Inheritance

.-'_'_"H\ -
(!) OBJECTIVES OF THIS CHAPTER)
b

9.1 Inheritance and its types

9.2 Interfaces

9.3 Use of super method

9.4 Abstract Classes and Methods

9.5 Method Overriding,

9.6 Final Class, Method and Variables

Q1 INTRODUCTIONTO INHERITANCE

Inheritance is a feature or a process in which new classes are created from the existing
classes. Here, Existing class is known as super class while new class is known as sub
class. It refers to the ability of an object to take on one or more characteristics from other
classes of objects. This process is same as a child inherits the traits of his/her parents.
The purpose of inheritance is to consolidate and reuse an existing code. For example, if
the objects "student” ,"teacher” and "office staff" are subclasses of Person super class.
Codeapplying to all of them can be consolidated into a Person super class.

The characteristics inherited are usually instance variables or methods. The new
class created is also called “derived class” or “child class” and the existing class is
known as the “base class” or “parent class”. The sub (derived) class now is said to be
inherited from the super (base) class. We can understand inheritance in graphical form
asshown below

Super Class
Field / Methods
p—_
Inherited Field /
Methods
o
SubClass

™ J Field / Methods
-\ L.

Fig. 9.1: Concept of Inheritence

Terminologies related to the Inheritance:

Class : Itis defined as a collection of objects sharing common properties. It is a kind of
blueprint of objects created ina Java program.

144

| PR

1

% Sub Class: It is also known as derived class. This category of classes inherits the
options from another class. Sub Class can include the inheritable fields and behaviors of
its Super class as well as generated withinits own.

% Super Class: The super class is also known as the parent class. It represents the
category of those classes whose fields or methods areinheritable by a subclass.

% Reusability: As the name is defined, it is a technique of reusing members of the
existing class in the new created class as it is. It can reuse the fields or methods of existing
class. Inshort, we can say that it permits reusing the code.

These all terminologies are the basics of inheritance in Java. Following is the syntax and
example of Inheritanceinjava :

Syntax

class derived_class extends base_class

{

/ /fields

/ /methods

|

Note : extends keyword is used to inherit the members of a superclassinjava.
Following program shows the implementation of inheritance in JAVA

class SupClass

{

vord showStart()
4

System.out.println{"Welcome to Computer Application Subject");
H

f

class SubClass extends SupClass

i
vold showEnd()

{
System.out.printin("Bye! Hope to see you again..");
t
t
class CAProgl3
{
public static void main(String arg[|)
{
SubClass obj=new SubClass();
obj.showStart();
obj.showEnd();
}

Compilation, Execution and Output of Program 9.1 (CAProgl3.java)

911 TYPESOFINHERITANCE
Java supports different types of inheritance, Some most widely used types of
inheritance in java are as follows:

% BSingle Inheritance

Multi-level Inheritance
4 Hierarchical Inheritance
&

Hybrid Inheritance

4 Single Inheritance:

This is a simplest type of inheritance in java. In single inheritance, a sub-class is derived
from only one super class. It inherits the properties and behavior of a single-parent
class. Sometimes it is also known as simple inheritance. We can have following
graphical representation of Single Inheritance in Java.

Super Parent Class
Sub/ Child Class

Single Inheritance in Java
As we can see in the above diagram, parent class is inherited in child class. Here, Child
class will include all the properties of the base class also. But, no property or behavior of
Child class will be inherited by Parent Class. Following example shows the mechanism
of single inheritanceinaJava :

Following program shows the implementation of Single inheritance in JAV A

class Person

int age:
String sname;

146

class Student extends Person

{

nt sclass,rollno;

void setData(int age Input.String sname Inputint sclass Input,int
rollno Input)

{

age=age Input;

sname=sname_Input;

sclass=sclass Input;

rollno=rollno_Input:

}

void showRecord()

1

System.out.printin("Age:"+age);
System.out.println("Student Name: "+sname);
System.out.printIn("Student Class:"+sclass):
System.out.println("Roll No:"+rollno);

’

}

class CAProgl4

{
public static void main(String arg[])
{
Student obj=new Student();
obj.setData(16,"Navleen",7,1001);
obj.showRecord();
b

}

Compilation, Execution and Output of Program 9.2 (CAProgl4.java)

2 Multi-level Inheritance

This type of inheritance can be viewed as a chain of single inheritance. In multi-level
inheritance, a class is derived from a class which is turther derived from another class. In
simple words, we can say that a class that has more than one parent class, but at different
levels, is called multi-level inheritance. A common sub class can not have multiple super

classes at a same time in this type of inheritance. Following graphical representation
shows the mechanism of multilevel Inheritance in Java.

Top Class

\ 4

Middle Class

v

| Bottom Class

Multilevel Inheritance in Java
As we can see in the above diagram, Top class is inherited by Middle class which is
further inherited by Bottom Class. Here, Bottom class will include all the properties of
Top and Middle class. But, No property or behavior of Middle class will be inherited by

Top Class or Bottom class by Top/Middle class. Following example shows the
mechanism of Multilevel inheritance inaJava.

Following program shows the implementation of Multilevel inheritancein JAVA

class Top

1

void show()

.
|

System.out.printlnd"This 15 & method of TOP Class");

-giass Middle extends Top

iﬂid display(}

é}fstemﬂul.prinﬂn{”"fhis is a method of Middle Class");
i

class Bottom extends Middle

i void print()

%yﬂtem.ﬂut,primln{"ﬁis is a method of Bottom Class");

=
Is
=]

IE

class CAProgl6
i
public static void main(String arg[])
i
Bottom obj=new Bottom();
l'll'l_i,:-| [kt H
ob.display()
obj.print();
f

L

Compilation, Execution and Output of Program 9.3 (CAProgl6.java)

Here, we can see that the method of Top class [show()] and Middle class [displa

v()] are
inherited in Bottom class. It allows us to call all the methods [show(), display() and

-

prin t()] with the ﬂbjIEfl of Bottom class,

% Hierarchical Inheritance (Tree Inheritence) :

When two or more classes inherits a single class, it is known as hierarchical inheritance.
This type of inheritance is useful in the case when we want to share the methods or
properties of one common base class into multiple derived classes. As we can see in the
diagram given below, Derived] and Derived2 classes inherits the Base class, This kind

of layout forms hierarchical inheritance.

Base Class

Derived] Class Derived? Class

Hierarchical Inheritance in Java
Following example shows the mehanism of Hierarchical inheritanceinaJava.
149

-_—

Following program shows the implementation of Hierarchical inheritance in JAVA

class Base

{

void show()

{ &
System.out.println("Base Class");
'

'

class Derived] extends Base

{

void display()

{

System.out.printin("Derived | Class");
i

h

class Derived2 extends Basc

{

void print()

{

System.out.println("Derived 2 Class");
¥

|

class CAProgl7

{
public static void main(String arg[])

f

Derivedl objl=new Derived1():
objl.show();

obj1.display();

Denived2 obj2=new Denived2():
obj2.show();

obj2.print();

f

Compilation, Execution and Qutoput of Program 9.4 (CAProgl7.1ava)

Here, we can see that the method of Base class [show()] is inherited in Both Derived! and
Derived?2 class. It allows us to call the method of Base class with the object of either
Derived1 class or Derived2 class.

% Hybrid Inheritance:

Hybrid means consisting of more than one form of inheritance within one inheritance
type. Hybrid inheritance is the combination of any two or more types ot inheritance in
Java. We can have an example of simple hybrid inheritance in the form of a diagram as
shown below :

| : ;
. Base Class !
I I
I I
S ™ — — — — — - W
1 . I
. = Derived] Class [Derived? Class .
1 ’ I
¢ ® | ¥
. [
' hild Class |
| »
. [
[P N S N S I s I Lt I s e el]

In this diagram, we use Hierarchical and single Inheritence to form Hybrid Inheritance.

Following example shows the implementationof Hybrid inheritance aJava:

151

Following program shows the implementation of Hybrid inheritancein JAVA

class Base

{

void show()

1

System.out.printin("Base Class");

}

r

class Derived] extends Base

{

void display()

1

System.out.printin("Derived 1 Class");

¥

)

class Derived2 extends Base

{

void print()

{

System.out.println({"Derived 2 Class");

}

b

class Child extends Derved|

{

void send()

i

System.out.println(""This is Child Class here");

¥

}

class CAProgl8

i
public static void main(String arg[])
{
Child objl=new Child();
objl.show():

objl.display():

objl.send();

Derived2 obj2=new Derived2():
obj2.show():

obj2.print();

bt

iy
L
P

IE

Compilation, Execution and Output of Program 9.5 (CAProgl8.java)

Some other types of inheritance are also available in OOPs. Java does not allow multiple
inheritance among classes, We shall discuss multiple inheritance after understanding
the concept of Interfaces.

9.2INTERFACESIN JAVA

The interface in Java is a mechanism to achieve abstraction. There can be only
abstract methods in the Java interface, not the method body. A class implements an
interface and inherit the abstract methods of the interface. Along with abstract methods,
an interface may also contain constants, default methods, static methods, and nested
types. In the new versions of Java (Java 8 onwards), Method bodies can also be existed
withinan interface, but only for default methods and static methods.

Writing an interface is similar to writing a class. But a class describes the
attributes and behaviors of an object. And an interface contains behaviors that a class
implements. When a class implements the interface, all the methods of the interface
need to be defined in the class. In other words, you can say that interfaces can have
abstract methods and variables. [t cannot have a method body.

Note : Abstract methods donot have body, they only have declaration but no definition,
Similarities between class and interface:

Both class and Interface can contain any number of methods.

Both class and Interface written in a file with .java extension, with the name of the

interface matching the name of the file.

The byte code of both class and Interface appearsina .class file.

< Both class and Interface appear in packages, and their corresponding bytecode
filemust be in a directory structure that matches the package name.
Difference between class and interface

» We cannot instantiate an interface.

L

L

An interface does not contain any constructors.

i

All of the methods in an interface are abstract (only default or static methods
can have body).

*

An interface can contain only static and final fields.

153

-_—

% An interface is not extended by a class; it is implemented by a class.

% Aninterface can extend multiple interfaces.

9.2.1 DECLARING INTERFACES

The interface keyword is used to declare an interface. Following is the syntax and
example of interface:

Syntax:

interface InterfaceName

{

[/ Any number of final, static fields
// Any number of abstract method declarations

|

We can declare the interface using above mentioned syntax as per requirement of our
program to use abstract methods. Lets have an example to understand the use of
interface in detail.

Following program shows the implementation of interface in JAVA

interface Student

]
1

[inal int MinAge=18;
public void show();
;

class CAProgl9 implements Student
i

public void show()

{

System.out.println("Welcome to Student Mangement");
System.out.println("Minimum age of Student is:"+MinAge);

}

public static void main(String arg[])

{
CAProgl9 obj=new CAProgl9();

obj.show();

}

Compilation, Execution and Output of Program 9.6 (CATrogl9.java)

4 Multiple Inheritancein Java
Java does not support multiple inheritances among classes due to ambiguity. For
example, consider the following diagram of multiple inheritance.

Base Class

(. e —

Derved] Class Derived? Class

E A /

Common Clild Class

.:"'.Lf Multiple Inheritance

Multiple Inheritance Layout in Java

The above Diagram shows the mechanism of multiple inheritance in OOPs
application. If this layout is used in java classes, it gives error because the compiler
cannot decide which method of base class is to be invoked. It is so because methods of
base class are derived through two classes named Derived] and Derived2. Due to this
reason, Java does not support multiple inheritances at the class level but can be achieved
through an interface.
Multiple Inheritance among interfaces can be shown as follows:

Following program shows the implementation of multiple inheritance in JAVA

interface Base

public void show();

interface Derivedl extends Base {
public void display():

'

interface Derived2 extends Base |

155

public void print():
}

class CommonChild implements Derived] Derived2 // Multiple Inheritence

{

public void show()

{

System.out.printin("Base Class");

i

public void display()

i

System.out.printin("Derived 1 Class");

f
public void print()
{
System.out.printin("Derived 2 Class");
¥
}
class CAProg20
{
public static void main(String arg[])
{
CommonChild obj=new CommonChild():
obj.show();
obj.display():

obj.print();

Here we can see, we have extended one common base interface into two different
Derived Interfaces which are further inherited in one common class. Multiple

Inheritance is possible in java using interface only.

N
§156 1

T

9.3 SUPER KEYWORDIN JAVA

Super keyword allows us to access the members of superclass. Common use of the super
keyword is to eliminate the confusion between superclasses and subclasses that have
methods with the same name. We can use the concept of super in two different forms.

I. super keyword:This scenario occurs when a derived class and base class has
same members. In that case there is a possibility of ambiguity for the [VM. super
keyword, in such a case, is used to define which member is exactly needed to be
invoked. Some highlights about super keywords are as under:

% Tocall methods of the superclass thatis overridden in the subclass.
% To access attributes (fields) of the superclass if both superclass and
subclass have attributes with the same name,
We can understand the concept of super keyword using following example

Following program shows the use of super keyword in JAVA

class Base
vold showt)

System.out.printin("Base class show Method"):
i

class CAProg2| extends Base

i
void show()
i
|
super.show(): //Accessing Base class method using super
System.out.println("Derived class show Method");
t
public static void main(String arg[])
{
CAProg21 obj=new CAProg21();
obj.show();
'

H

Compilation, Execution and Oultput of Program 9.8 (CAl'rogl.java)

2. Super method : super keyword can also be used as a method to access the parentclass
constructor. We can call parameterized as well as non-parameterized constructors
using super method. This method plays very significant role as we have already studied
that if a class defines a constructor with parameters then its default constructor is not
automatically generated. So, when we use constructor in inheritance and our base class
is having parameterized constructor then it becomes compulsory to call the base class
constructor in derived class and pass the values to the parameters. A solution to this
issue is that, we can use super method to explicitly invoke constructor of base class in
derived class. There are few important points about super method:

super() method must be the first statement in derived class constructor
otherwise compilation error would be displayed.

When we explicitly place super in the derived class constructor, the java
compiler didn't call the default constructor of parentclass (base class).

We have understood the concept of inheritance so far. Lets have a closer look at super
method in the form of an example:

Following program shows the use of super method in JAVA

class Base

i

Base(int id) //base class constructor with parameters
i

1
System.out.printin{"Student 1d 1s: "+id);
5
¥

gt

class Derived extends Base

i

Derived(int sid) //derived class constructor with parameters
{

super(sid); //Passing parameters to base class constroctor
t

vold show(String sname)

1

Systermn.out.printlng"Student name is; "+sname);

t

¥

class CAProg22

i
public static void main{String arg(])
{
Derived obj=new Derived(1001);
abj.show({"Shivpreet"):
t

Compilation, Execution and Output of Program 9.9 (CAProg22.java)

We canusesu per I::E}-'Wq;wd or super method si milarl}-' in any type of inheritance for any
of the element like fields, methods ete.

04 ABSTRACTIONINTJAVA

Abstraction is a process of hiding the implementation details and showing only
functionality to the user. In other words we can say, it shows only essential things to the
user and hides the internal complexities. For example, deriving a car is just about using
the controls like steering, accelerator, brakes, gears or other electronic control, Internal
functioning of engine remain hidden from the user.

Abstraction can be achieved using either abstract classes or interfacesin Java. The
abstract keyword is a non-access modifier, used for classes and methods: We can
classify abstraction in following types:

Abstract class: [t is a restricted class that cannot be used to create objects. To
access the members of this class, it must be inherited from another class.
Vbhatract methods: These methods can only be used in an abstract class, and does
not have a body. The body is provided by the subclass. (We have already
introduced this concept in interface section of this chapter)
Lets understand the concept of abstract class as anexample

Following program shows the use of abstract class and abstract method in JAVA

abstrict class Base

1

abstract void show() /fabstract method

vold: display()

i

system.outprintingd ™ [his 15 not an abstract function™):

=

class CAProg23

1
public static void main({String arg|[])
1
Basc obj=new Base();
obj.display();
}
;

159

Compilation, Execution and (Jutput ot E?Ji!}_-"l._:;'-! 0.10 {CAProg23.java)

As we can see, this program can not be executed because abstract class can not be

instantiated. We can use the same programin correct way as given below:

Following program shows the correct use of absiract class and abstract method in

JAV A

abstract void show(); /abstract method

void display()

System.out.printin{™This 1s not an abstract function”);
1

class CAProg23 extends Base

void show() //defination of abstract method

{

System.out.printin("This 1s an abstract function");

}

public static void main(String arg[])

i

CAProg23 obj=new CAProg23();
obj.show():

obj.display();

1
|

Compilation, Execution and Output of Program 9.11 (CAProg23.java)

In the above given example, we can see the correct way to declare and access the abstract
class and abstract method in a class.

9.5 METHODOVERRIDINGIN JAVA

We have already studied about method overloading where multiple methods are
declared with same name but having different number of arguments or different data
type of arguments within a same class. But, If subclass has the same method as declared
in the parent class, it is known as method overriding in Java. In other words, If a subclass
provides the specific implementation of the method that has been declared by one of its
parent class, it is known as method overriding. Some basic rules for method overriding
are as follows:

Rules for Java Method Overriding:

+ Themethod must have the same name as in the parent class
% Themethod must have the same parameter as in the parentclass.
% There must be an IS-A relationship (inheritance).
Lets understand method overriding in JAVA in the form of an example in detail :

Following program shows the implementation of method overriding in JAVA

class Base
‘_I
L

void display()
|

System.out.println({"Base class 1s here");

ERPE Y

class Derived extends Base

{

void display() /Method overriding
{

System.out.println("Derived class is here");
I
}

161

class CAProg24

public static void mam(String arg|)
1
1

Derived obj=new Derived():
obj.display();

Compilation, Execution and Output of Program 9.12 (CAProg24.java)

This example explain the use of method overriding in JAVA. We can not override static
methods. The main method can also not be overridden.

Difference between method overloading and method overriding;:

There are many differences between method overloading and method overriding in

javaas given below:

No. Method Overloading Method Overriding

1) | Method overloading 1s used to | Method overriding is used to provide
increase the readability of the | the specific implementation of the
program. method that is already provided by

its super class.

2) | Method overloading is | Method overriding occurs in two
performed within same class. classes that have IS-A (inheritance)

relationship.

3) |In case of method | In case of method
overloading, parameters must be | overriding, parameters must be same.
different.

162

4) | Method overloading is the example | Method overriding is the example
of compile time polymorphism. of run time polymorphism.

5) |In java, method overloading can't be | Return type must be same in method
performed by changing return type of | overriding.
the method only.

9.6 FINALCLASS METHOD AND VARIABLESIN JAVA

final keyword is one of the most important keywords in Java that can be used with
entities in Java to restrict their use. We can use it with class, methods, variables. Java
final keyword is a non-access specifiers that is used to impose some restriction on class,
variable, and method. If we initialize a variable with the final keyword, then we cannot
modify its value. If we declare a method as final, then it cannot be overridden by any
subclasses. And, if we declare a class as final, we restrict the class from being inherited.
We can graphically represent the use of final keyword as follows

To create a
constant in
JAVA

To prevent
Method
overriding

To prevent
Inheritance

Fig : Different uses of final Keyword
Lets discuss the use of this final keyword with different elements in JAVA.

+ final variable :

If you declare any variable as final, its value can't be modified. This variable would
become a constant. This also means that we must initialize a final variable while
declaration because after that no changes are allowed in final variable. If the final
variable is a reference, this means that the variable cannot be re-bound to reference
another object, but the internal state of the object pointed by that reference variable can

be changed i.e. we can add or remove elements from the final array or final collection. It
is a good practice to represent final variables in all uppercase, using underscore to

separate words. Lets understand the use of final variable in the form of an 'L-"‘.!(ﬂ]'l'l]_'!fi;‘i

Following program shows the use of final variablein JAV A

class CAProg25
{

public static void main(String arg[])

1

final int size=40; //final variable
System.out.println("Size of class is: "+size);
1

i

L

Here we can clearly see that no change is allowed in final variable after declaration. If we
delete the statement size=45; then the program will be executed correctly and the output
would be as given bellow:

After Correction, Complation, Execution and QOutput of 'rogram Y

i

(CAProe25.7ava)

CAProg2s.java

4 Final Methods:

When a method is declared final keyword, it is called a final method. A final method

cannot be overridden. We must declare methods with the final keywnrd for which we

are required to follow the same implementation throughout all the derived classes. Itisa

requirement of several applications where any of the change is essentially required to be

restricted. We can have an example of final method as follows:

Following program shows the use of final method in JAVA

class Base

{
4
i

final void show() //final method

1
System.out.printin("Base Funetion”),

1
:.
class Derieved extends Base

1

void show() //foverriding final method which shows error
1

System.out.println("Derived Function");

}

h
class CAProg26

{
public static void main(String arg[])
{
Derived obj=new Derived();
oby.show():
1

B

Compilation, Execution and Qutput of Program 9.14 (CAProg2b.java)

As we can see in the program output, no final method can be overridden in any of the

derived class.

<+ Final classes:

When a class is declared with final using final keyword, this class is restricted to be
extended in any of the sub class. These type of classes are useful to prevent the
overriding of class methods in derived classes. We can have an example of final class as
tollows:

Following program shows the use of final class in JAVA

final class Base //final class

vold show ()

I

1

System.out.println("Base Function");
1
I
1
I

class Derieved extends Base //shows error as final class cannot be inherited

{
void show2()

i

System.out.println("Derived Function");
t
t

class CAProg27

public static void main(String arg[])

Derived obj=new Derived():

ob).show2()

Compilation, Execution and OQutput of Program 9.15 (CAProg27.java)

Here we can see that final class is not allowed to be inherited. [f we try to do so, an error
message stating the same is being displayed.

3

10.
11.

12.
13.
14.
15,
16.

17.

@

Points to Remember

Inheritance is a feature or a process in which new classes are created from the
existing classes.

Class is defined as a collection of objects sharing common properties. It is a kind
of blueprint of objects created in a Java program.

Sub Class inherits the options from another class including inheritable fields and
behaviors of its Super class.

Sub Classis also known as derived class.
Super Class represents fields or methods which are inheritable I:rj,; asubelass.

Reusability is a technique of reusing methods of the existing class in the new
created class.

Single Inheritance, Multi-level Inheritance, Hierarchical Inheritance, Hybrid
Inheritance are some of the types of Inheritance.

Hybrid means consisting of more than one form of inheritance within one
inheritance type.

Java does notallow multiple inheritance among classes.
The interface in Java is a mechanism to achieve abstraction.

Method bodies can also be existed within an interface, but only for default
methods and static methods.

We cannot instantiate an interface and it does not contain any constructors.
Multiple inheritance can be achieved interfaces in JAVA.

Super keyword allows us to access the members of superclass.

Super method can be used to access the constructor of parent class.

Abstraction is a process of hiding the implementation details and showing only
functionality to the user.

If we declare a method as final, then it cannot be overridden by any subclasses.

18. If we declare a class as final, we restrict the class from being inherited.

19. If we initialize a variable with the final keyword, then we cannot modify its
value.

Exercise (e

Que:1 Multiple Choice Questions:

i Which type of inheritance is a combination of two or more types of inheritances?
A.Single Inheritance B. Multi-level Inheritance
C. Hierarchical Inheritance D. Hybrid Inheritance
il Which type of inheritance is not allowed over classes in Java ?
A. Multiple Inheritance B. Multi-level Inheritance
C.Single Inheritance D. Hybrid Inheritance
iii. Which method can be used to invoke the constructor of Base class?
A final B. static
C.super D. None of the above.
iv. finalkeyword canbe used with
A. Variables B.Classes
C. Methods D. All of the above
V. is a process of hiding the implementation details from the user.
A. Inheritance B. Overriding
C. Abstraction D. Interface

Que:2 Write True or False:

i. Afinal class must be inherited insubclass.

ii. Abstractclasscanbeinstantiated directly.

iii. Method of base class can be overridden in derived class.

iv. Field and methods can be inherited into derived.

v, Multiple inheritance is allowed only oninterfacesin Java.
Que:3 Short Answer type Questions:

i. Define inheritance.

ii. Whatd 0 you mean b}r abstraction?

168

iii. Explain super keyword.
iv. What is method overriding?

v. Write a short note on final variable?

Que:d Long Answertype Questions:
1. What is mheritance? Explain any three types of inheritance
ii. What do you mean by abstraction? Explain abstract elements in Java.

iii. What do mean by final keyword? Explain Final class and Method with
example.

iv. Explain multiple inheritance with suitable example?

