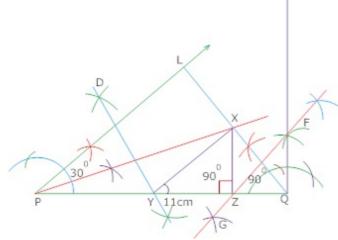

CBSE Test Paper 05 CH-11 Constructions

1. How many angles are formed by a transversal with a pair of lines?

- a. 4
- b. 8
- c. 6
- d. 3


2. An angle greater than 180^0 but less than 360^0 is called _____.

- a. right angle
- b. an acute angle
- c. an obtuse angle
- d. reflex angle
- 3. Among the following, find the set of measures which can form triangle.
 - a. $70^0, 90^0, 25^0$
 - b. $45^0, 45^0, 80^0$
 - c. $65^0, 85^0, 30^0$
 - d. $65^0, 85^0, 40^0$

4. With the help of a ruler and a compass, it is possible to construct an angle of _____.

- a. 40^0
- b. 7.5^0
- c. 35^0
- d. 47.5°
- 5. In riangle ABC, which of the following information is needed to construct it if it is known that measure of $riangle B=60^0$ and BC = 6 cm :
 - a. AB AC
 - b. AB AC or AB+AC

- c. AB+AC
- d. Area of triangle
- 6. Construct a triangle PQR whose perimeter is equal to 14 cm, $\angle P = 45^{\circ}$ and $\angle Q = 60^{\circ}$.
- 7. Divide a line segment AB of length 8 cm into 4 equal parts.
- 8. Construct the bisector of a given angle.
- 9. Construct a triangle ABC in which BC = 4.6 cm, $\angle B = 45^{\circ}$ and AB + CA = 8.2 cm.
- 10. Draw a line segment of length 8.6 cm. Bisect it and measure the length of each part.
- 11. Construct an equilateral triangle, given its side 6 cm and justify the construction.
- 12. Construct equilateral triangle whose side is 4 cm.
- 13. Draw a line segment AB and by ruler and compasses, obtain a line segment of length $\frac{3}{4}$ (AB).
- 14. Construct a triangle XYZ in which $\angle y = 30^{\circ} \angle Z = 90^{\circ}$ and XY + YZ + ZX = 11cm

15. A triangle PQR given that QR = 3cm, $\angle PQR = 45^\circ$ and QP – PR = 2 cm.

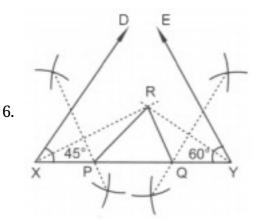
CBSE Test Paper 05 CH-11 Constructions

Solution

1. (b) 8

Explanation: This can easily be done by counting the number of angles given in the figure.

2. (d) reflex angle

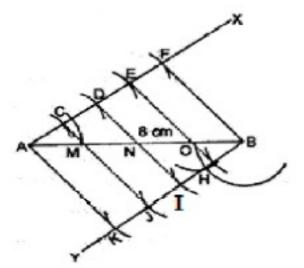

Explanation: An angle whose measure is greater than 180^0 but less than 360^0 is called Reflex Angle.

3. (c) 65^0 , 85^0 , 30^0

Explanation: As the sum of the interior angles of a triangle should be 180^0 and in this case $65^0 + 85^0 + 30^0 = 180^0$ so this set of measures form a triangle.

- 4. (b) 7.5^0 **Explanation:** With the help of a ruler and a compass, we can construct an angle which is a multiple of 15^0 . Since 7.5^0 is multiple of 15^0 , so, we can construct it.
- 5. (b) AB AC or AB+AC

Explanation: To construct a triangle, we need measurements of its base, base angle and sum or difference of other two sides i.e to construct a $\triangle ABC$, we need BC, $\angle B$ and AB-AC or AB+AC.

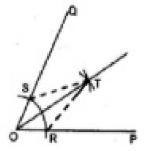


To draw \triangle PQR, we follow the following steps: Steps of Construction:

- i. Draw a line segment XY = 14 cm
- ii. Construct \angle YXD = \angle P = 45° and \angle XYE = \angle Q = 60°

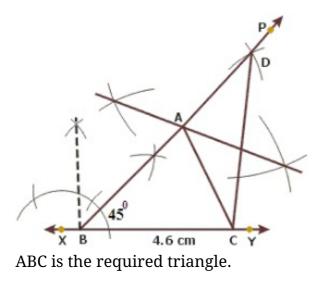
- iii. Draw the bisectors of angles \angle YXD and \angle XYE mark their point of intersection as R.
- iv. Draw right bisectors of RX and RY meeting XY at P and Q respectively.
- v. Join PR and QR to obtain the required triangle PQR.
- 7. Given: A line segment AB of length 8 cm.

Required: To divide the line segment of 8 cm into 4 equal parts.

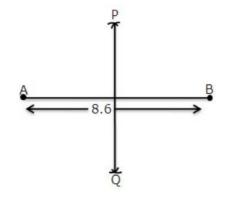

Steps of construction :

- i. Draw a line segment AB = 8 cm.
- ii. At A, construct any acute angle BAX.
- iii. At B, construct $\angle ABY = \angle BAX$ on the other side of the line AB.
- iv. From AX, cut off 4 equal distances at the points C, D, E and F such that AC = CD = DE = EF.
- v. With the same radius, cut off 4 equal distances along BY at the point H, I, J and K such that BH = HI = IJ = JK.
- vi. Join AK, CJ, DI, EH and FB. Let CJ, DI and EH meet the line segment AB at the point M, N and O respectively. Then M, N and O are the points of division of AB such that AM = MN = NO = OB.
- 8. Given : Any ∠POQRequired : To bisect ∠POQ.

Steps of construction :

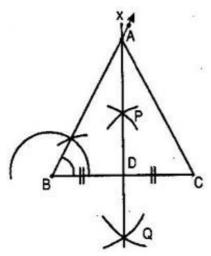

i. With O as centre and suitable radius draw an arc to meet OP at R and OQ at S.

- ii. With R as centre and any suitable radius draw an arc. With S as centre and same radius draw another arc to meet the previous arc at T.
- iii. Join OT and produce it, then OT is the required bisector of \angle POQ.



Justification: Join ST and RT. In triangles OST and ORT, $OS = OR \dots [Radii of the same arc]$ $ST = RT \dots [arcs of equal radii]$ $OT = OT \dots [Common]$ $\therefore \triangle OST \cong \triangle ORT \dots [By SSS rule]$ $\therefore \angle SOT = \angle ROT \dots [c.p.c.t.]$

- 9. Given : In triangle ABC, BC = 4.6 cm, $\angle B = 45^{\circ}$ and AB + AC = 8.2 cm. Required: To construct the triangle ABC. Steps of construction.
 - i. Draw the base BC = 4.6. cm.
 - ii. At the point B, construct an angle, say PBC = 45° .
 - iii. Cut a line segment BD equal to AB + AC = 8.2 cm on the ray BP.
 - iv. Join DC.
 - v. Draw the perpendicular bisector of line segment DC which intersects BP at some point name it A.
 - vi. Join AC.



- 10. Steps of construction:
 - i. Draw a line segment AB of 8.6 cm.
 - ii. With centre A and radius more than $\frac{1}{2}$ AB, draw arcs, one on each side of AB.
 - iii. With centre B and same radius, draw arcs cutting the previous arcs at P and Q respectively.
 - iv. Join PQ.

: AC = BC = 4.3 cm

- 11. Steps of construction:
 - i. Draw a line segment BC of length 6 cm.
 - ii. At B draw $\angle XBC = 60^{\circ}$.
 - iii. Draw perpendicular bisector PQ of line segment BC.
 - iv. Let A and D be the points where PQ intersects the ray BX and side BC respectively.
 - v. Join AC.

Thus ABC is the required equilateral triangle.

Justification:

In right triangle ADB and right triangle ADC,

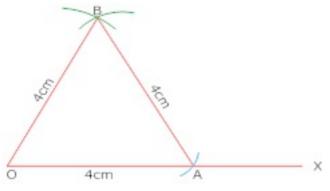
AD = AD [Common]

 $\angle ADB = \angle ADC = 90^{\circ}$ [By construction]

BD = CD [By construction]

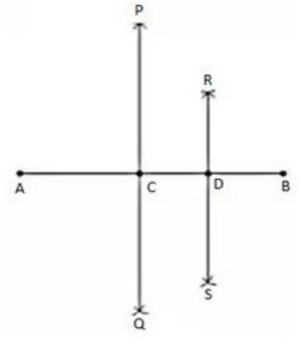
```
\therefore \Delta ADB \cong \Delta ADC [By SAS congruency]
```

$$\therefore ot B = ot C = 60^\circ$$
 [By CPCT]


$$\therefore$$
 $\angle A = 180^{\circ} - (\angle B + \angle C)$

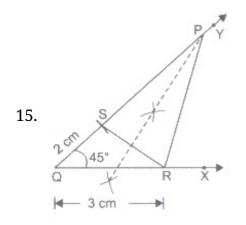
 $=180^{\circ} - (60^{\circ} + 60^{\circ}) = 180^{\circ} - (60^{\circ} + 60^{\circ}) = 180^{\circ} - 120^{\circ} = 60^{\circ}$ $= 180^{\circ} - 120^{\circ} = 60^{\circ}$

$$\therefore \angle A = \angle B = \angle C = 60^{\circ}$$


- : ABC is an equilateral triangle.
- $\therefore \Delta ABC$ is an equilateral triangle.

12. Steps of Construction:

- i. Draw a ray OX
- ii. Taking O as a centre draw an arc of radius 4cm which cut OX at A.


- iii. Now taking O and A as a centre now draw two arcs with radius of 4 cm which intersects each other at B
- iv. Join OB and AB
- v. ΔOAB is required triangle.
- 13. Steps of construction:
 - i. Draw a line segment AB.
 - ii. With centre A and radius more than $\frac{1}{2}$ AB, draw arcs, one on each side of AB.
 - iii. With centre B and same radius, draw arcs cutting previous arcs at P and Q respectively.
 - iv. Join PQ which intersect AB at C.
 - v. With centre C and radius more than $\frac{1}{2}$ CB, draw arcs, one on each side of CB.
 - vi. With cnetre B and same radius, draw arcs cutting previous arcs at R and S respectively.
 - vii. Join RS which intersect CB at D.

$$\therefore AD = \frac{3}{4}AB$$

- 14. Steps of construction:
 - i. Draw line segment PQ = 11cm
 - ii. At P construct an angle 30° and at Q an angle 90°

- iii. Bisect these angles. Let the bisectors of these angles intersect each other at point X.
- iv. Draw perpendicular bisector DE of PX and FG of XQ intersect PQ at point Y and Z respectively.
- v. Join XY and XZ
- vi. XYZ is required triangle

- i. Draw a ray OX and cut off a line segment QR = 3 cm.
- ii. AT Q, construction $\angle PQR = 45^{\circ}$.
- iii. From QY, cut off QS = 2 cm.
- iv. Join RS.
- v. Draw perpendicular bisector of RS to Meet QY at P.
- vi. Join PR. Then PQR is the required triangle.