III Repeat

])1()3()()2()1([
)1(

1
)1(ZaIYad

a
IX 

)]1()3()1()1()2([
)2(

1
)1(ZbIXbd

b
IY 

)1()3([
)3(

1
)1(cd

c
IZ 

 1 II

 Until |  |)1()(IXIX

  |)1()(| IYIY

  |)1()(| IZIZ

 Step IV Output)(),(),(IZIYIX .

 9.1.6 Flow Charts (Presentation of Algorithm)

 A graphic representation of an algorithm is called a ‘flow-chart’. A flow chart constitutes a

schematic and pictorial representation of the sequence of steps, which are to be executed in

solving a problem.

 A flow-chart consists of some boxes linked by arrows. In each box, some instruction to be

carried out is mentioned. Arrows on the lines connecting the boxes indicate the direction, in

which we should proceed.

 The boxes are of different shapes. Each particular shape is associated with a specific type

of instruction as shown in fig.

 Flow-chart conventions:

 While drawing a flow-chart, the following conventions are observed.

 (i) The general direction of flow is from left to right and from top to bottom.

 (ii) Only one flow-line should leave a process symbol.

 (iii) Only one flow line should enter a decision box and atleast two lines must leave it.

Computing 409

 (iv) A flow line that goes in upward direction, completes and iteration (or repetition) or a

loop.

 Basic operations and flow-charts:

 The three basic operations are: (1) Sequence (2) Selection (3) Iteration

 The selection of a flow-chart corresponding to an iteration, or the Repeat-Until construct

or the While-Do construct gives rise to a cycle, usually called a loop. There are two types of

loops :

 (i) When an operation is repeated, a fixed number of times, whatever the value of the

variables involved may be, then the corresponding section of the flow diagrams gives rise to a

fixed loop.

 (ii) When the number of times an iteration is to be carried out depends upon the values of

the variables, then the corresponding section of the flow diagrams gives rise to variable loop.

This loop is also known as backward jump.

BASIC SYMBOLS

TERMINAL SYMBOLS

INPUT OUT PUT

SYMBOLS

COMMENT

ANNOTATION SYMBOLS

CONNECTOR

PROCESS

DECISION

Examples of

Use

Start
Stop

Read New
Value for X

If these appear on a flow
chart they represent the

same point

1A
1A

Write

the value

of W

This flow line
can be

omitted

if X = Y

This block
is entered

15 times

each pass

X < Y

X = Y

X > Y

Is X
< = >

Y

X =
A

CB
22



X  Z + 4
A  B × C

Is
X = Y

?

No Yes

410 Computing

Example: 9 Write an algorithm and flowchart to obtain H C F of two given positive integers using Euclid's

algorithm

Solution: We know Euclid's algorithm. Therefore we can express it in pseudo language :

get M, N
comment M, N are two given positive integers, M > N
NUM  M
DEN  N
QUOT  integral part of NUM/DEN
REM  NUM – QUOT * DEN
while REM  0
 do NUM  DEN

 DEN  REM
 QUOT  integral part of NUM/DEN
 REM  NUM – QUOT * DEN
output DEN
comment HCF is the value of denominator when
remainder is zero.

OBTAIN M,

N.

NUM  M

DEN 

N

QUOT  INTEGRAL PART
OF RATIO NUM / DEN

REM  NUM – QUOT
* DEN

IS

REM = 0?

OUTPUT DEN STOP

NUM  DEN

DEN 

REM

NO

START

Computing 411

 Yes

 9.1.7 Number system.

 (1) Decimal system : Number system which we use in our daily life is the decimal system. In

decimal system we use the digits namely 0, 1, 2,.......8, 9 and with the help of these 10 digits we

are able to write any rational number. The decimal system is a place-value system, meaning

thereby that the value represented by a digit depends upon the place of the digit within the

numeral. The value assigned to consecutive places in the decimal system are

.....10,10,10,......10,10 21034  (from left to right)

 Example : Number 3864. 342 can be written as

 3864.342 = 3 × 103 + 8 × 102 + 6 × 101 + 4 × 100 + 3 × 10–1 + 4 × 10–2 + 2 × 10–3

 As ten basic symbols are used for representing the numbers, ten is called the base of the

system and the system is called base-ten system or decimal system.

 (2) Binary number system : The number system for which the base is two is called the binary

system. In this system numbers are represented with the help of two basic symbols namely 0

and 1. The values assigned to consecutive places in the system are (when expressed in the

decimal system).....2,2,2,2,2,2,2 2101234  where 02 place is the unit place. The binary

numeral can be converted into the decimal numeral and vice-versa.

 (3) Octal number system : As the name implies this is base eight)2(3 system. The numerals

are written with the help of eight basic symbols namely 0, 1, 2,......,7. The value (expressed in

the decimal system) assigned to consecutive places are8,8,8,8,8,8 210123  , where 08

place is the unit's place. The procedures for converting a decimal numeral into an octal numeral

and the other way round are similar to the procedures discussed in connection with binary

system.

 (4) Hexadecimal system : As the name implies, this is the base sixteen system. The numerals

are written with the help of sixteen symbols, namely 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Note that the symbol A represents ten (in decimal system). Similarly B, C, D, E, F represent

respectively the numbers 11, 12, 13, 14 and 15. The value assigned to consecutive places are

........,16,16,16,16 1012  (as expressed in decimal system), where 016 place is unit's place.

Example: 10 74.1875 in binary is [DCE 2001]

412 Computing

 (a) 10010010.0011 (b) 1001010.0011 (c) 1001010.0101 (d) 1001100.0101

Solution: (b) For integral part

1

01

022

142

092

1182

0372

742 

 = (1001010)2

 For fractional part

0000.

2
5000.

2
7500.

2

3750.

2

1875.0

1

1

0

0








= (0.0011)2

 Therefore 74.1875 in binary is (1001010.0011)2

Example: 11 (1101101)2 is [DCE 2001]

 (a) 81 (b) 121 (c) 109 (d) 92

Solution: (c) 2)1101101(= 0123456 21202121202121 

 = 64 + 32 + 0 + 8 + 4 + 0 + 1 = 109.

Example: 12 What is the octal equivalent of binary number 111001 [DCE 1999]

 (a) 69 (b) 70 (c) 71 (d) 82

Solution: (c) (111001)2 =

 1 1 1 0 0 1

 1 × 22 + 1 × 21 + 20 0 × 22 + 0 × 21 + 1 × 20

 7 1

 = (71)8

Example: 13 The decimal equivalent of (264)8 is [DCE 1995]

 (a) 180 (b) 170 (c) 166 (d) None of these

Solution: (a) (264)8 = (.......)10

 = 012 848682  = 128 + 48 + 4 = 180.

Example: 14 What is the hexadecimal equivalent of decimal number 785. [DCE 1994]

 (a) 1A2 (b) 311 (c) AB5 (d) None of these

Solution: (b) (785)10 = (........)16

Computing 413

3

13

14916

78516

 Thus 1610)311()785( .

414 Binary Operations

 9.2.1 Definition.

 A binary operation on a non-empty set A is a mapping which associates with each ordered

pair (a, b) of elements of A, a uniquely defined element c  A. This is a mapping from the

product set A × A to A. Symbolically, a map : A  A  A, is called a binary operation on the set A.

 The image of the element (a, b)  A  A is denoted by a * b. If a set A is closed with respect

to the composition, then we say that * is a binary operation on the set A.

 Let, a  N, b  N  a + b  N for all a, b  N.

 Multiplication on N is also a binary operation, since a  N, b  N  a  b  N for all a, b 

N

 But subtraction on N is not a binary operation, since 3  N, 5  N but 3 – 5 = – 2  N.

 Note :  It is obvious that addition as well as multiplication are binary operations on each

one of the sets Z (of integer), Q (of rational number), R (of real number) and C (of

all complex number).

  Subtraction is a binary operation on each of the sets Z, Q, R and C. But it is not binary

operation on N.

  Division is not a binary operation on any of sets N, Z, Q, R and C.

 9.2.2 Types of Binary Operation

 (1) Commutative binary operation : A binary operation * on a set S is said to be commutative

if

 a * b = b * a for all a, b  S

 Addition and multiplication are commutative binary operations on Z but the subtraction is

not a commutative binary operation, since 2 – 3  3 – 2.

 (2) Associative binary operation : A binary operation * on a set S is said to be associative if

 (a * b) * c = a * (b * c) for all a, b, c  S

 Addition and multiplication are associative binary operations on N, Z, Q, R and C. But

subtraction is not an associative binary operation on Z, Q, R and C.

 (3) Distributive binary operation : Let * and o be two binary operations on a set S. Then * is

said to be

 (i) Left distributive over o if a * (b o c) = (a * b) o (a * c) for all a, b, c  S;

414

Binary Operations 415

 (ii) Right distributive over o if (b o c) * a = (b * a) o (c * a) for all a, b, c  S.

 If * is both left and right distributive over o, then * is said to be distributive over o.

 Example : The multiplication () on Z is distributive over addition (+) on Z, since

 a  (b + c) = a  b + a  c and (b + c)  a = b  a + c  a for all a, b, c  Z.

 But addition is not distributive over multiplication.

 9.2.3 Identity and Inverse elements

 (1) Identity element : Let * be a binary operation on a set S. An element e  S is said be an

identity element for the binary operation * if a * e = a = e * a for all a  S.

 For addition on Z, 0 is the identity element, since a + 0 = a = 0 + a for all a  Z.

 For multiplication on R, 1 is the identity element, since 1  a = a = a × 1 for all a  R.

 (2) Inversible element for a binary operation with identity : An element a of a set A is said to be

inversible for a binary operation * with identity e if  b  A such that a * b = e = b * a.

 Also, then b is said to be an inverse of a and is denoted by a–1. The inversible elements in A

are also called the units in A. The identity element is always inversible and is its own inverse,

since e * e = e * e = e. Thus e–1 = e.

 9.2.4 Composition Table

 A binary operation on a finite set can be completely described by means of a table known

as a composition table. Let }.....,,,{ 21 naaaS  be a finite set and * be a binary operation on S. Then

the composition table for * is constructed in the manner indicated below.

 We write the elements a1, a2, ….. ,an of the set S in the top horizontal row and the left

vertical column in the same order. Then we put down the element ai * aj at the intersection of

the row headed by ai (1  i  n) and the column headed by)1(nja j  to get the following table.

* a1 a2 ….. ai ….. aj ….. an

a1 a1 * a1 a1 * a2 ….. a1 * ai ….. a1 * aj ….. a1 * an

a2 a2 * a1 a2 * a2 ….. a2 * ai ….. a2 * aj ….. a2 * an



ai ai * a1 ai * a2 ….. ai * ai ….. ai * aj ….. ai * an



aj aj * a1 aj * a2 ….. aj * ai ….. aj * aj ….. aj * an



an an * a1 an * a2 ….. an * ai ….. an * aj ….. an * an

 From the composition table we infer the following results :

416 Binary Operations

 (1) If all the entries of the table are elements of set S and each element of S appears once

and only once in each row and in each column, then the operation is a binary operation.

Sometimes we also say that the binary operation is well defined which means that the operation

* associates each pair of elements of S to a unique element of S, i.e. S is closed under the

operation *.

 (2) If the entries in the table are symmetric with respect to the diagonal which starts at the

upper left corner of the table and terminates at the lower right corner, we say that the binary

operation is commutative on S, otherwise it is said to be not commutative on S.

 (3) If the row headed by an element say aj, coincides with the row at the top and the

column headed by aj coincides with the column on extreme left, then aj is the identity element

for the binary operation * on S.

 (4) If each row except the topmost row or each column except the left most column

contains the identity element then every element of S is invertible with respect to *. To find the

inverse of an element say aj, we consider row (or column) headed by ai. Then we determine the

position of identity element e in this row (or column). If e appears in the column (or row)

headed by aj, then ai and aj are inverse of each other.

 It should be noted that the composition table is helpless to determine associativity of the

binary operation. This has to be verified for each possible trial.

Example: 1 Let S be a finite set containing n elements. Then the total number of binary operations on S is [EAMCET 1992]

(a) nn (b)
2

2n (c)
2nn (d) 2n

Solution: (c) Since a binary operation on S is a function from S × S to S, therefore the total number of binary

operations on S is the total number of functions from S × S to S, which is
2nn .

Example: 2 The identity element for the binary operation * defined by a * b =
2

ab
, 0, Qba  (the set of all non-zero

rational numbers) is

(a) 1 (b) 0 (c) 2 (d) None of these

Solution: (c) Let e be the identity element for the binary operation * on 0Q defined by
2

*
ab

ba 

 Then, aeaea **  for all 0Qa

  a
ae


2

 for all 0Qa  2e .

Example: 3 Let z be the set of integers and o be a binary operation on z defined as abbaboa  for all zba , .

The inverse of an element za )1(is

 (a)
1a

a
 (b)

a

a

1
 (c)

a

a 1
 (d) None of these

Solution: (a) Let e be the identity element for the binary operation o defined on z given by abbaboa 

 Then aoeaeoa  for all za

  aaeea  for all za  0)1( ae for all za  0e .

 So, 0 is the identity element for the binary operation o and z.

 Let x be the inverse of za . Then, 0 aoxxoa

  0 axxa  aax )1(
1


a

a
x)1(a

Binary Operations 417

 Thus,
1a

a
 is the inverse of za )1(.

Example: 4 * is defined on the set of real numbers by abba 1* . Then the operation * is [CET 1991]

 (a) Commutative but not associative (b) Associative but not commutative

 (c) Neither commutative nor associative (d) Both commutative and associative

Solution: (a) We have abbaabba *11* 

 So, * is commutative on R.

 For any, a, b, c  R, we have abcccbacabcba  1)1(1*)1(*)*(

 and abcabcabcacba  1)1(1)1(*)*(*

 )*(**)*(cbacba 

 So, * is not associative on R.

	01-CONTENTS-BINARY - THEORY.pdf (p.1-15)
	01-CONTENTS-BINARY.pdf (p.1)
	02-COMPUTING-(E)-Theory.pdf (p.2-15)
	Block Diagram of a General Purpose Computer
	Basic Symbols
	Terminal Symbols
	Input Out Put Symbols
	Comment annotation Symbols
	Connector
	Process
	Decision
	Y

	04-BINARY OPERATORS-(E)-Theory.pdf (p.16-19)

