Mass : - the mass of a body is the quantity of matter contained in it regardless of its volume or any force acting on it.

Units of Mass :

Measurement of Mass: Beam Balance

Characteristics of true beam balance :

- 1. Both the arms must be of equal lengths.
- 2. Both the pans must be of equal masses.
- 3. On lifting up the empty beam balance, the pointer should be vertical and the rod should be horizontal.

Principle of a beam balance :

Two bodies of equal or same mass would secure a balance on the beam balance having arms of equal length and pans of equal masses.

MEASUREMENTS

Weight : It is the force with which a body is attracted towards the earth.

Units of Weight:

SI unit - newton (N)

 $1 \text{ N} = 10^{5} \text{ dyne}$

1 Kgf = 9.8 N

1 gf = 980 dyne

Measurement of Weight : Spring Balance

Principle :

The more the weight attached to the spring, the more the spring gets stretched .

Mass	Weight
Quantity of matter contained	Force with which a body is attracted towards earth
can never be zero	can be zero
scalar quantity	vector quantity
measured by beam balance	measured by spring balance
SI unit- kg	SI unit - N
It is universally constant	depends on gravity

Density:

```
Density of a substance = \frac{mass \ of \ substance}{volume \ of \ substance}
```

 $1 \text{ g cm}^{-3} = 1000 \text{ kg m}^{-3}$

```
Density of water = 1 \text{ g cm}^{-3} = 1000 kg m<sup>-3</sup>
```

Relative Density :

 $R.D = \frac{Density \ of \ substance}{Density \ of \ water \ at \ 4^{\circ}C}$

Unit : <mark>NO UNIT</mark>

Density in g cm⁻³ = R.D

Density in Kg $m^{-3} = R.D \times 1000$

 $R.D = \frac{Mass of a certain volume of substance}{Mass of the same volume of water at 4°C}$

Sinking and Floating

When Object floats ?

Density of object < Density of liquid.

When Object Sinks ?

Density of object > Density of liquid .

Effect of Temperature on Density :

In solids ,Liquids and gases – density decreases with increase in temperature.

Exception : Water – density decreases on freezing ., i.e., ice floats on water.

Convectional current in liquids and gases :

Fluids on heating expands and become lighter moves upwards, whereas the cold fluid being heavier moves downwards. This cycle of upward and downward movements of fluids forms convectional currents.

Practical Applications :

- **ventilators placed near roof and windows near floor**
- Chimneys in factories
- Cooling chest in refrigerator (fitted near top of fridge)
- Installation of air conditioner (above window level)
- ☑ Installation of room heater (near the floor)