

ALCOHOLS

Existence of Intermolecular Hydrogen bonding results in higher boiling point than hydrocarbons.

Alcohols are soluble in water, due to the presence of Hydrogen Bonds.

NOMENCLATURE

- O Name the longest carbon chain that contains the carbon atom bearing the -OH group. Drop the final -e from the alkane name, and add the suffix -ol.
- O Number the longest carbon chain starting at the end nearest the -OH group, and use the appropriate number, if necessary, to indicate the position of the -OH group.
- Name the substituents, and give their numbers as for an alkane or alkene.

IUPAC Name

2-methyl-2-propanol

Common Name

t - butyl alcohol

Allyl alcohol

IUPAC Name 2-propen-1-ol Common Name:

IUPAC Name

Cyclohexanol

Common Name

Cyclohexanol alcohol

IUPAC Name

3-methyl-1-butanol

Common Name

Isoamyl alcohol

CHEMICAL REACTIVITY

Formation of carbocation is RDS here. So always try to make a stable carbocation by rearrangement.

HIERARCHY OF OXIDATION

WAYS TO DO IT

$$R - CH = CH_2 + B_2H_4$$

$$R - CH = CH_2 + [COH(CO)_4]$$

$$R - COH(R)$$

$$R - CH = CH_2 + [COH(CO)_4]$$

$$R - COH(R)$$

$$R$$

Notes -

- H₂/Ni reduces all reducible groups including olefinic bonds.
- Reaction proceeds via carbocation, rearrangement may accompany.
- 3 LiAlH4 does not reduce olefinic bonds.
- Avoid rearrangement
- 5 Anti-Markownikoff's hydration takes place.

CATALYTIC HYDROGENATION

ETHERS

Ethers are a class of organic compounds that contain an oxygen between two alkyl or aryl groups. They have the formula R-O-R', where R and R' are alkyl groups. These compounds are used in dye, perfumes, oils, waxes and industrial use. Ethers are named as alkoxyalkanes.

NOMENCLATURE OF ETHERS

Ethers are compounds having two alkyl or aryl groups bonded to an oxygen atom, as in the formula $R_1 - O - R_2$. The ether functional group does not have a characteristic IUPAC nomenclature suffix, so it is necessary to designate it as a substituent. To do so the common alkoxy substituents are given names derived from their alkyl component (below):

ALKYL GROUP	NAME	ALKOXY GROUP	NAME
CH₃⁻	Methyl	CH₃O-	Methoxy
CH ₃ CH ₂ -	Ethyl	CH₃CH₂O⁻	Ethoxy
(CH₃)₂CH⁻	Isopropyl	(CH ₃) ₂ CHO-	Isopropoxy
(CH ₃) ₃ C-	Tert- Butyl	(CH₃)₃CO-	Tert- Butoxy
C ₆ H ₅ -	Phenyl	C ₆ H ₅ O−	Phenoxy

Ethers can be named by naming each of the two carbon groups as a separate word followed by a space and the word ether. The -OR group can also be named as a substituent using the group name, alkoxy.

- Procees via carbocation intermediate, rearrangement may take place.
- 2 Do not procees via carbocation intermediate, rearrangement is avoided.
- 3 Gives methyl ether (RCH2CH2OCH3)

