# CIRCULATORY SYSTEM

**Introduction :** This system is concerned with the circulation of body fluids to distribute various substances to various body parts.

#### 5.1 FUNCTIONS OF CIRCULATORY SYSTEM.

- □ Transport of various substances such as nutrients, waste products, respiratory gases, metabolic intermediates (Such as lactic acid from muscle to liver), vitamins hormones etc.
- $\Box$  Regulation of body *pH* by means of buffer, body temperature homeostasis, water balance etc.
- □ Prevention of disease by means of antibodies and antitoxins.
- □ Support or turgidity to certain organs like penis and nipples.

#### 5.2 Types of Circulation.

Circulatory system in various groups of animals can be classified as follows :

(i) **Intracellular circulation :** Occurs inside the individual cells where the distribution of substances is through <u>cyclosis</u> of cell cytoplasm. Example – <u>Protozoans</u>.

(ii) **Extracellular circulation :** When the distribution of the substances occurs inside the body through extracellular or intracellular fluids. This is of following types –

(a) **Extra organismic circulation :** When the water of the external environment circulate through body. This is also called as water circulation system. Example – canal system in porifera, water vascular system in Echinoderms and gastrovascular system in coelenterates.

(b) Intra-organismic circulation : It involves circulation of body fluids. It is of following types :

(1) **Parenchymal circulation :** In platyhelminthes, the fluid filled spaces present in the mesodermal parenchyma tissue between body wall and internal organs are used in the distribution of substances.

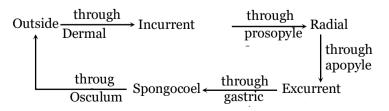
(2) **Coelomic circulation :** Coelomic fluid is concerned with the transport of substances. Example – pseudocoelomic fluid in the roundworms and haemolymph in Arthropods.

(3) **Blood vascular system :** It contains blood and a pumping structure (heart) for circulation of materials inside the body. It is of following types -

(i) Open circulatory system

(ii) Closed circulatory system

#### Differences between open and closed circulatory system


| Open circulatory system                            | Closed circulatory system                        |
|----------------------------------------------------|--------------------------------------------------|
| (1) In open circulatory system blood flows         | (1) In closed circulatory system blood           |
| through large open spaces and channels             | flows through a closed system of                 |
| called <u>lacunae</u> and <u>sinuses</u> among the | chambers called <u>heart and blood vessels</u> . |
| tissues.                                           |                                                  |
| (2) Tissues are in <u>direct contact</u> with the  | (2) Blood does <u>not come in direct contact</u> |
| blood.                                             | with tissue.                                     |
| (3) Blood <u>flow is very slow</u> and blood has   | (3) Blood <u>flow is quite rapid</u> and blood   |
| very low pressure.                                 | has a high pressure.                             |
| (4) Exchange of gases and nutrients takes          | (4) Nutrients and gases pass through the         |
| place <u>directly</u> between blood and tissues.   | capillary wall to the tissue fluid from          |
|                                                    | where they are passed on to the <u>tissues</u> . |
| (5) Less efficient as volume of blood              | (5) More efficient as volume of blood can        |
| flowing through a tissue cannot be                 | be regulated by the contraction and              |
| controlled as blood flows out in open              | relaxation of the smooth muscles of the          |
| space.                                             | blood vessels.                                   |
| (6) Open circulatory system is found in            | (6) closed circulatory system is found in        |
| higher invertebrates like most arthropods          | echinoderms, some molluscs, annelids and         |
| such as prawn, insects, etc., and in some          | <u>all vertebrates</u> .                         |
| molluscs.                                          |                                                  |
| (7) Respiratory <u>pigment</u> , if present, is    | (7) Respiratory <u>pigment is present</u> and    |
| dissolved in plasma; RBCs are not                  | may be dissolved in plasma but is usually        |
| present.                                           | held <u>in RBCs</u> .                            |

#### **5.3 CIRCULATORY SYSTEM IN MULTICELLULAR ANIMALS**

(i) **In protozoans :** Distribution of nutrients takes place by <u>cyclosis</u> (streaming movement) of cytoplasm.

(ii) **In poriferans :** The vascular system of poriferans is the canal system. A simplest canal system involves ostia (mouth), spongocoel and on osculum (Anus).

Route followed by water current in sponges :



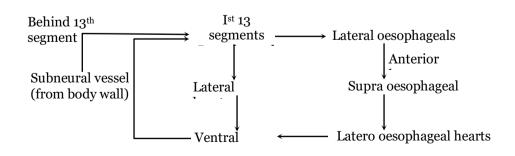
(iii) **In coelenterates :** Hydra has a single large internal cavity called coelenteron or gastrovascular cavity. It has single opening the mouth. It also extends into the hollow tentacles. It lacks a mesodermal epithelial covering (peritoneum) and a coelomic fluid. It is concerned with first extracellular and then intracellular digestion of food.

(iv) **In platyhelminthes :** Vascular system is absent but circulation occurs with the help of parenchyma hence called parenchymal circulation. Example – Fasciola hepatica.

(v) **In annelids :** Vascular system in annelids is a closed circulatory or blood vascular system which comprises four parts : blood, blood glands, blood vessels and hearts.

(a) **Blood :** Red, due to respiratory pigment haemoglobin dissolved in plasma. The blood cells are colourless and nucleated like the leucocytes of vertebrates.

(b) **Blood glands :** Reddish bodies present on alimentary canal in segments 4, 5 and 6 and are thought to produce blood corpuscles and haemoglobin.


(c) **Blood vessels :** Lack endothelium. The arrangement of blood vessels in first 13 segments is different from that is rest of the body. I<sup>st</sup> 13 segments have five longitudinal vessels – dorsal, ventral, a pair of lateral oesophageal and a supraoesophageal vessel. Behind 13<sup>th</sup> segment has 3 longitudinal vessels – dorsal, ventral and subneural.

(d) **Hearts :** Four pairs, one pair in each of 7<sup>th</sup>, 9<sup>th</sup>, 12<sup>th</sup> and 13<sup>th</sup> segment. Two anterior pairs receiving blood from dorsal vessel only are called lateral hearts and two posterior pairs receiving blood from dorsal vessel as well as supra oesophageal vessel are called latero-oesophageal hearts. All hearts possess muscular pulsafile walls to pump blood into ventral vessel. Valves present to prevent back flow of blood.

□ Anterior loops : 2 pairs, one pair in each of the 10<sup>th</sup> and 11<sup>th</sup> segment, carry blood from lateral oesophageal vessel to supra oesophageal vessel.

□ Lymph glands : Two, small, whitish, located on each side of the dorsal blood vessel in each of the segments 26 and those behind it. They produce phagocytic cells which are occasionally liberated into the coelomic fluid to phagocytise harmful bacteria and other invaders.

#### **<u>Circulation in earthworm</u>** :

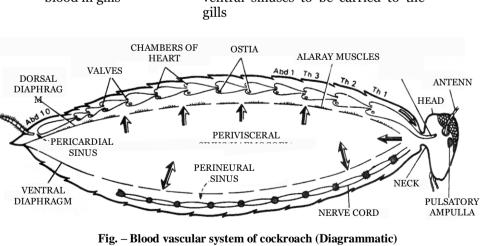


Ventral vessel : Distributing vessel.

Subneural vessel : Collecting vessel.

Lateral oesophageal : Collecting vessel.

Supra oesophageal : Collecting vessel.


**Dorsal vessel :** Distributing in 1<sup>st</sup> 13 segments and collecting in the region behind 13<sup>th</sup> segment.

(vi) In arthropoda : Blood vascular system in arthropods is 'Open type' or "Lacunar type".

(a) **Prawn :** Blood vascular system of prawn includes pericardium, heart, arteries, blood lacunar/sinuses, blood channels and blood. Blood is colourless with phagocytic leucocytes and respiratory pigment haemocyanin dissolved in plasma. The blood has remarkable clotting properties. Heart is a muscular, triangular organ without auricle and ventricle but with ostia for inflow of blood into heart and arteries. Five of the arteries arise from the anterior end and one from the posterior end of heart. The prawn's heart always contains oxygenated blood only and hence, also called as Arterial heart.

#### **Circulation of blood in prawn :** Pumping of oxgenated Arteries open into blood sinuses blood by heart into arteries and lacunae of haemocoel Heart collects the Exchange of nutrients, gases and oxygenated blood through a excretory wastes between blood in slit-like opening in its lacunae and sinuses and surrounding cardiac wall tissues Oxygenated blood Oxygenation of Deoxygenated blood seeps out into from gills returns to blood in gills ventral sinuses to be carried to the pericardial sinus gills (b) Cockroach CHAMBERS OF OSTIA ALARAY MUSCLES HEART

Cockroach has an open circulatory system. The body cavity is called haemocoel filled with fluid а haemolymph. The heart lies in the pericardial sinus of haemocoel. The heart is 13 chambered. tubular dorsal vessel, pulsatile with an



anterior aorta. Each chamber is inverted funnel, shaped provided with valved lateral apertures called ostia. The heart is supported by 13 pairs of triangular fan like alary muscles. The blood sinuses are dorsal pericardial sinus, middle perivisceral sinus and the ventral perinural sinus or sternal sinus. These sinuses are separated from each other by dorsal diaphragm and ventral diaphragm. Blood or haemolymph is colourless contains haemcytes but is without respiratory pigment as it plays no role in respiration.

## Circulation of blood in cockroach : $\downarrow$ Hear $\rightarrow$ Aort $\rightarrow$ Head $\downarrow$ Pericardial $\leftarrow$ Perivisceral $\leftarrow$ Perineural

(vii) **In echinoderms :** A true blood vascular system is absent. It is represented by a haemal system which is enclosed within a perihaemal system. haemal system includes oral haemal ring (a sinus), radical haemal sinuses or strands (present in the arms), axial glands, heart, brown glands (present within axial sinus of perihaemal system) and aboral haemal ring, from which arise, five pairs of genital haemal strands.

## **Important Tips**

- Annelids are the first metazoans to have a well developed circulatory system.
- Nereis among annelids and amphioxus among chordates have no heart.
- Ampullary hearts are found in crustaceans, insects and cephalopods.
- Pulsating hearts are found in annelids and molluscs.
- The heart of cockroach contracts with the help of alary muscles at a rate of 50 times/minute.
- In Unio (fresh water mussel), rectum passes through the heart and the wastes are discharged into the pericardial cavity by Keber's organ (also called pericardial gland).

(viii) **Blood circulation in vertebrates :** Blood circulation was discovered by William harvey. In case of vertebrates, blood circulation is of closed type, which can be grouped into two categories :

(a) Single circulation (b) Double circulation

#### Differences between single and double circulation

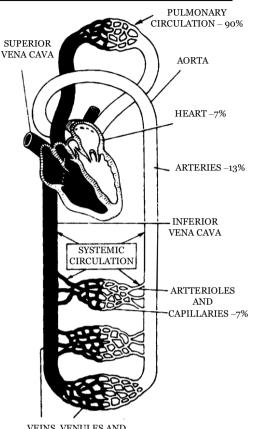
| Single circulation                                                                                                                                                                                                                                      | Double circulation                                                                                                                                                                                                               |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (1) Blood flows only once through the heart in a complete cycle.<br>Auricle $\longrightarrow$ Ventricle<br>$\uparrow$ $\downarrow$ | (1) Blood flows in two circuit pulmonary<br>and systemic.<br>Right auficle Left auricle<br>Lung Lung Ling Left ventricle Left ventricle Left ventricle Left ventricle                                                            |  |
| (2) Heart pumps only deoxygenated blood,<br>hence called Venous Heart.                                                                                                                                                                                  | (2) Heart pumps both deoxygenated and<br>oxygenated blood to lungs and body<br>respectively, hence called arteriovenous<br>heart.                                                                                                |  |
| (3) Blood is oxygenated in gills.                                                                                                                                                                                                                       | (3) Blood is oxygenated in lungs.                                                                                                                                                                                                |  |
| (4) Less efficient as gill capillaries slow<br>down the blood flow. So, the body<br>receives blood at a low pressure which<br>decreases the rate of $O_2$ supply to the cells<br><i>i.e.</i> keeps the metabolic rate low.                              | (4) More efficient as blood flows at higher<br>pressure, especially in birds and<br>mammals, which increases the rate of food<br>and $O_2$ supply to the cell and also rapid<br>removal of wastes from them <i>i.e.</i> provides |  |

|                           | a higher metabolic rate.                              |  |
|---------------------------|-------------------------------------------------------|--|
| (5) Found only in fishes. | (5) Found in amphibians, reptiles, birds and mammals. |  |

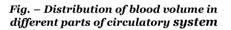
Double circulation in mammals can be divided into three parts :

(1) **Cardiac circulation :** The amount of blood present in the heart. Its value is 7%.

(2) **Pulmonary or lesser circulation :** The amount of blood present in the surrounding of lungs and pulmonary blood vessels. Its value is 9%.


(3) **Systemic or greater circulation :** The amount of blood which circulates in the rest part of the body. Its value is 84%. It can be divided into three parts –

Arterial circulation - 15%


Capillary circulation – 5%

Venous circulation - 64%

**Heart :** The form, structure and function of heart exhibits much variation. The characteristics of heart of fishes, amphibians, reptiles, birds and mammals is presented in the following table.



VEINS, VENULES AND VENOUS SINUSOIDES –64%



#### Class of **Characteristics** Example Diagram vertebrates .CONUS Pisces (1)Labeo (= Thick, muscular, made of cardiac ARTERIOSUS Branchial heart) muscles, has two chambers (i) Scoliodon -VENTRICLE auricle and (ii) ventricle. The heart Neocerato is called venous heart since it AURICLE dus SINUS pumps deoxygenated blood to gills VENO SUS for oxygenation. This blood goes Fig. – Bronchial heart of a directly from gills to visceral fish .d.a.a.liadau organs (single circuit circulation). sinus venosus and conus A arteriosus is present. Lung fishes have 2 auricles and 1 ventricle.

#### Heart of vertebrates

| (2) Amphibians | Heart consists of<br>(a) Two auricles<br>(b) Undivided ventricle<br>(c) Sinus venosus<br>(d) Truncus arteriosus<br>(conus + proximal part of aorta)<br>Right auricle receives blood from<br>all the visceral organs<br>(deoxygenated) via precaval and<br>post caval. Pulmonary artery<br>carries deoxygenated blood to<br>lungs for oxygenation. This blood<br>returns to left auricle via<br>pulmonary vein (Double circuit | Frog<br>Toad | RIGHT<br>AURICL<br>AURICL<br>Fig. – Amphibian<br>hornt        |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------|
|                | circulation)                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                               |
| (3) Reptiles   | Heart consists of :                                                                                                                                                                                                                                                                                                                                                                                                           | Lizards      |                                                               |
|                | (a) Left and right auricle                                                                                                                                                                                                                                                                                                                                                                                                    | Snakes       | T MOUU )                                                      |
|                | <ul> <li>(b) Incompletely divided ventricle</li> <li>(Ventricle in crocodiles gavialis<br/>and alligator is completely<br/>divided)</li> <li>(c) Sinus venosus</li> <li>(d) Conus arteriosus divided into<br/>right systemic, left systemic and<br/>pulmonary arch.</li> </ul>                                                                                                                                                | Turtles      | Fig. – Reptilian heart                                        |
| (4) Aves       | <ul> <li>Exhibit double circulation</li> <li>Heart consists of <ul> <li>(a) Left and right auricle</li> <li>(b) Left and right ventricle</li> <li>(c) Complete separation of arterial and venous circulation</li> <li>(d) Only right systemic arch is present</li> <li>(e) Sinus venosus and truncus arterisious absent</li> </ul> </li> </ul>                                                                                | Pigeon       | RIGHT<br>AURICLE<br>RIGHT<br>VENTRICLE<br>Fig. – Pigeon heart |

| (5) Mammals | Same as bird except that mammals | Rabbit, |  |
|-------------|----------------------------------|---------|--|
|             | have left systemic arch.         | man     |  |

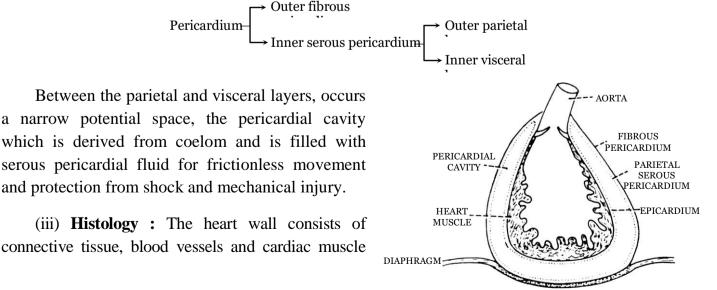
#### **Important Tips**

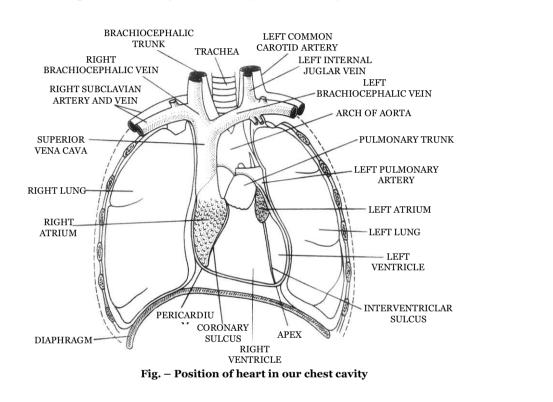
- Circulatory system develops from the mesoderm in vertebrates.
- Heart in fishes is 2-chambered, venous and branchial. Lung fishes have 3-chambered heart.
- **Foramen of pannizae :** Aperture between two systemic arches in reptiles.
- Gubernaculum cordis : White fibrous band which attaches apex of lizard heart to pericardium.
- Reptiles have incompletely 4-chambered heart except <u>crocodiles</u>, <u>gavialis</u> and <u>alligators</u> which have completely 4-chambered heart.
- Branchial heart : Where purification of blood occurs in gills. Example Fishes, tadpole (larva), some amphibians.
- Pulmonary heart : Where oxygenation of blood takes place in lungs. Example Some amphibians, reptiles, birds and mammals.

### 5.4 HEART.

(i) **Shape and position :** Reddish, roughly conical, highly muscular, mesodermal hollow organ of the size of one's first. Its average weight in males is about 300 gm. and in females about 250 gm. It lies behind the sternum in the mediastinum space of thoracic cavity in between the two lungs. The broader base faces upward and backward. The narrower apex is directed downward, forward and slightly towards left, lying between 5<sup>th</sup> and 6<sup>th</sup> ribs and rests on the diaphragm.

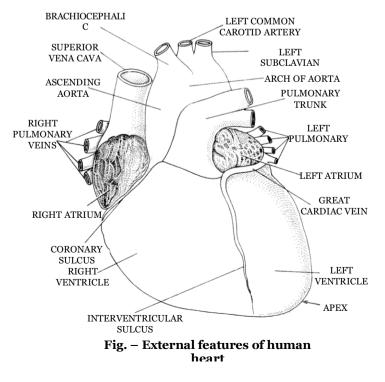
(ii) **Protective covering :** Heart is enclosed in a tough, 2 layered fibroserous sac, the pericardium. The outer layer is non-distensible fibrous pericardium and inner layer is thin serous pericardium which further consists of outer parietal layer (attached to fibrous pericardium) and inner visceral layer (adhered to the heart).





Fig. – Diagram to show the layers of the pericardium

fibres in 3 different layers - Epicardium, Myocardium and Endocardium.

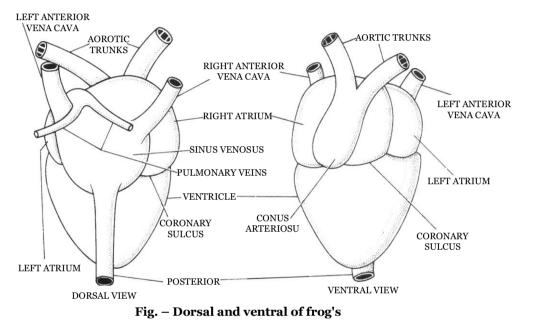
(a) **Endocardium :** Innermost layer lining the cavity of heart and consisting of endothelium of squamous cells resting on thin basement membrane of loose connective tissue.


(b) **Myocardium :** Middle, highly vascular layer, composed of cardiac muscle fibres joined together by intercalated disc. The connective tissue in myocardium acts as cardiac skeleton. Endocardium is thickest where the myocarduim is thinnest and *vice-versa*.

(c) Epicardium : Visceral pericardium, joined to myocardium by connective tissue.



(iv) **External structure :** Human heart is 4-chambered and is divided by septa into two halves – right and left. Each half has one darker, thin walled auricle in the broader upper region and one lighter, thick-walled ventricle in the narrower lower region.


(a) **Auricles (Atria) :** Two in no., demarcated externally from ventricles by irregular groove called coronary sulcus and from each other by interatrial sulcus. When atria contract, small curtain like flaps called auricular appendages or appendices project from sides of auricles and overhang the corresponding ventricles.



(b) **Ventricles :** Two in no. demarcated externally from each other by an oblique groove called interventricular sulcus which contains coronary blood vessels. The right ventricle does not reach apex.

(c) **Sinus venosus and conus arteriosus :** Sinus venosus and conus/truncus/bulbus arteriosus are accessory chambers in the heart of lower vertebrates (fishes and amphibians). In rabbit, sinus venosus is formed in the embryo but later it becomes a part of wall of right auricle.

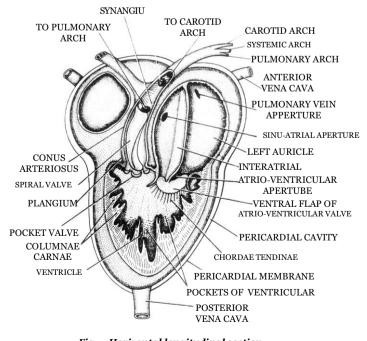
In frog, sinus venosus spreads upon most of the dorsal side of heart and conus arteriosus lies obliquely upon the ventral surface of right atrium.

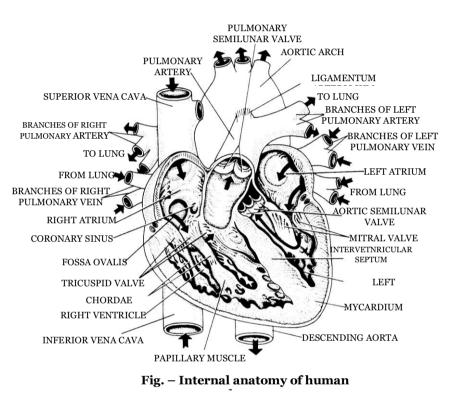


#### (v) Internal structure

(a) **Auricles :** Atria are thin walled. They act as reserviors for blood entering the heart. Right auricle is bigger than left auricle and both are separated by a myomembranous partition called Interatrial or interauricular septum. During embryonic stage, at the place of this septum, there are present septum primum and septum secondum having a gap (aperture) called foramen ovalis between them. From the opening of inferior vena cava upto foramen ovalis, there is a flap called Eustachian flap which prevents the blood in the foetal heart go to lungs because in foetal life. lungs are not functional purification of blood is done by placenta.

At the time of birth, there is closure of





Fig. – Horizontal longitudinal section (H.L.S.) of frog's heart (ventral view) foramen ovalis but there remains depression on posterior part of the right surface of interauricular septum in rabbit. In man this depression is present on both the side. because of least regenerative power in human being. The depression towards right atrium is called fossa ovalis and depression towards left atrium is called fossa lunata.

**PFO** (**Patient Foramen Ovalis**) or septal defect : In case there is no closure of foramen ovalis, then disease is called PFO. In this condition, there is mixing of blood after birth which gives bluish appearance to the body called as Cyanosis. Such child is called Blue Baby.

The inner surface of auricles is smooth. A network of muscular ridges called musculi pectinati or trabeculi pectinati occurs internally in the region of the auricular appendages and give comb like appearance.

(ii) Ventricles : The right and left ventricles are demarcated by an interventricular septum which is obliquely curved towards right, so that the left ventricle is larger than right one. However, the cavity of left ventricle is relatively smaller and nearly circular because the myocardium of left ventricleis 3 times thicker than right ventricle whose cavity is larger and somewhat crescentic.

The walls of the ventricles are internally raised into a number of thick, muscular, column shaped projections called columnae carnae or trabecular carnae; and a few large muscular



elevations called papillary muscles or musculli papillares which are 3 in right ventricle and 2 in left ventricle. These muscles act as anchors for chordae tendinae.

**Chordae tendinae :** Numerous, strong, inelastic thread like tendons present in the mammalian heart but absent in frog. One end of these threads is attached to the cusps of *A.V.* valves and the other end to the papillary muscles of the ventricles. These muscles contract during ventricular systole and pull the valves downwards, thus, preventing their everting into atria. The chordae tendinae hold the valves in place.

**Regurgitation :** If there is weeakening of papillary muscles or breaking of chordae tendinae, then AV valves revert into auricles. So, blood goes in opposite direction, it is called regurgitation. Sometimes, there is narrowing of valves. So, there remains gap between the valves which causes regurgitation.

**Moderator band :** Right ventricle contains a prominent muscular trabeculum called moderator band which extends from the interventricular septum to anterior papillary muscle.

(vi) **Major blood vessels associated with heart :** The blood vessels that enter or leave the heart are called Great Blood Vessels.

(a) **Superior vena cava or precaval :** Brings deoxygenated blood from head and upper parts of the body into the right auricle through an opening which is single in human and cat and two in rabbit as there are 2 precavals – right and left in rabbit. In frog, right and left precavals open into sinus venosus.

(b) **Inferior vena cava or post caval :** Drains deoxygenated blood from middle and lower parts of the body into the right auricle through a single opening which is bordered by a membranous, falciform fold which is a remnant of the foetal valve of Eustachian. In frog, post caval opens into sinus venosus.

(c) **Coronary sinus :** Returns deoxygenated blood from heart wall into right auricle through a single opening.

(d) **Pulmonary vein :** Four pulmonary veins, two from each lung, carry oxygenated blood from the lungs and open into the left auricle through four openings. In rabbit, the pulmonary veins open in the left auricle through 2 openings.

(e) **Pulmonary aorta/arch :** Arises from upper left corner of right ventricle through a single opening and divides into right and left pulmonary arteries which carry deoxygenated blood to the lungs for oxygenation.

(f) **Systemic aorta :** Arises from upper right corner of left ventricle through a single opening and has 3 regions – ascending aorta, arch of aorta and descending aorta. It distributes oxygenated blood to various body parts except lungs.

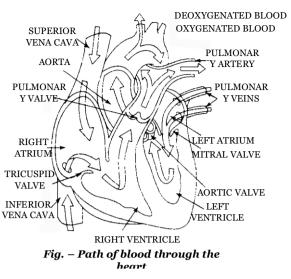
**Ligamentum arteriosus :** During foetal life, because the lungs are non-functional hence blood of pulmonary aorta comes into systemic aorta through a small duct called ductus botalli or ductus arteriosus soon after birth, deposition of elastin fibre blocks this duct, forming a new structure called ligamentum botalli or ligamentum arteriosus.

**PDA** (**Patient Ductus Arteriosus**) : If the ligamentum arteriosus remains open, the condition is called PDA. In this case, there is mixing of blood which leads to blue baby.

Valves : The valves present in the mammalian heart are tendinous cords.

(a) **Eustachian valve :** Present on the opening of inferior vena cava (post caval) in the right auricle in rabbit, whereas in human, the vestige of eustachian valve is present over the opening of post caval vein. It allows the passage of blood in right auricle.

(b) **Haversian valve :** Present in human but absent in rabbit. It is present over the opening of precaval vein and allows the passage of blood in right auricle.


(c) **Thebesian or coronary valve :** Present over the opening of coronary sinus in right auricle in mammals and allows the passage of blood in right auricle.

(d) **Atrio-ventricular valves :** Auricles open into the respective ventricles through wide passages called auriculo ventricular apertures or *A.V.* apertures which are guarded by one-way *A.V.* valves or parachute valves and are located dorsally or posteriorly. There are 2 types of valves in mammals.

(1) **Right A.V. valve or Tricuspid valve :** Present between right auricle and right ventricle. It consists of 3 membranous flaps or cusps.

(2) Left A.V. valve or Bicuspid or Mitral valve : Present between left auricle and left ventricle. It consists of 2 flaps or cusps. The bicuspid valve resembles mitre or topi of bishop, hence, also called as Mitral valve.

The upper edges of the flaps are attached to the margins of the A.V. apertures while the lower edges project freely into the ventricles. The free edges of these flaps are connected by chordae tendinae to he papillary muscles of the ventricles. These valves allow the passage of blood from auricles into ventricles but prevent backflow.



In frog, the A.V. valves are semilunar type and not of cuspid type. There is single row of A.V. valves due to single ventricle.

(e) **Semilunar valves :** At the base of pulmonary arch and systemic aorta, three membranous, pocket-shaped flaps called semilunar valves are present which are set in a ring with their cavities directed away from the ventricles. They allow the passage of blood from ventricles to respective blood vessels, but prevent the return of blood.

**Sinus of valsalva :** When the semilunar valves open towards aorta, there remains gap between the flaps and the wall of aorta. This gap is called sinus of valsalva. When ventricles relax, blood is filled in this sinus and is called Drooping of blood.

**Corpora Arantii :** Thick nodules present on the edges of the flaps of semilunar valves which prevent the reverting of these valves into the ventricles.

(viii) **Physiology of heart :** The heart pumps blood to all parts of the body. The deoxygenated blood is drained into right auricle through superior and inferior venae cavae and coronary sinus whereas the pulmonary veins carry oxygenated blood from lungs to the left auricle. This is called as Auricular circulation. About 70% of the auricular blood passes into the ventricles during diastole. This phase is called diastasis. The rest of 30% of blood passes into the ventricles due to auricular systole (contraction). In this way, blood reaches the ventricles and is called ventricular filling. During ventricular systole (which starts first in left ventricle than in right ventricle), the pressure increases in the ventricles, thus, forcing the oxygenated blood from left ventricle into systemic aorta and deoxygenated blood to all the body parts except lungs while pulmonary aorta carries the deoxygenated blood to lungs for oxygenation.

During foetal life, heart receives and pumps mixed blood and hence, it can be compared with transitional heart, the eustachian flap, in the foetus directs the blood of right atrium towards left atrium through foramen ovalis. From left atrium, blood reaches left ventricle from which the systemic aorta arise. An iliac artery arise from this aorta from the internal branches of illiac artery, two umbilical arteries arise which come out of body through naval and reach placenta where exchange of gases takes place. A single umbilical vein arises from placenta and enters the foetal body through naval and reaches the liver to give some blood to it and some blood to inferior vena cava.

already possess impure blood. So, there is mixing of blood. In foetus, pure blood is there only in umbilical vein (allantoic vein). Umbilical cord is a tube possessing a jelly like connective tissue (Wharton jelly) along with two umbilical arteries and one umbilical vein.

(a) **Heart beat :** The spontaneous and rhythmic contraction and relaxation of the heart to pump out and receive blood to and from the body is called Heart beat. Depending upon the nature of control of the heart beat, hearts are of 2 types -

Neurogenic and Myogenic or autorhythmic.

| Differences between Neurogeme heart and wryogeme heart                                                                                   |                                                                                                                                              |  |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Neurogenic heart                                                                                                                         | Myogenic heart                                                                                                                               |  |
| (1) The heart beat is initiated by a ganglion situated near the heart.                                                                   | (1) The heart beat is initiated by a patch of modified heart muscle.                                                                         |  |
| (2) The impulse of contraction originates from nervous system.                                                                           | (2) The impulse of contraction originates itself in the heart.                                                                               |  |
| (3) The heart normally stops beating<br>immediately after removal from the body.<br>Therefore, heart transplantation is not<br>possible. | <ul><li>(3) The heart removed from the body continues to beat for some time.</li><li>Therefore, heart transplantation is possible.</li></ul> |  |
| (4) Examples : Hearts of some annelids and most arthropods.                                                                              | (4) Examples : Hearts of molluscs and vertebrates.                                                                                           |  |

#### Differences between Neurogenic heart and Myogenic heart

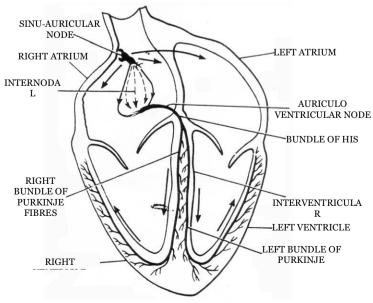
(b) **Origin and conduction of heart beat :** Initiation of heart beat is under special bundles of cardiac muscles called nodal tissue. The cardiac muscles have less actin and myosin. So, structurally they become more a nerve than muscle and functionally they are similar to neurons.

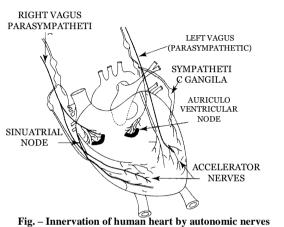
(1) Morphology of nodal tissue : The nodal tissue consists of the following –

(i) **Sinu-auricular or S.A. node :** Also called as pacemaker, node of keith and flack, heart of heart, brain of heart, pulsation centre. It is located in the right wall of right atrium below the opening

of superior vena cava. This is the place where sinus venosus is incorporated in the wall of right atrium in the embryo. S.A. node is the main tissue of heart and has highest degree of autrohythmicity (generates beating impulse at the rate of 70-80 times/minute) but least conductivity. The rhythmic impulses produced are called as Sinus rhythmia. In frog S.A. node is present in sinus venosus.

(ii) Atrio-ventricular node or A.V. node : Also called reserve pacemaker, node of Twara and Aschoff. Discovered by Lewis Kent. It lies





Fig. - Conducting system of rabbit's heart (ventral view)

in the right atrium near the junction of interauricular and interventricular septum close to the opening of coronary sinus. It is concerned with the conduction of cardiac impulses generated by S.A. node, but it can also generate the impulse at the rate of 40-60/minute. These impulses produced are rhythmic and called nodal rhythmia. In frog, A.V. node is absent.

(iii) **Bundle of His or A.V. bundle :** Discovered by His. It arises from A.V. node, descends in the interventricular septum and bifurcates into two branches innervating the wall of right and left ventricle respectively. The myocardium of atria and ventricles are discontinuous and this bundle is the only muscular connection between the two. It is concerned with the conduction of impulse from atria to the tip of ventricle but can also generate impulse at the rate of 35-40/minute. The impulses produced are non-rhythmic.

(iv) **Purkinje fibres :** Numerous, modified muscle fibres which act as sympathetic nerve fibres. They arise from branches of bundle of His and provide impulse to myocardium of ventricles. They can also generate non-rhythmic impulse at a rate of 30-35/minute.

(2) Working of nodal tissue : S.A. node spontaneously initiates a wave of contraction which is conducted along the tracts of special muscle fibres called internal pathways over both the auricles at a rate of 1m/sec. The impulse generated travels first in the right atrium than in left atrium. So, right atrium contracts first



rig. – innervation of numan neart by autonomic nerves

but the contraction ends simultaneously in both atria. As the musculatures of atria and ventricles are discontinuous and are separated by a septum of fibrous connective tissue, called annular pad in mammals, the wave of contraction is received by A.V. node from myocardium of atria and is provided to bundle of His. The impulses reach the A.V. node about 0.03 seconds after their origin from S.A. node. The A.V. node generates a fresh wave of contraction which passes over both the ventricles along the bundle of His and its ramifications at the rate of 1.5 to 4 *m/sec*. The Purkinje fibres bring about the contraction of ventricles from the apex of heart which passes quickly towards the origin of pulmonary and systemic arches forcing blood into them.

S.A. node not only acts as pacemaker but also establishes the basic rhythm at which the heart beats. In case of degeneration of S.A. node, A.V. node can generate impulse but it will lead to abnormal beating (arrhythmia). The failure of atrial impulse to pass into ventricles for a few seconds to few hours is called ventricular escape or stokes-adams syndrome leading to delayed pick up of heart beat. In such conditions, artificial pacemaker (Lithium Battery) is placed underneath the patient's chest.

**Ectopic pacemaker :** If any cardiac muscle other than the conducting tissue (nodes) generates impulse, then extra beats are heard. Such muscles are called Ectopic pacemaker.

In mammals, conducting system of the heart has S.A. node, A.V node and complicated system of conducting fibres. But in frog, it has only S.A. node and system of conducting fibres is simple.

**Heart beat rate :** Heart beat/minute or number of cardiac cycles/minute. Example – frog-64/*min.*, rabbit-200/*min.*, human-70-80/*min.* Females have higher heart rate than males.

Normal heart beat rate  $\rightarrow$  Rhythmia

Abnormal heart rate  $\rightarrow$  Arrhythmia

Decrease in heart rate  $\rightarrow$  Bradycardia

Increase in heart rate  $\rightarrow$  Tachycardia

(c) **Regulation of heart beat :** The centre controlling the heart rate (cardiac centre) is present in medulla oblongata of brain and possess chemoreceptors sensitive for  $CO_2$ ,  $O_2$  and also for blood pressure. This centre is under the influence of hypothalamus which is the controller of autonomic activities.

(1) **Nervous control :** Brain receives two sets of nerve fibres : Sympathetic and para sympathetic or vegal.

When there is increase in blood  $CO_2$ , the sympathetic nerve fibres stimulate S.A. node by producing sympathin (adrenaline + noradrenaline). This compound induces impulse generation by inducing entry of  $Ca^{2+}$  into cardiac muscles. So, heart beat and force of contraction increase (Tachycardia). After action, sympathin is destroyed by sympathenase, COMT (catechol orthomethyl transferase) and MAD (Mono Amino Oxidase).

When there is increase in blood  $O_2$ , the parasympathetic or vagal (10<sup>th</sup> cranial) nerve inhibits S.A. node by producing acetylcholine. This compound increases contraction time and hence, heart beat is decreased (Bradycardia). After action, acetyl choline is destroyed by enzyme acetyl choline esterase (AchE). This chemical regulation of heart beat on behalf of nerves was discovered by Otto Loewi.

**Vagus escape :** Stimulation of vagus nerve decreases the heart rate but its continuous stimulation shows no further decrease. This phenomenon is called Vagus escape.

(2) **Hormonal control :** Hormones from adrenal medulla adrenaline and nor adrenaline accelerate the heart beat, the latter under normal conditions and the former at the time of emergency.

**Pounding :** Very fast heart beat during some conditions like anger and love.

Thyroxine hormone also increases the heart beat by increasing energy production.

#### (d) Factors affecting heart rate

- □ Heart rate increases with increase in basal metabolic rate (BMR).
- □ Heart increases as the size of the animals body decreases.
- $\Box$  Decrease in *pH* also increases heart rate.
- □ Heart rate increases with increase in temperature.
- □ Increase in  $Na^+$  ions in blood or in cardiac muscles, increase heart rate.

- □ Increase in  $Ca^{2+}$  ions in blood increase heart beat but if they are injected in cardiac muscles, heart stops in contracted phase which is called Systolic Arrest.
- □ Injection of  $K^+$  ions in heart muscles stop impulse generation. So, heart stops in diastolic or Relax phase.
- $\Box$  *H*<sup>+</sup> ions reduce force of contraction of heart.
- □ Increased inspiration, muscular exercise, low oxygen tension, injection of adrenaline, thyroxine, sympathin all increase heart rate.
- □ Increased expiration, during sleep, injection of acetylcholine decrease heart rate.
- □ Stenosis Narrowing of valve is called stenosis.

#### **5.5 CRADIAC CYCLE**

A regular sequence of three events :

- (i) Auricular systole (0.1 sec)
- (ii) Ventricular systole (0.3 sec)
- (iii) Joint Diastole or complete cardiac diastole (0.4 sec)

During the completion of one heart beat is called as cardiac cycle. These events are repeated in a cyclic manner during each heart beat.

(i) **Auricular systole :** The atria contract due to wave of contraction stimulated by S.A. node contraction of auricles drives most of their blood into respective ventricles as the A.V. valves are open. There is no backflow of blood into the large veins as the contraction begins at the upper end and passes towards ventricles and moreover, the valves present at the opening of these veins close. Also, blood is already present in large veins which offers resistance to the blood that may return from the atria. At the end of a atrial systole, there starts the relaxation of auricles (auricular diastole) and contraction of ventricles (ventricular systole) simultaneously. Atrial systole takes 0.1 second while atrial diastole is of about 0.7 seconds.

(ii) **Ventricular systole :** The ventricles begin to contract due to a wave of contraction stimulated by A.V. node. Due to ventricular systole, the pressure of blood in ventricles immediately rises above that in the auricles. With this pressure, the bicuspid and tricuspid valves close rapidly to prevent the backflow of blood. This closure of A.V. valves at the start of ventricular systole produces first heart sound called "Lubb" or Systolic sound. The semilunar valves are also close at this time. When the pressure of blood in the ventricles exceeds that in the great arteries, the semilunar valves open and blood enters into the great arteries. This marks the end of ventricular systole which takes about 0.3 seconds. Now the ventricles start relaxing (ventricular diastole which lasts for about 0.5 sec.)

(iii) **Joint diastole :** The ventricles and auricles are in the diastolic phase simultaneously. As the ventricular diastole progresses, the pressure in the ventricles falls below that in the great arteries. So, to prevent backflow of blood from great arteries into ventricles, the semilunar valves close rapidly. This

rapid closure of semilunar valves at the beginning of ventricular diastole produces second heart sound "Dup" or diastolic sound.

During joint diastole, blood from great veins and coronary sinus flows into the atria and some blood also passes from auricles into the respective relaxing ventricles due to less pressure in ventricles. This phase takes only 0.4 seconds and is also called as blood receiving period of heart. Thus a cardiac cycle is completed in 0.8 seconds.

**Cardiac output :** Volume of blood pumped from heart (left ventricle) into the systemic aorta in one minute is called cardiac output. It is also called minute volume. It is calculated as the product of stroke volume (amount of blood pumped by left ventricle each time it contracts) and rate of heart beat.

*i.e.* Cardiac output = Stroke volume × Rate of heart beat

 $= 70 \ ml \times 75 \ times/minute = 5040 \ ml/minute \simeq 5 \ litres/minute$ 

Total amount of blood in human body is about 6.8 *litres* (7% of body weight). During mild exercise, the cardiac output rises to about 11 *litres*. Cardiac output is directly proportional to the size of the organism, metabolic rate etc. but is inversely proportional to age.

(i) **Fractions of cardiac output :** Amount of pure blood going to an organ per minute is called as fraction of the organ.

- **Cardiac fraction** -200 ml/min.
- □ Hepatic fraction -1500 ml/min. (28% of blood as liver is the busiest organ of body and has maximum power of regeneration).
- **\square** Renal fraction 1300 *ml/min* (25% of blood)
- □ Myofraction 600-900 *ml/min*.
- □ Cephalic organs 700-800 *ml/min*.
- □ Remaining organs Remaining blood.

(ii) **Cardiac index :** Cardiac output per square metre of body surface area per minute. As area of normal young adult is 1.7 metre square, so, cardiac index is 3 *litres/min/square metre*.

(iii) **Cardiac reserve :** Maximum amount of blood that can be pumped by left ventricle under the conditions of maximum needs. In this condition, heart beat can go upto 250 and stroke volume can go upto 100 *ml* per systole. Cardiac reserve is 25-30 *litres* which is about 5-6 times of cardiac output.

(iv) **End diastolic volume :** Amount of blood present in left ventricle at the end of diastole. It is the maximum volume of the cavity of left ventricle and is equal to 120-130 *ml*.

(v) **End systolic volume :** Amount of blood present in left ventricle at the end of systole. It is the least volume of the cavity of left ventricle and is equal to 50-60 *ml*.

(vi) **Stroke volume :** (70 *ml*) is equal to the difference between the end diastolic volume and end systolic volume.

(vii) **Venous return :** Amount of impure blood returning to righ atrium per minute is called venous return and is equal to 5.25 *litres*. The venous return is due to many factors –

(a) Little blood pressure in the veins.

(b) **Skeletal muscle pump :** Veins usually pass through skeletal muscles which, on contraction, exert milking action on veins. So, there is upward movement of blood.

(c) **Respiratory pump :** Due to the movement of diaphragm during breathing, blood moves upward in the veins.

(d) Pressure difference in venae cavae and right atrium. The negative pressure created in right atrium due to the atrial diastole results in sucking up of blood from venae cavae into the atrium.

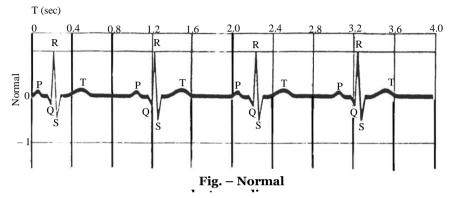
#### **5.6 HEART SOUNDS**

In normal heart, four sounds are heard. First and second sounds have audible frequencies, so, they can be heard very easily. 3<sup>rd</sup> and 4<sup>th</sup> sounds are having very less frequency (less than 20 Hertz). So, they can't be heard easily. Third heart sound is running water sound. Fourth heart sound is also called Atrial sound as it appears when blood flows from atria into ventricles due to atrial contraction.

| First heart sound (Lubb)                                                                                  | Second heart sound (Dup)                                         |  |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|
| (1) It is produced by closure of bicuspid<br>and tricuspid valves at the start of<br>ventricular systole. | •                                                                |  |
| (2) It is low pitched, less loud and of long duration.                                                    | (2) It is higher pitched, louder, sharper and of short duration. |  |
| (3) It lasts for 0.15 seconds.                                                                            | (3) It lasts for 0.1 second.                                     |  |
| (4) Its principal frequencies are 25 to 45 cycles per second.                                             | (4) Its principal frequency is 50 cycles per second.             |  |

Differences between first and seconds heart sounds

Heart sounds can be heard by an instrument called stethoscope by placing its receiver on left side of the chest at the fourth intercostal space. Hearing of sound with the help of stethoscope is called Auscultation. The quality of heart sounds indicates the state of the heart valves. Defective or damaged heart valves lead to the backflow of blood either from ventricles to auricles or from aortae to ventricles. Such defects are detectable as abnormal hissing sound called "Murmur".. Defective valves may be replaced or repaired surgically. Syphilis and Rheumatic fever cause Murmur. The instrument used to magnify and record the heart sound is called Phonocardiogram.


#### 5.7 ELECTROCARDIOGRAM (ECG)

A graphic record of electrical events occuring during a cardiac cycle is called Electrocardiogram. The instrument used for rcording the heart's electrical variations is called Electrocardiograph in which the potential differences of heart muscles are recorded by a galvanometer. In ECG, there are 2 types of waves :

(i) **Depolarisation waves :** They represent the generation of the potential difference. These waves appear only when both electrodes of galvanometer are in different fields. When both the electrodes are in same field, there is no deflection and wave drops down to base line.

(ii) **Repolarisation waves :** They appear when depolarisation is over and the muscle fibre is returning to its original polarity. When both electrodes are in same polarity (means 100% repolarisation and 100% depolarisation), there is no deflection.

A normal ECG has 5 deflection waves -P, Q, R, S and T. Out of them -P, R and T waves are above the base line and are called positive waves. The Q and S waves are below base line and are called negative waves. The port of the base line between any 2 deflections is called Interval.




P wave : Indicates impulse of contraction generated by S.A. node and its spread in atria causing atrial depolarisation. The interval PQ represents atrial contraction and takes 0.1 second.

**QRS complex :** Indicates spread of impulse of contraction from A.V node to the wall of ventricles through bundle of His and pukinje fibres causing ventricular depolarisation. This complex also represents repolarization of S.A. node.

The RS of QRS wave and ST interval show ventricular contraction (0.3 seconds). QRS is related to ventricular systole.

*T* wave : Indicates repolarisation during ventricular relaxation.



Any abnormality in the working of heart alters the wave pattern of ECG. Thus, ECG is of great diagnostic value in cardiac diseases. ECG also indicates the rate of heart beat.

If S.A. node is degenerated, the P wave disappears. This condition is called Heart fail. Atrial repolarisation wave is not seen in normal ECG because at this time, the depolarisation wave of ventricles is being recorded. When there is degeneration of bundle of His, the P to R interval increases. This is called Wenckebach phenomenon.

If bundle of His is completely cut, the P-R interval becomes infinite as the bundle of His is to transmit the cardiac impulses. It is called total heart fail or total heart block. In arborisation heart block, the defect lies in purkinje fibres. In heart attack, T waves become negative. When there is decrease in blood

supply to a part of heart, there occurs death of myocardium. This condition is called Myocardial infarction (MI). It is acute heart attack. The ST part of ECG is depressed when heart muscles receive insufficient oxygen and is elevated in acute MI. When there is degeneration of myocardium and deposition of fibres, the condition is called fibrillation during which, ECG obtained is bizzare or non-decipherable.

Vector cardiogram : Represents the direction of transmission of impulse.

**History of ECG :** The ECG was first recorded by Waller in frog. First human ECG was prepared by Einthoven who also discovered the electrocardiograph and discussed the principles of ECG. Hence, he is commonly called "Father of Electrocardiography".

### 5.8 BLOOD VESSELS

The study of blood vessels is called Angiology. The blood vessels are of following types :

(i) Arteries (ii) Capillaries (iii) Veins

Vasa vasorum : Supply blood to the wall of large blood vessels.

(i) Arteries : Thick walled, carrying oxygenated blood (deoxygenated in pulmonary artery) from heart to various parts of body. These blood vessels are grouped as Aorta which branches to form arteries which further divides into thinner branches called arterioles inside the organ. Average diameter of arteriole is 120  $\mu m$ . the arterioles further divide into smaller vessels called meta-arterioles (70  $\mu m$ ) which divide into capillaries. At the beginning of capillary, the arterioles posses circular muscles called precapillary sphincter which regulates flow of blood into the capillaries which is called vasomotion.

Muscleless end of meta-arteriole is called thoroughfare channel or preferential channel.

The largest artery is dorsal / abdominal aorta (systemic aorta).

Elastic or conducting arteries receive blood from heart and do not provide it to any organ rather they provide blood to other atreries and are pressure reservoirs of blood.

Muscular arteries show vasoconstriction and vasodilation and provide blood to the organs.

Anastomosis : If more than one arteries are supplying to one organ then branches of these arteries unite to form a network called Anastomosis. It provides many collateral or alternate pathways of blood supply. So, if there is blocking of any artery, it will not lead to necrosis.

**End arteries :** In organs like heart, branches of different arteries do not unite rather they terminate due to which the alternate pathways are not available. In such cases, blocking of any artery leads to necrosis of related part of organ. To develop alternate pathway in such conditions is called as By pass surgery.

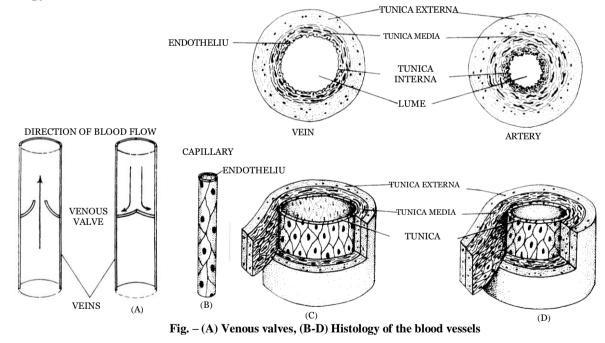
(ii) **Capillaries :** Smallest blood vessels, discovered by Marcello Malpighl (also layered nucleated squamous epithelial cells called endothelium resting on a basement membrane. Diameter of capillary is about  $8\mu$ . These are also called as exchange vessels as they are the site of exchange of material between blood and tissue because of least barrier in them. The capillaries can be grouped into two categories :

(a) Arteriolar capillary : Which supplies nutrition, respiratory gases etc. to the body cells.

(b) **Veinular capillaries :** Which collect the metabolic wastes from the body cells.

Capillaries possess abour 5% of total body blood and are present near almost all cells of body in the intercellular spaces. The tissues which are devoid of intercellular spaces are also devoid of capillary. They are called avascular tissues.

Capillaries are surrounded by cells of connective tissue called pericapillary cells. Some of these cells are contractile and phagocytic in nature and are called Rouget cells or pericytes.


Continuous capillaries are without fenestra/aperture, hence are less permeable. These are present in organs such as lungs, muscles, connective tissues and brain tissues.

Fenestrated capillaries possess apertures/fenestra and are found in those organs where there is maximum need of permeability such as endocrine glands, intestinal villi, cavities of brain, kidney, ciliary body of eye.

Sinusoids are irregularly dilated capillaries found in organs where there is decrease in flow rate such as liver, spleen, bone marrow, parathyroid, pituitary gland. In liver, sinusoids are branches of venules and open into venules while in other organs, they originate from arteriole and unite to form venules.

(iii) **Veins :** These are thin walled, carrying deoxygenated blood (oxygenated in pulmonary vein) from tissues to the heart. Venules, smallest branches, unite to form veins which in turn unite to form vena cava. The largest vein is inferior vena cava/post caval. Varicose veins is stout, blood filled painful veins specially of the limbs due to defective watch pocket valves.

#### (a) Histology of arteries and veins :



(1) **Tunica externa or tunica adventitia :** Outermost, fibrous, made up of collagen rich connective tissue and less elastin fibres. The collagen fibres give strength to the blood vessels and prevent their overdilation.

(2) **Tunica media :** Middle, thickest, made up of smooth involuntary muscle fibres and elastin fibres. This layer is very much variable because number of elastin fibres and muscle fibres depend upon the position of blood vessels from the heart.

(3) **Tunica interna or tunica intima :** Innermost, thinnest, made up of inner, single layer of simple squamous epithelial cells called endothelium resting on a basement membrane and outer layer of elastic (yellow fibrous) connective tissue. The hollow space in the blood vessel is called lumen.

| S.No | Characters              | Arteries                                                                 | Veins                                                               |
|------|-------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------|
| (1)  | Wall                    | Thick, more elastic, non collapsible.                                    | Thin, less ealstic, collapsible.                                    |
| (2)  | Tunica externa          | Less developed, so less strong.                                          | More developed, so more strong.                                     |
| (3)  | Tunica media            | More muscular and has many elastic fibres.                               | Less muscular and only a few elastic fibres.                        |
| (4)  | Tunica interna          | Endothelial cells more<br>elongated. Elastic membrane<br>more developed. | Endothelial cells less flat.<br>Elastic membrane less<br>developed. |
| (5)  | Lumen                   | Narrow                                                                   | Wider                                                               |
| (6)  | Position                | Deep seated except wrist, neck etc.                                      | Superficial                                                         |
| (7)  | Valves                  | Without valves.                                                          | With valves to prevent back flow.                                   |
| (8)  | Direction of blood flow | From heart to body organs                                                | From body organs to heart                                           |
| (9)  | Nature of blood         | Oxygenated except pulmonary artery.                                      | Deoxygenated except<br>pulmonary vein                               |
| (10) | Blood pressure          | More, generally 120/80 mm of Hg.                                         | Less, generally 0 mm of Hg.                                         |
| (11) | Speed of blood          | Fast                                                                     | Slow                                                                |
| (12) | After death             | Becomes empty                                                            | Contain blood                                                       |
| (13) | Amount of blood         | 15% at any given time.                                                   | 64% at any given time                                               |
| (14) | Colour                  | Pink                                                                     | Dark red                                                            |
| (15) | Disintensibility        | Less                                                                     | More                                                                |

#### Differences between arteries and veins

(b) **Blood pressure :** The pressure exerted by the blood on the wall of the blood vessels in which it is present is called blood pressure. It is usually measured in brachial artery by an instrument called sphygmomanometer (invented by Riva-Rocci). Arterial blood pressure is of 2 types :

(1) **Systolic blood pressure :** It is the pressure exerted by blood on the walls of the blood vessels due to the systole of ventricles and is equal to 120 mm Hg. During ventricular systole, there is expansion in the artery due to the uncoiling of elastic layer. Hence, the pressure is maximum in arteries but gradually decreases in capillaries and veins.

(2) **Diastolic blood pressure :** It is the pressure exerted on walls of blood vessels when the ventricles are relaxed. During ventricular diastole, the uncoiled elastic layer recoils leading to normalization of artery. Hence, blood pressure drops down to 80 *mm* Hg. Thus, blood pressure in normal person is systolic/diastolic pressure *i.e.* 120/80 *mm* Hg.

(3) **Pulse pressure :** The difference between systolic and diastolic pressures is called pulse pressure and its normal value is 120 - 80 mm Hg = 40 mm Hg. It provides information about the condition of arteries.

(4) **Mean arterial pressure :** It is the average pressure of systolic and diastolic pressures. As the blood remains in the systolic phase for shorter period and in the diastolic phase for longer period, the mean pressure of blood lies near the diastolic pressure.

This value varies at different levels of circulation being maximum (100 mm Hg) in the aorta and minimum (0 mm Hg) in the venae cavae under normal conditions.

**Pulse :** It is the pressure wave of distension and recoiling felt in the radial artery due to the contraction of left ventricle which force about 70-90 *ml* of blood in each cardiac cycle to aorta. This perssure wave of contraction travels down to the wall to the arteries and is called the pulse.

The pulse is measured in the radial artery in the wrist but can be felt in the temporal artery over the temporal bone or the dorsal pedis artery at the bind of ankle. The pulse normally travels at the rate of 5-8 m/second.

Since each heart beat generates one pulse in the arteries so the pulse rate per minute indicates the rate of heart beat. So the normal pulse rate in a normal adult person is 72/*minute*.

The normal ratio of systolic pressure to diastolic pressure to pulse pressure is about 3 : 2 : 1.

#### **Important Tips**

- There is an inverse relationship between heart rate and blood pressure. The process is called Marey's law of heart.
- During measurement of blood pressure, a sound is heard in the cubital artery with the help of stethoscope. This sound is called Karot Koff sound.

Blood pressure means arterial blood pressure.

#### (c) Factors affecting blood pressure :

(1) Age : With the advancing age, BP increases after the age of 60 years, it is calculated as 100 + age of the person.

(2) Cardiac output : BP increases with the increase in cardiac output.

(3) Elasticity of blood vessels : BP is inversely related to the elasticity of the blood vessels.

(4) **Total peripheral resistance :** Constriction of the blood vessels increases BP whereas dilation of the blood vessels decreases BP.

**Hypotension :** Low blood pressure with systolic below 110 *mm Hg* and diastolic below 70 *mm Hg*. It is caused by low metabolic rate, starvation, anaemia, chronic vasodilation of arterioles, lower pumping activity of heart, loss of blood in haemorrhage, valvular defects, nervous disorders and Addison's disease. It may cause fainting.

**Hypertension :** Persistent high blood pressure with systolic more than 140 mm Hg and diastolic more than 90 mm Hg. It is caused by decrease in extensibility of the artery due to atherosclerosis and arteriosclerosis. Sclerosis means hardening and narrowing of blood vessels which may be due to the deposition of cholesterol or calcium or lipid or any other compound in the wall of the arteries and arterioles.

In atherosclerosis deposition is mainly in tunica interna of the blood vessels which prevents their dilation. The atherosclerosis is, infact, the beginning of thickening and hardening of blood vessels but later, the deposition of cholesterol and other compounds takes places in both tunica media and tunica interna leading to arteriosclerosis.

Hypertension caused by hormones (epinephrine, aldosterone, renin) is called secondary hypertension, other forms of hypertension are known as primary or essential hypertension.

A blood pressure of 220/120 *mm Hg* may cause internal haemorrhage due to rupturing of some blood vessels. Cerebral haemorrhage due to rupturing of some blood vessels cerebral haemorrhage or complete cessation or great decrease in blood supply to some part of brain causes stroke or CVA (Cerebrovascular accident). Hypertension is commonly called as silent killer.

High density lipoproteins (HDL) are responsible for excretion of cholesterol and thus, reduce the risk of coronary heart diseases. Low density lipoproteins (LDL) and very low density lipoproteins (VLDL) cause deposition of cholesterol in the wall of the arteries and thus, increase the risk of coronary heart diseases. The blood pressure was first measured by Stephen Halls in horse. Highest blood pressure is recorded in giraffe.

#### **5.9 Types of blood circulation in human**

The physiology of blood circulation was first described by Sir William Harvey in 1628. The blood circulation in our body is divisible into 3 circuits –

(i) **Coronary circulation :** It involves blood supply to the heart wall and also drainage of the heart wall.

**Coronary arteries :** One pair, arising from the aortic arch just above the semilunar valves. They break up into capillaries to supply oxygenated blood to the heart wall.

**Coronary veins :** Numerous, collecting deoxygenated blood from the heart wall and drains it into right auricle through coronary sinus which is formed by joining of most of the coronary veins. But some very fine coronary veins, called venae cordis minimae open directly in the right auricle by small sized openings called foramina of Thebesius.

(ii) **Pulmonary circulation :** It includes circulation between heart and lungs. The right ventricle pumps deoxygenated blood into a single, thick vessel called pulmonary aorta which ascends upward and outside heart gets divided into longer, right and shorter, left pulmonary arteries running to the respective lungs where oxygenation of blood takes place. The oxygenated blood from lungs is returned to the left auricle by four pulmonary veins. Left auricle pumps this blood into the left ventricle.

(iii) Systemic circulation : In this, circulation of blood occurs between heart and body organs. The left ventricle pumps the oxygenated blood into systemic arch which supplies it to the body organs other than lungs through a number of arteries. The deoxygenated blood from these organs is returned to the right auricle through two large veins (precaval and post caval). Right auricle pumps this blood into the right ventricle. Thus, the sytemic circulation involves two circuits -

(a) Arterial circulation or Arterial system

(b) Venous circulation or Venous system

Time taken by blood to circulate in the body from heart to heart to heart is called circulation time. The amount of blood flowing per minute in pulmonary and systemic circulation is same.

(a) **Arterial system :** It involves aorta, arteries, arterioles and meta-arterioles. It supplies oxygenated blood to all parts of the body except lungs.

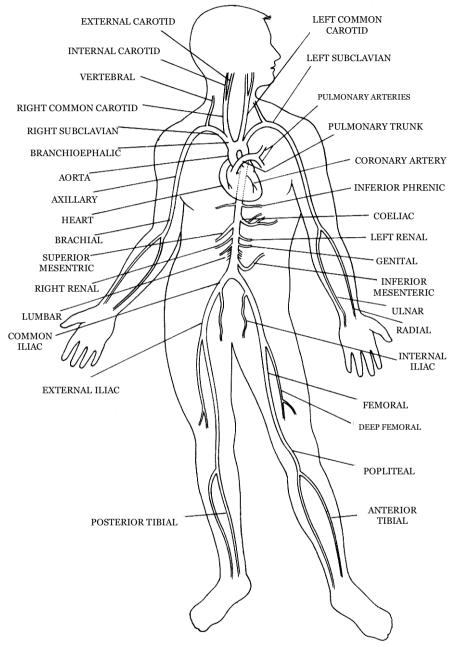
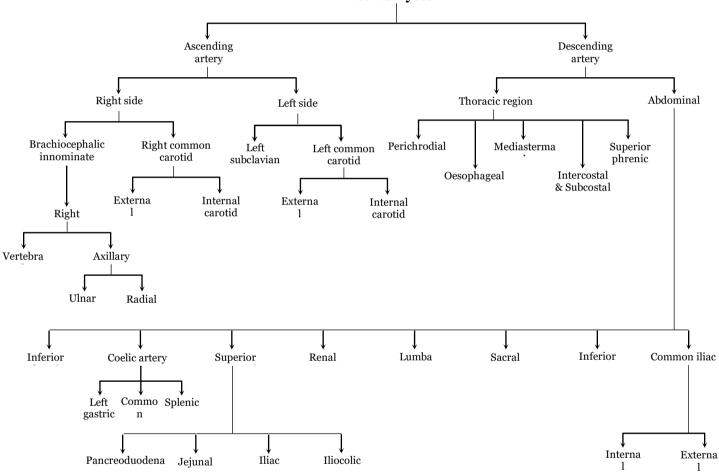



Fig. – Arterial system in human body


The left ventricle of the heart pumps the oxygenated blood into a single, question marked shaped, long vessel called left carotid-systemic aorta. It is the largest blood vessel of the body. The initial part of systemic aorta is dilated and is called aortic sinus. It possess some baroreceptors and some  $CO_2$  sensitive cells. Barroreceptors are supplied with 9<sup>th</sup> cranial nerve (glossopharyngeal).

After ascending from the heart, the systemic aotra turns and descends down to the level of lower border of fourth lumbar vertebra. At its distal extremity, it bifurcates into right and left common iliac arteries. The systemic aorta has following parts –

(1) Ascending aorta : It gives off left and right coronary arteries.

Arch of aorta : It gives – Innominate or Brachiocephalic artery left common carotid artery left subclavian artery.

(2) **Descending aorta :** The aorta turns towards the back of heart and finally converts into dorsal aorta. While dorsal aorta is in thorax, it is called thoracic aorta; when it goes down into diaphragm, it is called abdominal aorta. Mammals have left systemic arch while birds have right systemic arch.



Arterial System

#### (1) Ascending aorta

#### (i) From convexity of the arch of aorta

(a) **Brachiocephalic (innominate) :** Unpaired, largest branch of the aorta divides into right subclavian towards right side and right common carotid towards left side. Right subclavian gives off vertebral artery (supplies to head and part of right shoulder) and then enters into right arm, now called axillary artery or brachial artery, which divides into ulnar and radial arteries in the region of elbow. The right common carotid, enters into head and divides into external and internal carotids which supply the right parts of head by their tributaries.

(b) **Left common carotid :** Unpaired artery, enters into head and divides into left external and internal carotids which supply the left parts of the head by their tributaries.

(1) The external carotids of both sides provide blood to thyroid gland, tongue, throat, face, ear, scalp.

(2) The internal carotids of both sides supply to brain, eye, inner part of nose and forehead. These internal carotids go upward and enter skull through foramen magnum and unite at the base of brain along with the vertebral arteries of both sides. So, there is formation of a ring shaped artery called as "Circle of willis". From this circle, many branches or arteries arise which go to different parts of brain.

In frog, the internal carotid has at its base, carotid labyrinth (spongy mass of non-contractile fibroelastic tissue) which acts as a sensory organ to detect blood pressure in artery.

(ii) **Left subclavian artery :** Unpaired artery, it gives off a left vertebral artery (supplies to head and part of left shoulder) and then enters into left arm, now called left axillary artery or left brachial artery which divides into ulnar and radial arteries in the region of elbow.

(2) **Descending aorta :** The descending dorsal aorta divided into thoracic and abdominal aorta.

(i) **From thoracic segment of aorta :** Several pairs of small arteries arise in this region to supply various parts such as pericardium (pericardial artery); lungs and bronchi (bronchial artery); oesophagus (oesophageal artery); mediastinal organs and thymus (mediastinal artery); intercostal muscles and mammary glands (intercostals and subcostal arteries); upper surface of diaphragm (superior phrenic artery).

(ii) **From abdominal region of aorta :** In the abdominal region, abdominal aorta gives off several pairs of arteries. Some of the major ones are as follows

(a) Inferior phrenic artery : Right and left to supply the lower surface of the diaphragm.

(b) Coeliac artery : Unpaired, divides into three branches

(1) Left gastric artery : To stomach.

(2) **Common hepatic artery :** To pylorus, pancreas, gall bladder, liver, cystic duct, hepatic ducts etc.

(3) Splenic artery : To pancreas, stomach and spleen.

(c) **Superior mesenteric :** Unpaired, supplies various parts of small intestine (except superior part of duodenum part of colon and caecum). Its sub branches are

(1) Pancreo duodenal artery : To pancreas and duodenum.

(2) Jejunal artery : To jejunum.

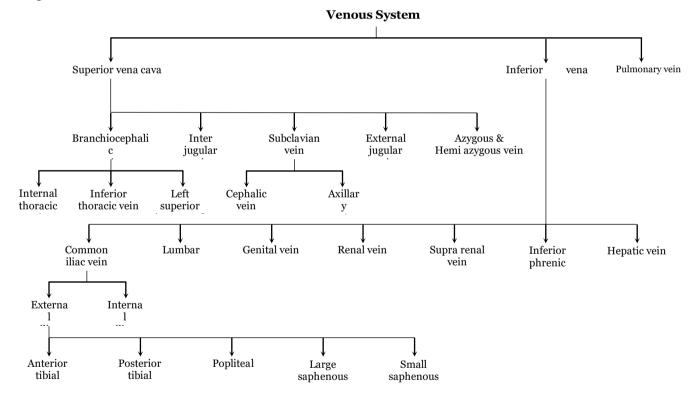
(3) **Ilial artery :** To ileum and jejunum.

(4) **Iliocolic artery :** To ileum and colon.

(d) **Supra renal artery :** Supplies the adrenal glands.

(e) **Renal arteries :** One pair, supply to kidney.

(f) **Lumbar arteries :** 4 pairs, supply the skin, muscles, joints, vertebrae, meninges, spinal cord etc. in the lumbar region.


(g) Sacral artery : Supplies the tissues of sacral region.

(h) Inferior mesenteric artery : Unpaired, supplies most part of colon, rectum and anal canal.

(i) **Common iliac arteries :** Two, right and left, formed by bifurcation of aorta at its lower end. Each common iliac artery divides into external and internal iliac arteries. The internal iliac (hypogastric) artery supplies lies viscera and wall of pelvic region, perineum and gluteal regions. The external iliac artery enters into the leg now called femoral artery continues down the thigh, now called popliteal artery which bifurcates into anterior and posterior tibial arteries, at about the level of knee.

**Inguinal canal :** Connects abdominal cavity with the cavity of scrotum. So, through this canal, spermatic artery (testicular artery), subclavian vein and sperm duct pass.

(b) **Venous system :** It originates in tissues by union of capillaries and ends in the atrium of heart. It includes two major veins – superior and inferior vena cava which drain the deoxygenated blood into the right atrium.



(1) **Superior vena cava (pre caval) :** Single, formed by the union of right and left brachiocephalic (innominate) veins. It collects blood from head, neck, arms and chest region. It involves the following veins –

(i) **Brachiocephalic veins :** Two, each is formed by the union of an outer subclavian vein and medial internal jugular vein. Each vein also receives blood from different thoracic parts of its sides through three main veins.

(a) Internal thoracic vein : From some muscles and mammary glands.

(b) Inferior thyroid vein : From thyroid gland.

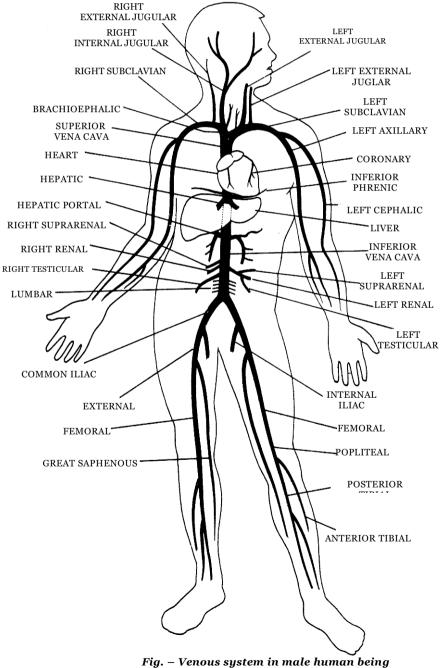
(c) Left superior intercostal vein : From upper part of thorax.

(ii) **Internal jugular vein :** Two, right and left. Each one is formed by the union of numerous sinuses and veins of the cranial cavity, superior part of the face and some part of neck and collects blood from these regions.

(iii) **Subclavian veins :** Two, right and left, formed in the shoulder region by union of cephalic and axillary veins of respective sides.

(a) **Axillary veins :** Two, right and left, present in the respective arms and collect blood from these regions.

(b) Cephalic veins : Two, right and left, collect blood from respective arms and shoulder region.


(iv) **External jugular veins :** Two, right and left, open into respective subclavian vein. They collect the blood from parotid gland,

facial muscles and superficial parts of cranium.

(v) **Azygos and hemiazygos veins :** Azygos vein originates in lumbar region towards right side of mediastinum and ascends upwards small veins from lumbar and thoracic parts of backbone, oesophagus, mediastinum, pericardium etc. empty into it.

Towards the left side of the body originates hemiazygos and accessory hemiazygos collects blood from oesophagus, mediastinum, intercostal muscles, mammary glands etc. and drains into Azygos which in turn opens into superior vena cava. Accessory hemiazygos drains blood into left innominate vein.

(2) **Inferior vena cava :** It is the largest vein, originated in inferior lumbar region by the union of right and left common iliac veins and opens into right atrium by separate opening. It collects blood from all body structures below the diaphragm. It involves following veins –



(i) **Common iliac veins :** Two, right and left. Each one is formed by union of external and internal iliac veins.

(ii) **External iliac vein :** This is the continuation of femoral vein which collects blood from leg. Femoral vein in turn is formed by the union of anterior tibial vein, posterior tibial vein, popliteal vein, large saphenous vein, small saphenous vein, etc. which collect blood from different parts of leg. External iliac vein also collects blood from pubic region and parts of pelvis through number of small veins. Last saphenous vein is the longest vein of the body.

(iii) **Internal iliac (Hypogastric) veins :** Two, right and left. Each one is formed by union of number of small veins, which collect blood from pelvis, pelvic viscera, pelvic girdle, sacrum, rectum, ureter, urinary bladder, uterus, vagina, prostate glands, seminal vesicle, penis, scrotum etc. (*i.e.* number of reproductive organs).

(iv) **Lumbar veins :** Four pairs, which collect blood from muscles, skin and vertebrae of lumbar region and drains it into inferior vena cava.

(v) **Genital veins :** In man, right testicular vein collects blood from male organs and inguinal regions and drains it into inferior vena cava. Left testicular vein drains the blood into left renal vein. In woman, the right ovarian vein drain blood from ovaries, uterus etc. and empties into inferior vena cava. The left ovarian vein opens into left renal vein.

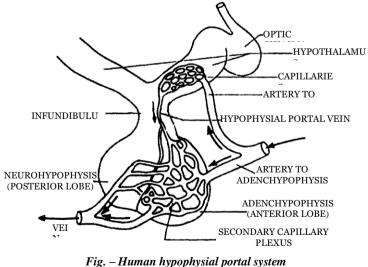
(vi) **Renal veins :** Two, right and left collects blood from respective kidneys and opens into inferior vena cava. The left renal vein is about three times longer than the right one.

(vii) **Suprarenal vein :** Two, right and left, collects blood from adrenal glands. Right one opens into inferior vena cava whereas left one opens into left renal vein.

(viii) **Inferior phrenic veins :** These veins drain the blood from lower surface of diaphragm. The right one ends in post caval. The left one is often doubled with its one branch ending in left renal or suprarenal vein and the other in post caval.

(ix) **Hepatic veins :** They drain blood from liver into the post caval. Urea is maximum in hepatic vein while it is minimum in renal vein.

#### 5.10 PORTAL SYSTEM


It is a part of venous circulation which is present between two groups of capillaries *i.e.* starts in capillaries and ends in capillaries. The vein which drains blood into organs other than heart is called portal vein.

**Types of portal system :** It is of following types :

(i) Hypothalamo-hypophysial portal system

- (ii) Hepatic portal system
- (iii) Renal portal system

(i) **Hypothalamo-hypophysial portal system :** Present in higher vertebrates (amphibia, reptiles, birds and mammals). Blood from hypothalamus is collected by hypophysial portal vein which ends in

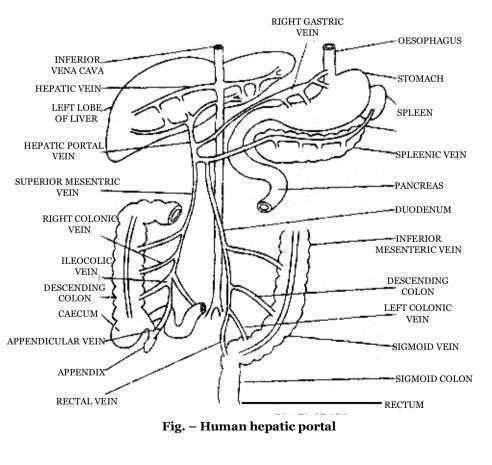


anterior lobe of pituitary gland. The superior hypophysial artery which bring blood into circle of willis bifurcate outside the lobe; one branch supplies the lobe itself, but the other one supplies the hypothalamus. The vein that drain the blood from hypothalamus then runs into pars distalis and divide into capillaries. Thus this is a portal vein called hypothalamo-hypophysial portal vein.

**Function :** This portal system enables the releasing factors and inhibiting factors from hypothalamus to reach upto anterior pituitary.

(ii) **Hepatic portal system :** Found in all chordates. In mammals, there is a single vein called hepatic portal vein, formed by the union of four main veins, which drain venous blood from different parts of alimentary canal (digestive system) into the liver. These veins are :

(a) **Posterior mesenteric vein :** Collect blood from rectal wall and anal region. This vein possess maximum diluted blood. Posterior mesenteric made up of by joining of 4 small veins that is rectal vein, sigmoid vein, left colonic vein and it opens into the splenic vein.


(b) **Anterior mesenteric vein :** Collect blood from wall of colon, caecum and small intestine. This vein possesses largest concentration of nutrients (glucose, amino-acid and vitamins). This vein formed by the joining of right colonic vein, ileocolic vein and appendicular vein.

(c) **Splenic vein :** Collect blood from spleen and pancreas splenic vein possess free haemoglobin in large amount.

(d) Right gastric vein : Receives blood from stomach and duodenum.

Posterior mesenteric vein open into splenic vein and splenic, anterior mesenteric, right gastric fused to form hepatic portal vein, which leads to blood in the liver.

In amphibians (example – frog), hepatic portal system is formed of single hepatic portal vein and single anterior abdominal vein. The latter collects blood from leg region and drains it into the left lobe of liver.



Significance of hepatic portal system : The hepatic portal system has following significance.

(a) The blood which comes from the alimentary canal contains digested food like glucose and amino acids. The excess of glucose is converted into glycogen which is stored in the liver for later use.

When an individual feels deficiency of food, the glycogen is converted into glucose and is transferred to the blood stream via hepatic veins.

(b) Harmful nitrogenous waste like ammonia is converted into urea which is later removed by kidneys. Thus the blood is detoxified (purified) of harmful nitrogenous waste.

(c) Liver produces blood proteins which are put into blood circulation.

(iii) **Renal portal system :** It is well developed in fishes and amphibians it is reduced in reptiles and birds and is absent in mammals. This system carries blood from the posterior region of the body to the kidneys by renal portal veins, thence its name. The kidneys remove the waste products from the blood and then the blood is passed to the post caval by renal veins. Why renal portal system is absent in mammals ? The mammals have no renal portal system due to the following facts :

(a) It is an *Evolutionary trend* that fishes and amphibians have well developed renal portal system, while in reptiles and birds this system gets reduced. Finally in mammals it ultimately disappears.

(b) The heart of mammals is four chambered.

(c) Due to the four chambered heart in mammals there is total separation of oxygenated and deoxygenated blood.

(d) Posterior portion of body gets oxygenated blood from the heart and after oxidation process, etc. the blood does not get so much impurities that it should go to the kidneys first for filtration as happens in fishes and amphibians.

Renal portal system in frog consists of one pair of renal portal vein, each one formed by the union of formal vein and sciatic vein. It collects blood from leg region and drains it into kidney. It also collects blood from dorsal part of lumbar region through dorsolumbar vein.

**Function :** Renal portal system helps in blood filtration by draining it into kidney which filters the blood.

#### 5.11 LYMPHATIC SYSTEM

It is a part of greater circulation which begins in the tissue fluid with lymphatic capillaries which are always terminally closed. This system terminates into venous system near heart. The main components of this system are :

(i) Lymph

(ii) Lymphatic system in frog

(iii) Lymphatic system in human

(iv) Lymphatic organ

(i) **Lymph :** Lymph can be defined as blood minus RBC's. In addition to the blood vascular system all vertebrate possess a lymphatic system. It is colourless or yellowish fluid present in the lymph vessels. It is a mobile connective tissue like blood and is formed by the filtration of blood. This process involves the diffusion of substances from blood capillaries into the interstitial space which is, thus, the primary site of lymph formation. Two forces bring about a steady filtration of plasma fluid into the tissue spaces : capillary pressure (30-35 mm Hg) and colloid osmotic pressure in tissue fluid (8 mm Hg). Most of the compounds come out by filtration and few such as glucose come out by diffusion.

These compounds get collected in the intercellular space as Tissue fluid or Interstitial fluid which is, infact, a part of blood. So, it must return to blood otherwise blood volume will decrease. For this, the outflux of plasma fluid into capillaries is prevented by colloid osmotic pressure in plasma (28 *mm Hg*) which counteracts the above two forces. When the blood flows from arteriolar to venous part of the capillaries, the capillary pressure falls to 10-15 *mm Hg* due to which the blood capillaries absorb waste material and  $CO_2$  from filtered blood. Thus, at the side of veinlets, net diffusion pressure = 28 - 15 = 13 mm Hg. After absorption by veins, a small amount of  $CO_2$  and waste material still remains in the tissue fluid which is absorbed in the lymphatic capillaries as lymph. So, we can say that lymph is modified tissue fluid.

| S.No | Characters               | Blood                                          | Lymph                                 |
|------|--------------------------|------------------------------------------------|---------------------------------------|
| (1)  | RBC                      | Present                                        | Absent                                |
| (2)  | Blood platelets          | Present                                        | Absent                                |
| (3)  | WBC                      | Persent, generally 7000/cu mm                  | Persent, generally 500-75000/cu<br>mm |
| (4)  | Plasma                   | Present                                        | Present                               |
| (5)  | Albumin : globulin       | Albumin > Globulin                             | Albumin > Globulin                    |
| (6)  | Fibrinogen               | More                                           | Less                                  |
| (7)  | Coagulation<br>property  | More                                           | Less                                  |
| (8)  | Direction of flow        | Two way, heart to tissues and tissues to heart | One way, tissues to heart             |
| (9)  | Rate of flow             | Fast                                           | Slow                                  |
| (10) | Glucose, urea and $CO_2$ | Less                                           | More                                  |

#### Differences between lymph and blood

Hence, lymph can be represented as :

Lymph = Blood – [RBC + platelets + plasma proteins of high molecular weight]

**Composition of lymph :** Microscopic examination of lymph depicts that is contains a large number of leucocytes (mostly lymphocytes) ranging from 500 to 75,000 per *cubic mm*. No blood platelets present. The composition of the non cellular part of lymph (fasting) is as follows :

(1) Water 94% (2) Solids 6%

(a) **Proteins :** Protein content is roughly half of the plasma and varies from 2.0 - 4.5%. It varies according to the part of the body from which is collected, *i.e.* in liver 6%, in limb 2% of intestinal part 4%. The varieties of proteins are found – albumin, globulin and fibrinogen. In addition to this, traces of prothrombin, fibrinogen.

(b) **Fats :** In fasting condition fat content is low but after a fatty diet it may be 5.0 - 15%.

(c) Carbohydrates : Sugar, 132.2 mgm per 100 ml.

(d) **Other constituents :** Urea, creatinine, chlorides, phosphorus, calcium, enzymes and antibodies.

□ Normally the rate of lymph formation is equal to the rate of its return to the blood stream.

(ii) **Lymphatic system in frog :** In frog, all lymph capillaries empty into large, irregular lymph spaces called lymph sinuses. The latter are lined by a membranous squamous epithelium and occur in all parts of body. The major lymph sinuses are :

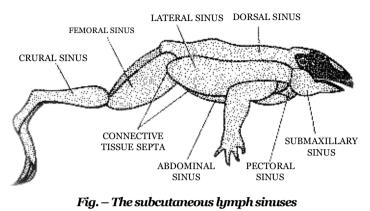
(a) **Subcutaneous lymph sinuses :** These are several sinuses located beneath skin and separated from each other by thin septa of connective tissue (figure). Major subcutaneous

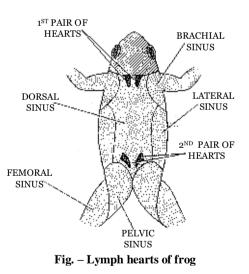
sinuses are brachial lymph sinuses in forelimbs, dorsal and lateral trunk sinuses and pelvic lymph sinuses in posterior part of trunk, and crural or femoral lymph sinuses in hindlimbs.

(b) **Subvertebral lymph sinus** (= **cisterna magna**) : This is a single large lymph sinus located beneath vertebral column throughout the length of the trunk. Kidneys are lodged in this sinus.

A number of lymph capillaries empty into the body cavity or coelem also. This proves that the coelomic fluid is also lymph, and the coelom is a large lymph sinus.

Lymph hearts : Two pairs of small, sac-like structures, one pair located behind the transverse processes of third vertebra, and the other in the region of urostyle, are closely connected with lymph


sinuses in frog (figure). These have thin, but muscular walls. by contraction of their walls, these regularly pulsate and pump the lymph of sinuses into veins. Obviously, these are "lymph heart". The anterior lymph heatrs pump the lymph into subscapular veins and the posterior ones into femoral veins.


#### (iii) Lymphatic system in human

(a) **Lymph capillaries :** Small, thin, lined by endothelium resting on a basement membrane and fine whose one end is blind and other end unites to form lymphatic ducts. These are present almost throughout the body but are absent in brain, eyeball, spinal cord, internal ear, bone marrow etc. Lymph capillaries in the region of small intestine in villi are called "lacteals" which collect

chyle which is milky white in colour due to absorbed fat. Lacteals help in the absorption of digested fat.

**Lymphatic ducts or vessels :** Numerous, present in various parts of body. These vessels are like veins as they have all the three layers – tunica externa, tunica media and tunica interna, and are provided with watch pocket or semilunar valves but valves are more in number than veins.





(c) Flow of lymph in lymphatics : Pulsations of lymph hearts in frog create sufficient force to maintain a steady flow of lymph in the lymphatic system. In mammals, the credit for maintaining onwards flow of lymph goes to (i) the "squeezing force" created by the muscles of body wall and internal organs, (ii) the breathing movements of diaphragm and thoracic cage, (iii) mild peristalsis created by smooth muscles of the wall, of lymphatics themselves, and (iv) the pressure created by increasing amount of lymph in the lymphatics. Certain compounds like fats increase the rate of lymph flow and are called lymphata gogue. Blocking of lymph flow causes oedema.

(d) **Types of lymphatic ducts :** Two main types :

(1) **Right lymphatic duct :** It is the smallest lymphatic duct with the length of approximately 1.25 *cm*. Its one end is blind and other one opens

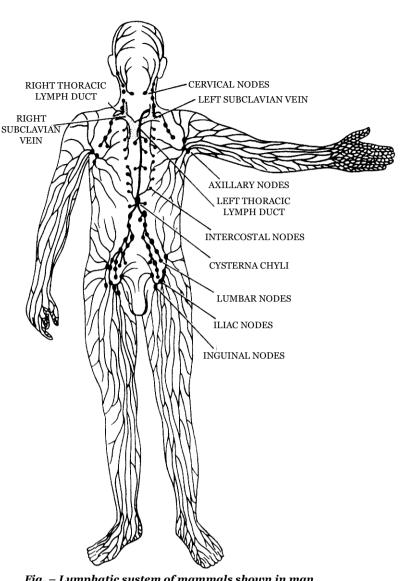
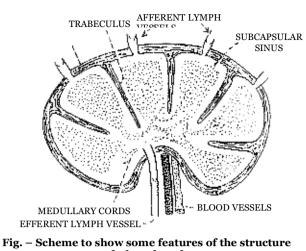



Fig. – Lymphatic system of mammals shown in man (ventral view)

into right subclavian vein at the junction of right internal jugular vein. It collects lymph from one-fourth of the body (right part of head, neck, thoracic cavity and right arm).

(2) Left lymphatic duct/thoracic duct : It is the longest lymphatic duct with the length of approximately 38-45 *cm*. It originates from cisterna chyli and empties into left subclavian vein. It collects lymph from three-fourth part of the body *i.e.* complete posterior part through cisterna chyli, left part of head, neck, thoracic cavity and left arms.


(3) **Cisterna chyli receptaculum chyli :** It is a dilated sac like structure present below the diaphragm in lumbar region at the level of second lumbar vertebra. It collects lymph from posterior part of body *i.e.* abdomen, pelvic region and hind limbs and drains it in the left lymphatic duct.

It shows inflation and deflation due to the movement of diaphragm which is a passive movement. Hence, it is also called as passive lymphatic artery. It is also called as second heart.

(4) **Lymph nodes or lymph glands :** These are the masses of lymphatic tissue and connective tissue (reticular tissue) and are located on the capillaries either solitary or in cluster. Where they are present solitary and in few number, such tissues are called diffused lymphatic tissues and where they are in clusters, they are called tonsils.

Lymph nodes are covered by capsule of white collagen tissue. Outer region of lymph node is called cortex and inner region is called medulla. In medulla, there are medullary cords, (cord like arrangement of lymphocytes). Cortex possess follicles (clusters of lymphocytes), outer part of which possess T-cells and macrophages while the inner part possess B-cells.

Lymphadenitis : During infection, central part of follicle shows rapid division and formation of plasma cells. hence, this part is also called reaction centre. The inflammation of lymph nodes in such condition is called Lymphadenitis.



of a lymph node

Some of the common lymph nodes are – Axillary nodes (in armpits), genital (Inguinal) nodes (in pubic region), cervical nodes (in neck region), intercostal nodes (in chest region), lumbar nodes (in lumbar region), iliac nodes (in pelvic region) and payer's patches (in small intestine). Besides these lymphatic nodes, a number of them are also present near major blood vessels (arteries), specially dorsal aorta.

**Tonsils :** Clusters of lymph nodes. They are very often called as policemen. Various tonsils are – Normal tonsils (in pharynx), adenoid tonsils (in nasopharynx), abdominal tonsils (in vermiform appendix) and policeman of intestine (in lamina propria of ileum). Adenoid tonsils are present upto 7 years of age, then they are degenerated. Their swelling is called adenoid. Inflammation of tonsils is called Tonsilitis.

Haemal lymph node : In many animals some lymph nodes are found to possess red colour, due to the presence of blood in them. In man they are found in the retroperitoneal tissues and also in the mediastinum. In these nodes some of the so-called lymphatic channels contain blood, while the rest of the nodes possesses the same structure as the typical lymph node. Spleen may be regarded as the modified haemal lymph (haemolymph) node. Lymph nodes are located at intervals along its course.

#### **Function of lymph nodes :**

(i) They produce and supply lymphocytes to the blood and as a supportive function the trabeculae carry blood vessels which supply the node.

(ii) They make screening of the lymph by means of phagocytic activity.

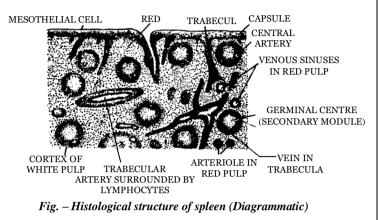
(iii) They serve a great defensive role against bacterial infections.

(iv) They temporarily stop the spread of cancer cells as those cells have to penetrate through the lymph vessels to the lymph nodes from where they spread in the body.

(v) They act as mechanical filters to resist the entrance of poisonous substances into circulation.

(vi) They carry out immunological responses. They help in elaboration of antibodies and in the development of immunity.

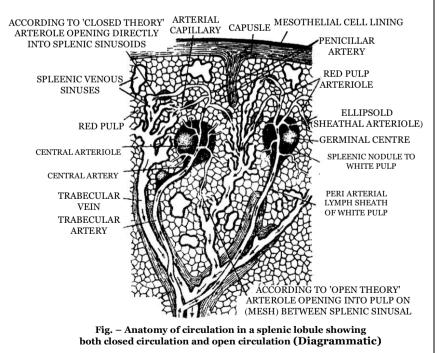
(vii) Lymph nodes produce  $\gamma$ -globulin.


(iv) Lymphatic organs : The lymphatic organs present in our body are chiefly spleen (haemolymphatic organ) and thymus (endolymphatic organ).

(a) **Spleen :** In frog, a small and spherical, dark red organ, called spleen, is found attached, by means of a fold of peritoneum, to the anterior part of large intestine in rabbit, the spleen is some what flattened and elongated, and attached to the hind border of stomach.

**Structure of spleen :** Spleen is madosermal in origin. Spleen is the largest solid mass of reticuloendothelial tissue in the body. Histologically it is formed by following structure –

(1) **Capsule :** It is the outer covering of spleen formed of elastic fibrous connective tissue and smooth muscles. The outer layer of the capsule is the serous coat formed of visceral peritoneum.


(2) **Trabeculae :** Narrow fold like septa or trabeculae extend inwards from the capsule, dividing the spleen tissue into several incomplete lobules. These are better developed in rabbit and other mammals than in frog.



(3) **Splenic pulp :** The reticulo-endothelial tissue is called splenic pulp. It contains a denser network of blood capillaries, small sinuses and fine blood vessels. The meshes of this network are studded with numerous splenic cells, red, blood corpuscles, macrophages and lymphocytes. The splenic pulp is of two distinct types –

(i) White pulp (ii) Red pulp

(i) White pulp : The white pulp is the accumulation of lymphatic tissue surrounding a major arterial vessels of the spleen. This lymphatic tissue is comprised of lymphocytes, plasma cells, macrophages or other free cell lying in the meshwork of reticular fibres at various points along the course of the vessels where the infiltration of lymphocytes is greater, it forms spherical or ovoid nodules which are called as splenic nodules of white pulp. The splenic nodules may have typical germinal centres.



lymphatic tissue and is mostly infiltrated with cells of the circulating blood. It consists of two components –

(a) Splenic sinuses or sinusoids.

(ii) **Red pulp :** It is a modified

(b) Splenic cords or Billroth cords [big blood sinuses]. It is raddish due to excessive number of RBCs. Red pulp of spleen contains reticular fibres, erythrocytes, lymphocytes, macrophages, monocytes etc.

In mammal embryos the red pulp contains myelocytes, erythroblast and also megakaryocytes. These types of cells are not present in adult spleen except in certain pathological condition.

**Function :** Although located close to the alimentary canal, the spleen has nothing to do with digestive system. it is, in fact, an important constituent of the reticuloendothelial system of body and performs the following functions:

(a) Its macrophages engulf (= phagocytize) and destroy wornout blood corpuscles, dead and live pathogens, cell debris, pigment granules and other useless particulate materials, thus regularly cleaning the blood of its impurities.

(b) It is active haemopoietic organ. In foetal life, the red pulp possess myeloblast, erythroblast and megakaryocytes. Hence, in foetus, it produces blood. In adults, the red pulp possess macrophages, plasma cells and lymphocytes. So, in adults, it is not producing blood rather it is screening blood.

(c) In adults, it also serves as a sort of "blood bank". Its sinuses act as "reservoirs of blood". When required, their blood is squeezed into general circulation. Similarly, RBCs stored in spleen are also released into general circulation when required.

(d) Many lymphocytes of spleen produce antibodies.

(e) Spleen also acts as Grayeyard or Slaughter house of worn out RBCs.

(f) Haemolysin is formed in spleen.

(g) Haemoglobin is broken down into haem and globin by spleen. The haem is further split into iron and pigment haematoidin, which becomes bilirubin of plasma. Iron first stored is splenic pulp then transferred into liver and bone marrow. After splenectomy this storage function suffers and more iron is lost.

Besides all these functions, the primary function of spleen is that it assists liver and helps in maintaining the composition of blood.

(b) **Thymus :** It is a bilobed mass of lymphiod tissue which is situated in the upper chest near front side of heart. It is prominent in children but begins to degenerate in the adults. It stimulates the development and differentiation of T-lymphocytes, which produce antibodies, thus, increasing the resistance to infection.

#### **Important Tips**

- Lymphatic system in class amphibia is of open type.
- Lymph sinuses are the large spaces containing lymph. These are present in frog but absent in mammals.
- Lymph heart The heart which collects lymph.
- In frog, lymph hearts are two pairs an anterior pair and a posterior pair which collect lymph

from respective regions. There are no lymph hearts in mammals.

- The process of lymph formation is called Transudation.
- Lymph serves to return the interstitial fluid to the blood.
- Oedema (Edema) or Dropsy A local swelling due to the accumulation of tissue fluid in tissues caused by the defective circulation of blood or lymph.
- Lymph nodes are secondary lymphatic organs because they harbour lymphocytes. Primary lymphoid organs are bone marrow and thymus.
- Lymph nodes are maximum in armpits and groin.
- Spleen is called "first reservoir" of blood while liver is called "second reservoir" of blood.
- ☞ Spleen, liver and kidneys all are called filter apparatus of blood.
- Diseasess where there is more destruction of RBCs such as malaria, banti disease, there is enlargement of spleen called as splenomegaly.
- Thymus is concerned with the immunological reactions.
- In AIDS, there occurs generalised swelling of all lymph nodes.
- Spleen is absent in cyclostomes.
- ☞ Cardiology Study of heart.
- Pericarditis Inflammation of pericardium.
- Endocarditis Inflammation of endocardium, generally caused due to the rheumatic fever.
- Frank-Starling law Within certain physiological limits, the heart pumps all the blood that comes in it.
- Largest sized heart is found in Blue whale.
- Papillary muscles of ventricles are found only in the heart of mammals.
- Valves in heart were first reported by Fabricious.
- World's first heart transplant was performed by Dr. Christian Barnard on 55-year old Louis Wash kansky in Cape town, South Africa in the year 1967.
- India's first heart transplant was conducted by cardiac surgeon Dr. P. Venu Gopal in a 42-year old man Mr. Devi Ram on 3<sup>rd</sup> August, 1994 at AIIMS, Delhi.
- Cardiomegaly Enlargement of heart.
- Myocardial Ischaemia Deficient blood supply to heart muscle leading to angina pectoris.
- Angina pectoris Severe but temporary heart pain of short duration which is usually felt in front of the chest and may pass into the arms.
- Coronary thrombosis Formation of blood clot in coronary arteries of heart causing death of tissue and leading to heart attack or MI.
- Coronary sclerosis Narrowing of coronary arteries leading to severe chest pain (Angina pectoris).

- Rheumatic heart Disease (RHD) Defects in heart valve due to toxins produced by throat infection caused by streptococcus leading to rheumatic fever.
- Coronary angiography X-ray of the arteries, supplying the heart, after injecting them with radio-opaque material.

# **ASSIGNMENT**

### **TYPES OF CIRCULATION**

#### Basic Level

| 1.  | Poikilothermic (cold b                                                                          | looded) or exothermic a  | nimals are those in which |                        |  |  |
|-----|-------------------------------------------------------------------------------------------------|--------------------------|---------------------------|------------------------|--|--|
|     | (a) Body freezes                                                                                |                          | (b)Body temperatu         | re remains constant    |  |  |
|     | (c) Body temp. change                                                                           | es according to surround | ings (d)None of the abo   | ve                     |  |  |
| 2.  | An open circulatory sy                                                                          | stem occurs in           |                           |                        |  |  |
|     | (a) Man                                                                                         | (b) Reptiles             | (c) Animals               | (d) Insects            |  |  |
| 3.  | William Harvey is kno                                                                           | wn for the discovery of  |                           |                        |  |  |
|     | (a) Blood transfusion                                                                           | (b) Blood clotting       | (c) Blood circulation     | (d) Blood purification |  |  |
| 4.  | The blood vascular system of mammals is known as double vascular system because                 |                          |                           |                        |  |  |
|     | (a) A group of veins carry oxygenated and other group conduct deoxygenated blood                |                          |                           |                        |  |  |
|     | (b) Oxygenated blood runs from heart to different organs by one set of veins while deoxygenated |                          |                           |                        |  |  |
|     | blood runs from heart to lung by another set                                                    |                          |                           |                        |  |  |
|     | (c) The two different systems never meet                                                        |                          |                           |                        |  |  |
|     | (d) All of the above                                                                            |                          |                           |                        |  |  |
| 5.  | Which one of the following does not have an open circulatory system                             |                          |                           |                        |  |  |
|     | (a) Chelone                                                                                     | (b) Cockroach            | (c) Frog's tadpole        | (d) (a) and (b) both   |  |  |
|     |                                                                                                 |                          |                           |                        |  |  |
| Adv | ance Level                                                                                      |                          |                           |                        |  |  |

6. Mammals are said to have a "double circulatory system". This means

- (a) That the blood vessels are paired
- (b) That there are two types of blood vessels attached to every organ; an artery and a vein

(c) That there are two system; one from the heart to the lungs and back to the heart and other to and from rest of the body

(d) That the blood circulates twice as quickly

- 7. The heart of fish is different from the other group because
  - (a) It has lymph only (b) It pumps only arterial blood
  - (c) It pumps only venous blood (d) It pumps only lymph

### CIRCULATORY SYSTEM

### Basic Level

- 8. The heart of a crocodile consists of
  - (a) A single auricle and two ventricles
  - (c) Two auricles and two ventricles
- 9. Open vascular system is found in(a) Man(b) Fish

- (b) Two auricles and a single ventricle
- (d) A single auricle and a single ventricle
- (c) Prawn

(d) Snake

| 10. | In amphibia, the heart l                                      | nas                          |                                               |                       |  |
|-----|---------------------------------------------------------------|------------------------------|-----------------------------------------------|-----------------------|--|
|     | (a) Two auricles and tw                                       | vo ventricle                 | (b)Two auricles and on                        | e ventricle           |  |
|     | (c) One auricle and two                                       | o ventricles                 | (d)One auricle and one ventricle              |                       |  |
| 11. | Which of the following                                        | g is the correct statement a | bout the circulatory syst                     | em of cockroach       |  |
|     | (a) It is closed type of a                                    | circulatory system           |                                               |                       |  |
|     | (b) It is a complicated t                                     | ype of circulatory system    |                                               |                       |  |
|     | (c) It takes place without the participation of tissue        |                              |                                               |                       |  |
|     | (d) It has 13 chambered                                       | l heart and in each segmen   | nt one pair of ostia are pr                   | resent                |  |
| 12. | 2. In Pheretima lymph glands produces                         |                              |                                               |                       |  |
|     | (a) Phagocytic cells                                          | (b) Lymphocytic cells        | (c) Amoebocytic cells                         | (d) Oxyntic cells     |  |
| 13. | How many lateral hear                                         | ts are in pheretima          |                                               |                       |  |
|     | (a) 4                                                         | (b) 8                        | (c) 16                                        | (d) 12                |  |
| 14. | Four pairs of pulsatile heart in pheretima are located in seg |                              |                                               |                       |  |
|     | (a) 7, 9, 12 and 13                                           | (b) 11, 14, 17 and 18        | (c) 10, 13, 16 and 17                         | (d) 4, 5, 10 and 13   |  |
| 15. | Open circulatory system                                       | n is observed in             |                                               |                       |  |
|     | (a) Cockroach                                                 | (b) Frog                     | (c) Fish                                      | (d) Reptiles          |  |
| 16. | Single circuit circulator                                     | ry system is characteristic  | tic of                                        |                       |  |
|     | (a) Fishes                                                    | (b) Amphibians               | (c) Aves                                      | (d) Mammals           |  |
| 17. | Double circuit circulati                                      | on is seen in                |                                               |                       |  |
|     | (a) Humans and rabbit                                         | (b) Pigeon and rat           | (c) Lizard and crocodil                       | e(d) All of the above |  |
| Adv | ance Level                                                    |                              |                                               |                       |  |
| 18. | Blood of periplaneta do                                       | bes not carry oxygen becau   | use                                           |                       |  |
|     | (a) $O_2$ is transported by                                   | respiratory tubules          | (b) Its respiration is ana                    | aerobic               |  |
|     | (c) There is no cells in                                      | its blood                    | (d) Periplaneta does not has any blood vessel |                       |  |
| 19. | In the evolution of anim                                      | nals a heart to pump the b   | lood is found for the firs                    | t time in             |  |
|     | (a) Annelids                                                  | (b) Roundworms               | (c) Arthropods                                | (d) Flat worms        |  |
| 20. | Regarding blood circul                                        | ation, it may be said that i | n Pheretima the dorsal v                      | essel is a            |  |
|     | (a) Collecting vessel in                                      | first two segments and di    | stributing vessel in other                    | •                     |  |
|     | (b) Distributing vessel                                       | in first five segments and   | collecting vessel in other                    | ſ                     |  |
|     | (c) Collecting vessel in                                      | first thirteen segments &    | distributing vessel in int                    | estinal region        |  |
|     | (d) Distributing vessel                                       | in first thirteen segments a | & collecting vessel in int                    | estinal region        |  |
| 21. | Identify the animal whi                                       | ich has neurogenic heart     |                                               |                       |  |
|     | (a) Rat                                                       | (b) Rabbit                   | (c) Hamster                                   | (d) Periplaneta       |  |

| 22. | Which of the follow   | ving has myogenic heart    |            |                       |                          |
|-----|-----------------------|----------------------------|------------|-----------------------|--------------------------|
|     | (a) Frog              | (b) Humans                 | (c)        | Rabbit                | (d) All of the above     |
| 23. | Which of the follow   | ving chordata does not h   | ave a hea  | art                   |                          |
|     | (a) Petromyzon        | (b) Lung fishes            | (c)        | Branchiostoma         | (d) Herdmania            |
|     |                       |                            |            |                       |                          |
| Ras | ic Level              | <u>PHYSIOLO</u>            |            |                       |                          |
|     |                       | ecorded and displayed as   |            |                       |                          |
|     | (a) ECG               | (b) EEG                    |            | ERG                   | (d) EMG                  |
| 25. |                       | t in the intact animals is |            |                       | (4) 2000                 |
|     | (a) Initiation of hea | -                          | •          | Regulation of hear    | t beat                   |
|     | (c) Release of acety  |                            |            | Release of adrenal    |                          |
| 26. | Purkinje's fibres are | -                          |            |                       | J                        |
|     | (a) Muscle fibres lo  |                            | (b)        | Nerve fibres locate   | ed in cerebrum           |
|     | (c) Connective tissu  | e fibres joining one bond  | e to anotl | her bone              |                          |
|     | (d) Sensory fibres e  | xtending from retina into  | o optic ne | erve                  |                          |
| 27. | Identify the cardiac  | inhibitor                  |            |                       |                          |
|     | (a) Y-aminobutyric    | acid (b)5' Hydroxytrypta   | amine (c   | )Adrenaline           | (d) Acetylcholine        |
| 28. | Identify the wrong    | statement                  |            |                       |                          |
|     | (a) The arterial and  | venous pressure of blood   | d constitu | utes the blood press  | ure                      |
|     | (b) Defective heart   | valve are the cause of he  | art murm   | nur                   |                          |
|     | (c) When the semile   | unar valves close the DU   | P sound    | is produced           |                          |
|     | (d) Contraction of r  | ight ventricle pumps blo   | od into p  | ulmonary vein         |                          |
| 29. | Identify the correct  | statement                  |            |                       |                          |
|     | (a) The lubb-dup so   | ound of heart beat is due  | to closure | e of mitral-tricuspsi | d valve followed by      |
| sem | ilunar valve          |                            |            |                       |                          |
|     | (b) The passage of l  | blood from post caval to   | diastolic  | right auricle is due  | to gravity               |
|     | (c) One heart beat i  | n man lasts for 0.2 sec.   |            |                       |                          |
|     | (d) Pulmonary arter   | y originates from left ver | ntricle    |                       |                          |
| 30. | Regulation of heart   | beat in mammals is due     | to         |                       |                          |
|     | (a) The volume of b   | blood in the circulatory s | ystem (b)  | The presence of ex    | ccess of oxygen in blood |
|     | (c) The presence of   | thyroxine in blood         | (d)        | The presence of pa    | acemaker in the heart    |
| 31. | Purkinje's fibres of  | the vertebrate heart are n | nodified   |                       |                          |
|     | (a) Parasympathetic   | e nerves (b)Sympathetic    | nerves     | (c)Motor nerves       | (d) Muscle cells         |
|     |                       |                            |            |                       |                          |
| 1   |                       |                            |            |                       |                          |

| 32.  | The nerve like modified muscle in the right auricle is known as                                                         |                                                   |                                    |                        |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------|------------------------|--|--|
|      | (a) Lymph node                                                                                                          | (b) Atrio-ventricular no                          | de(c) Pacemaker                    | (d) Bulbus arteriosus  |  |  |
| 33.  | Pace maker of the hea                                                                                                   | rt is                                             |                                    |                        |  |  |
|      | (a) S.A. node                                                                                                           | (b) A.V. node                                     | (c) A.V. septum                    | (d) I.A. septum        |  |  |
| 34.  | The first heart sound i                                                                                                 | S                                                 |                                    |                        |  |  |
|      | (a) 'Lubb' sound at the                                                                                                 | e end of systole                                  | (b) 'Dub' sound at the             | end of systole         |  |  |
|      | (c) 'Lubb' sound at the                                                                                                 | beginning of systole                              | (d) 'Dub' sound at the             | beginning of systole   |  |  |
| 35.  | How many times does                                                                                                     | the heart of humans beat                          | per minute                         |                        |  |  |
|      | (a) 80                                                                                                                  | (b) 120                                           | (c) 72                             | (d) 60                 |  |  |
| 36.  | The heart of a healthy                                                                                                  | man beats normally per n                          | ninute                             |                        |  |  |
|      | (a) 60–70 times                                                                                                         | (b) 70–80 times                                   | (c) 80–90 times                    | (d) 85–95 times        |  |  |
| 37.  | Heart beat can be initi                                                                                                 | ated by                                           |                                    |                        |  |  |
|      | (a) Sinu-auricular nod                                                                                                  | e (b) Sinu-ventricular nod                        | le (c) Sodium ion                  | (d) Purkinje's fibres  |  |  |
| 38.  | Which one is the corre                                                                                                  | ect route through which pu                        | llse making impulse tra            | vels in the heart      |  |  |
|      | (a) SA node $\rightarrow$ Purkinje fibres $\rightarrow$ Bundle of His $\rightarrow$ AV node $\rightarrow$ Heart muscles |                                                   |                                    |                        |  |  |
|      | (b) AV node $\rightarrow$ SA no                                                                                         | ode $\rightarrow$ Purkinje fibres $\rightarrow$ H | Bundle of His $\rightarrow$ Heart  | muscles                |  |  |
|      | (c) AV node $\rightarrow$ Bundl                                                                                         | le of His $\rightarrow$ SA node $\rightarrow$ P   | urkinje fibres $\rightarrow$ Heart | muscles                |  |  |
|      | (d) SA node $\rightarrow$ AV no                                                                                         | ode $\rightarrow$ Bundle of His $\rightarrow$ P   | urkinje fibres $\rightarrow$ Heart | muscles                |  |  |
| 39.  | The rate of heart beat                                                                                                  | per minute is highest in ca                       | use of                             |                        |  |  |
|      | (a) Elephant                                                                                                            | (b) Whale                                         | (c) Man                            | (d) Mouse              |  |  |
| 40.  | The viscosity of blood                                                                                                  | l is important in maintaini                       | ng                                 |                        |  |  |
|      | (a) Acid-base balance                                                                                                   |                                                   | (b) Diastolic blood pr             | pressure               |  |  |
|      | (c)Systolic blood pres                                                                                                  | sure                                              | (d) Osmotic pressure               |                        |  |  |
| 41.  | Regulation of heart be                                                                                                  | eat in mammals is due to                          |                                    |                        |  |  |
|      | (a) Presence of excess                                                                                                  |                                                   |                                    | acemaker in the heart  |  |  |
|      | (c) The presence of th                                                                                                  | yroxin in blood                                   | (d) The volume of blo              | ood in the circulatory |  |  |
| syst |                                                                                                                         |                                                   |                                    |                        |  |  |
| 42.  | Pace maker of the hea                                                                                                   |                                                   | 1 (1)0                             | 1                      |  |  |
|      |                                                                                                                         | ium close to eustachian va                        | live (b)On intra-auricu            | ilar septum            |  |  |
|      | (c) On inter-venticular                                                                                                 | *                                                 |                                    |                        |  |  |
| 12   |                                                                                                                         | m close to the opening of                         |                                    |                        |  |  |
| 43.  | -                                                                                                                       | (b) 70 times / minute                             |                                    | (d) Normal             |  |  |
|      | (a) Faster                                                                                                              | (b) 70 times / minute                             | (c) Slower                         | (d) Normal             |  |  |

| 44. | During systole                                                                        |                               |                           |                          |  |
|-----|---------------------------------------------------------------------------------------|-------------------------------|---------------------------|--------------------------|--|
|     | (a) Auricles and ventricles contract simultaneously                                   |                               |                           |                          |  |
|     | (b)Auricles and ventu                                                                 | ricles contract separately    |                           |                          |  |
|     | (c) Only auricles con                                                                 | tract                         | (d)Only ventricles cor    | ntract                   |  |
| 45. | What is the maximur                                                                   | n efficiency of heart         |                           |                          |  |
|     | (a) 10 – 15 %                                                                         | (b) 20 – 25 %                 | (c) 40 – 60%              | (d) 100%                 |  |
| 46. | Blood leaving and m                                                                   | oving to heart has higher co  | oncentration of           |                          |  |
|     | (a) Glucose                                                                           | (b) Urea                      | (c) Bile                  | (d) Erythrocytes         |  |
| 47. | If the vagus branch o                                                                 | f frog is stimulated, the hea | art will show             |                          |  |
|     | (a) Stoppage of heart                                                                 | beat (b)Decreased heart b     | beat                      |                          |  |
|     | (c) Increased heart be                                                                | eat (d)No change              |                           |                          |  |
| 48. | Artificial pace maker                                                                 | is transplanted in            |                           |                          |  |
|     | (a) Inter ventricular s                                                               | eptum                         | (b)Below the collar be    | one                      |  |
|     | (c) Inter auricular sep                                                               | otum                          | (d) Right auricle         |                          |  |
| 49. | The rate of heart beat is controlled by                                               |                               |                           |                          |  |
|     | (a) CNS                                                                               | (b) SN                        |                           |                          |  |
|     | (c) CN                                                                                | (d) Autonomic nervous         | system                    |                          |  |
| 50. | Assertion (A) : Smaller the organism, higher is the rate of metabolism per gm weight. |                               |                           |                          |  |
|     | Reason (R) : Heart rate of six month old baby is much higher than an old person       |                               |                           |                          |  |
|     | (a) Both (A) and (R) are true and (R) is the correct explanation of (A)               |                               |                           |                          |  |
|     | (b) Both (A) and (R)                                                                  | are true but (R) is not the c | correct explanation of (A | )                        |  |
|     | (c) (A) is true but (R)                                                               | ) is wrong                    |                           |                          |  |
|     | (d)(A) and $(R)$ both                                                                 | are wrong                     |                           |                          |  |
| 51. | Bundle of HIS is four                                                                 | nd in                         |                           |                          |  |
|     | (a) Muscles                                                                           | (b) Brain                     | (c) Heart                 | (d) Liver                |  |
| 52. | In rabbit oxygenated                                                                  | blood flows from              |                           |                          |  |
|     | (a) Left auricle to left ventricle during auricular systole                           |                               |                           |                          |  |
|     | (b) Right auricle to right ventricle during ventricular systole                       |                               |                           |                          |  |
|     | (c) Right ventricle to                                                                | aorta during ventricular sy   | vstole                    |                          |  |
|     | (d) Pulmonary vein to                                                                 | o left auricle during auricul | lar systole               |                          |  |
| 53. | Systole refers to the o                                                               | contraction of                |                           |                          |  |
|     | (a) SA node                                                                           | (b) AV node                   | (c) Major arteries        | (d) Atria and ventricles |  |
| 54. | Heart beat is initiated                                                               | l by                          |                           |                          |  |
|     | (a) AV node                                                                           | (b) SA node                   | (c) Purkinje fibres       | (d) Papillary muscles    |  |
| 55. | Impulse originating f                                                                 | rom sinu-atrial node are tra  | ansmitted to the          |                          |  |
|     | (a) Atrio-ventricular                                                                 | node (b)Bundle of His         | (c) Pacemaker             | (d) Purkinje system      |  |
|     |                                                                                       |                               |                           |                          |  |

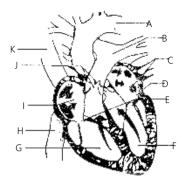
| 56. | 6. Heart beats are controlled by a nodal tissue which is composed of          |                                               |                             |                                  |  |  |
|-----|-------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------|----------------------------------|--|--|
|     | (a) Purkinje fibres                                                           | (b) Myonemes                                  | (c) Collagen fibres         | (d) Telodendrites                |  |  |
| 57. | During diastole                                                               |                                               |                             |                                  |  |  |
|     | (a) Blood enters lungs                                                        |                                               | (b) Blood leaves the        | ventricle                        |  |  |
|     | (c) Blood leaves the h                                                        | eart                                          | (d) Blood enters the h      | neart                            |  |  |
| 58. | During systole of vent                                                        | ricle                                         |                             |                                  |  |  |
|     | (a) Blood enters the he                                                       | eart                                          | (b)Blood leaves the h       | eart                             |  |  |
|     | (c) Blood leaves the v                                                        | entricle                                      | (d) Blood enters lung       | S                                |  |  |
| Adv | ance Level                                                                    |                                               |                             |                                  |  |  |
| 59. | Acetylcholine is secreted by                                                  |                                               |                             |                                  |  |  |
|     | (a) Adrenal cortex                                                            |                                               | (b) Adrenal medulla         |                                  |  |  |
|     | (c) Parasympathetic ne                                                        | euron                                         | (d) Sympathetic neur        | on                               |  |  |
| 60. | Heart beat originates f                                                       | rom                                           |                             |                                  |  |  |
|     | (a) Pacemaker                                                                 | (b) Cardiac muscles                           | (c) Left atrium             | (d) Right ventricle              |  |  |
| 61. | Heart beat of humans                                                          | is controlled by                              |                             |                                  |  |  |
|     | (a) Sympathetic and parasympathetic nervous system                            |                                               |                             | (b)Medullary hormones            |  |  |
|     | (c) Hypothalamus                                                              | (d) (a) and (b)                               |                             |                                  |  |  |
| 62. | Which one of the follo                                                        | Which one of the following is a matching pair |                             |                                  |  |  |
|     | (a) Lubb – sharp closure of AV valves at the beginning of ventricular systole |                                               |                             |                                  |  |  |
|     | (b) Dupp – sudden ope                                                         | ening of semilunar valves                     | at the beginning of ven     | tricular diastole                |  |  |
|     | (c) Pulsation of the rad                                                      | dial artery-valves in the b                   | lood vessels                |                                  |  |  |
|     | (d) Initiation of the he                                                      | 0                                             | fibres                      |                                  |  |  |
| 63. | First heart sound occurs at                                                   |                                               |                             |                                  |  |  |
|     | (a) Opening of semilu                                                         | nar valve                                     | (b) Closing of semilu       | nar valve                        |  |  |
|     | (c) Onset of auricular                                                        | systole                                       | (d) Sudden closure of       | f A.V. valves                    |  |  |
| 64. | The pace-setter in the                                                        | heart is called                               |                             |                                  |  |  |
|     | (a) Purkinje fibres                                                           |                                               | (b) Sino-aterial node (SAN) |                                  |  |  |
|     | (c) Papillary muscle                                                          |                                               | (d) Atrio-ventricular       | node (AVN)                       |  |  |
| 65. | Apex beat of heart is s                                                       | •                                             |                             |                                  |  |  |
|     | (a) First sound                                                               | (b) Second sound                              | (c) Third sound             | (d) Fourth sound                 |  |  |
| 66. |                                                                               | sounds heard in the hear                      |                             |                                  |  |  |
|     | -                                                                             | spid and bicuspid value                       |                             | (b) Blood flow through the aorta |  |  |
|     | -                                                                             | spid and semilunar valve                      | -                           | nilunar valves                   |  |  |
| 67. |                                                                               | was injected with 2% CaC                      | $l_2$ solution, then        |                                  |  |  |
|     | (a) Heart beat will inc                                                       |                                               | (b)Heart beat will dea      | crease                           |  |  |
|     | (c) Heart beat will stop                                                      | р                                             | (d) No effect               |                                  |  |  |
| 1   |                                                                               |                                               |                             |                                  |  |  |

| 68. | . The auriculo-ventricular node in human heart was discovered by |                            |                                                   |                    |
|-----|------------------------------------------------------------------|----------------------------|---------------------------------------------------|--------------------|
|     | (a) Hiss                                                         | (b) Loewis                 | (c) Ringer                                        | (d) William Harvey |
| 69. | The murmuring sound                                              | in heart takes place due   | to                                                |                    |
|     | (a) The defective and                                            | leaking valve              | (b) The thrombosis in a                           | coronary artery    |
|     | (c) Defect in SA node                                            |                            | (d) The arterial pulse                            |                    |
| 70. | The beating of heart of                                          | f man is heared on the lef | t side because                                    |                    |
|     | (a) The left ventricle is towards the left side                  |                            | (b) Both the ventricles are towards the left side |                    |
|     | (c) Entire heart is on the                                       | he left side               | (d) The aorta is on the left side                 |                    |
| 71. | The cardiac output of                                            | human heart per min is     |                                                   |                    |
|     | (a) 4320 ml                                                      | (b) 5000 ml                | (c) 1500 ml                                       | (d) 2000 ml        |
| 72. | What is the volume of                                            | blood drained by heart in  | n one ventricular stroke                          |                    |
|     | (a) 1 <i>l</i>                                                   | (b) 800 ml                 | (c) 500 ml                                        | (d) 80 ml          |
| 73. | In terms of heart funct                                          | ion, epinephrine is antage | onistic to                                        |                    |
|     | (a) Norepinephrine                                               | (b) Acetylcholine          | (c) Dopamine                                      | (d) Prostaglandin  |
| 74. | The heartbeat is regula                                          | ated by                    |                                                   |                    |
|     | (a) Pacemaker                                                    | (b) Vagus nerve            | (c) Sympathetic nerve                             | (d) All the above  |

### <u>HEART</u>

## Basic Level

| 75.                                                                | Which of the animal has only deoxygenated blood in its heart |                              |                                         |                        |  |
|--------------------------------------------------------------------|--------------------------------------------------------------|------------------------------|-----------------------------------------|------------------------|--|
|                                                                    | (a) Scoliodon                                                | (b) Rabbit                   | (c) Pigeon                              | (d) Snake              |  |
| 76.                                                                | Blood returns from lun                                       | gs to heart through          |                                         |                        |  |
|                                                                    | (a) Right auricle                                            | (b) Right ventricle          | (c) Left ventricle                      | (d) Left auricle       |  |
| 77.                                                                | In the heart of mamma                                        | l the bicuspid valve is situ | ated between                            |                        |  |
| (a) Left auricle and left ventricle (b) Post caval and right caval |                                                              | t caval                      |                                         |                        |  |
|                                                                    | (c) Right auricle and le                                     | eft auricle                  | (d) Right ventricle and pulmonary aorta |                        |  |
| 78.                                                                | Nature of valves in the                                      | heart is                     |                                         |                        |  |
|                                                                    | (a) Membranous                                               | (b) Muscular                 | (c) Tendinous                           | (d) Ligamentous        |  |
| 79.                                                                | Chordae tendinae are f                                       | ound in                      |                                         |                        |  |
|                                                                    | (a) Ventricle of heart                                       | (b) Atria of heart           | (c) Joints                              | (d) Ventricle of brain |  |
| 80.                                                                | Covering of heart is ca                                      | lled                         |                                         |                        |  |
|                                                                    | (a) Pericardium                                              | (b) Peritoneum               | (c) Perineurium                         | (d) Periostium         |  |
| 81.                                                                | The middle layer of he                                       | art is known as              |                                         |                        |  |
|                                                                    | (a) Endocardium                                              | (b) Pericardium              | (c) Epicardium                          | (d) Myocardium         |  |
|                                                                    |                                                              |                              |                                         |                        |  |


| 82.  | Post caval in right auri                       | cle is guarded by           |                            |                        |  |
|------|------------------------------------------------|-----------------------------|----------------------------|------------------------|--|
|      | (a) Eustachian Valve                           | (b) Bicuspid valve          | (c) Tricuspid valve        | (d) Atrio-ventricular  |  |
| valv | e                                              |                             |                            |                        |  |
| 83.  | Tricuspid valve are pre                        | esent between               |                            |                        |  |
|      | (a) Right auricle and ri                       | ght ventricle               | (b) Sinous venosus and     | l right auricle        |  |
|      | (c) Left auricle and left                      | t ventricle                 | (d) Superior and inferi    | or vena cava           |  |
| 84.  | Auricles of human hea                          | rt contains                 |                            |                        |  |
|      | (a) Columnae carnae                            | (b) Chordae tendenae        | (c) Papillary muscles      | (d) Purkinje's fibres  |  |
| 85.  | Right auricle of mamm                          | nalian heart receives blood | l from                     |                        |  |
|      | (a) Sinus vinosus                              | (b) Pulmonary veins         | (c) Precavals              | (d) Pre and postcavals |  |
| 86.  | During ventricular dias                        | stole                       |                            |                        |  |
|      | (a) The auricles relax (b) The heart contracts |                             |                            |                        |  |
|      | (c) The heart pumps bl                         | ood                         | (d) The ventricles relax   | X                      |  |
| 87.  | In rabbit, the four chan                       | nbered heart promotes       |                            |                        |  |
|      | (a) Double circulation                         |                             | (b) Single circulation     |                        |  |
|      | (c) Systematic circulat                        | ion                         | (d) Venous circulation     |                        |  |
| 88.  | Trilobed valve present                         | between right atrium and    | ventricle in mammalian     | heart is               |  |
|      | (a) Triac                                      | (b) Triad                   | (c) Tricuspid or besian    | n (d) Trigeminal       |  |
| 89.  | For reaching left side of                      | of heart, blood must pass t | hrough                     |                        |  |
|      | (a) Liver                                      | (b) Kidneys                 | (c) Lungs                  | (d) Brain              |  |
| 90.  | Which one of the states                        | ment is correct with refere | ence to the circulation of | blood in a mammal      |  |
|      | (a) Left auricle receive                       | s oxygenated blood from     | the lungs                  |                        |  |
|      | (b) Pulmonary artery re                        | eturns oxygenated blood f   | from the lungs to the left | auricle                |  |
|      | (c) Pulmonary vein car                         | ries venous blood from ri   | ght auricle to lungs       |                        |  |
|      | (d) Venous blood is ret                        | turned to the left auricle  |                            |                        |  |
| 91.  | Mixing up of arterial a                        | nd venous blood does not    | take place in a heart hav  | ving                   |  |
|      | (a) Two chambers                               | (b) Four chambers           | (c) Three chambers         | (d) None of the above  |  |
| 92.  | Tricuspid valve is pres                        | ent in                      |                            |                        |  |
|      | (a) Right auricle                              | (b) Right ventricle         | (c) Left ventricle         | (d) Left auricle       |  |
| 93.  | Mitral valve in mamma                          | als guards the opening bet  | tween                      |                        |  |
|      | (a) Stomach and intest                         | ine                         | (b) Pulmonary vein an      | d left auricle         |  |
|      | (c) Right auricle and ri                       | ght ventricle               | (d) Left auricle and lef   | t ventricle            |  |
| 94.  | Tunica media of an ela                         | stic artery is made up of r | nainly                     |                        |  |
|      | (a) Smooth muscle fibr                         | re (b)Loose alveolar tis    | sue                        |                        |  |
|      | (c) Elastic fibres                             | (d)Collagen fibres          |                            |                        |  |
|      |                                                |                             |                            |                        |  |

| <b>95.</b> Which of the following statements is false |                                                                                            |                             |                                |                       |  |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|-----------------------|--|--|
|                                                       | (a) Blood from the right side of the heart is carried to the lungs by the pulmonary artery |                             |                                |                       |  |  |
|                                                       | (b) The term 'pleura' refers the double layered covering of the kidney                     |                             |                                |                       |  |  |
|                                                       | (c) Pancreas is both an                                                                    | exocrine and endocrine gl   | land                           |                       |  |  |
|                                                       | (d) Scurvy is caused by                                                                    | the deficiency of vitamin   | C                              |                       |  |  |
| 96.                                                   | Histology of heart supe                                                                    | erficially shows the follow | ving structure except          |                       |  |  |
|                                                       | (a) Endocardium                                                                            | (b) Cardiac muscle          | (c) Fibrous pericardiur        | n (d) Tunica intima   |  |  |
| 97.                                                   | Cardiac muscle is comp                                                                     | posed of                    |                                |                       |  |  |
|                                                       | (a) Striated, branched a                                                                   | nd voluntary muscle fibre   | es                             |                       |  |  |
|                                                       | (b) Unstriated (smooth)                                                                    | , spindle shaped and volu   | ntary muscle fibres            |                       |  |  |
|                                                       | (c) Unstriated (smooth)                                                                    | , spindle shaped and invo   | luntary muscle fibres          |                       |  |  |
|                                                       | (d) Striated, branched a                                                                   | nd involuntary muscle fib   | pres                           |                       |  |  |
| 98.                                                   | How much of the total                                                                      | blood volume is present in  | n heart                        |                       |  |  |
|                                                       | (a) 2.5%                                                                                   | (b) 17%                     | (c) 9%                         | (d) 15%               |  |  |
| 99.                                                   | Bicuspid valve is also c                                                                   | called as                   |                                |                       |  |  |
|                                                       | (a) Mitral valve                                                                           | (b) Eustachean valve        | (c) Pulmonary valve            | (d) Ventricular valve |  |  |
| 100.                                                  | Largest heart is found i                                                                   | n                           |                                |                       |  |  |
|                                                       | (a) Elephant                                                                               | (b) Giraffe                 | (c) Crocodile                  | (d) Lion              |  |  |
| 101.                                                  | Which of the following                                                                     |                             |                                |                       |  |  |
|                                                       | (a) Left auricle                                                                           | (b) Left ventricle          | (c) Right auricle              | (d) Right ventricle   |  |  |
| 102.                                                  | C C                                                                                        | the heart from lungs via p  | •                              |                       |  |  |
|                                                       | (a) RBC per ml of bloo                                                                     |                             | (b)Haemoglobin per ml of blood |                       |  |  |
| 100                                                   | (c) Oxygen per ml of b                                                                     |                             | (d) Nutrient per ml of l       | blood                 |  |  |
| 103.                                                  | -                                                                                          | structure is absent in rabl |                                |                       |  |  |
| 104                                                   | (a) Left auricle                                                                           | (b) Left ventricle          | (c) Sinus venosus              | (d) Pace maker        |  |  |
| 104.                                                  | Heart of elephant is                                                                       |                             |                                |                       |  |  |
| 105                                                   | (a) Neurogenic                                                                             | (b) Myogenic                | (c) Both (a) and (b)           | (d) None of these     |  |  |
| 105.                                                  | What is correct about s                                                                    |                             | (b) It is situated ventral     | lly in frog boort     |  |  |
|                                                       |                                                                                            | sal surface of rabbit heart |                                |                       |  |  |
| 106                                                   | (c) It sends blood to do                                                                   |                             | (d) It opens into right a      | luiicie               |  |  |
| 100.                                                  | The wall of heart is ma                                                                    | -                           | (c) Endocardium                | (d) All of the above  |  |  |
| 107                                                   | <ul><li>(a) Epicardium</li><li>Pylangium is part of</li></ul>                              | (b) Myocardium              | (c) Endocardium                |                       |  |  |
| 10/.                                                  | (a) Truncus arteriosus                                                                     | (b) Left atrium             | (c) Right atrium               | (d) Ventricles        |  |  |
|                                                       | (a) Truncus arteriosus                                                                     |                             | (c) Right attuil               |                       |  |  |

| 108.                           | The contraction of the                                                 | heart of frog commences f     | from                                                      |                        |  |
|--------------------------------|------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------|------------------------|--|
|                                | (a) Sinus venosus                                                      | (b) Right auricle             |                                                           |                        |  |
|                                | (c) Left auricle                                                       | (d) Interauricular septum     | l                                                         |                        |  |
| 109.                           | Heart is simple tubular                                                | and ventral in                |                                                           |                        |  |
|                                | (a) Urochordata                                                        | (b) Cyclostomata              | (c) Cephalochordata                                       | (d) Vertebrate         |  |
| 110.                           | Valve of Thebesius occ                                                 | curs in the heart of          |                                                           |                        |  |
|                                | (a) Fish                                                               | (b) Frog                      | (c) Rabbit                                                | (d) Chameleon          |  |
| 111.                           | Heart of prawn carries                                                 |                               |                                                           |                        |  |
|                                | (a) Oxygenated blood                                                   | (b) Deoxygenated blood        | (c) Mixed blood                                           | (d) No blood           |  |
| 112.                           | In frog's heart, there are                                             | e muscular ridges which c     | onsist of fibres called                                   |                        |  |
|                                | (a) Myonemes                                                           | (b) Purkinjee fibres          | (c) Telodendria                                           | (d) Columneae carnae   |  |
| 113.                           | Even the ventricles of n                                               | reptiles are partitioned but  | there is mixing of blood                                  |                        |  |
|                                | (a) Due to common eje                                                  | ction and entrance of bloo    | od in lungs                                               |                        |  |
| (b) Auricles are non-separated |                                                                        |                               |                                                           |                        |  |
|                                | (c) Heart is partially fo                                              | ur-chambered                  | (d) None of these                                         |                        |  |
| 114.                           | In the mammalian hear                                                  | t, ventricular filling of blo | od takes place due to                                     |                        |  |
|                                | (a) Relaxation of right ventricle                                      |                               | (b) A higher blood pressure in right auricle              |                        |  |
|                                | (c) Adequate blood in t                                                | he right auricle              | (d) All the above actions                                 |                        |  |
| 115.                           | The thick muscular pro                                                 | jections on the walls of th   | e ventricle are called                                    |                        |  |
|                                | (a) Chordae tendinae                                                   | (b) Columnae carnae           | (c) Conus arteriosus                                      | (d) Truncus arteriosus |  |
| A dva                          | ance Level                                                             |                               |                                                           |                        |  |
|                                | Atherosclerosis refers t                                               | o the ailment of              |                                                           |                        |  |
| 110.                           | (a) Lungs                                                              | (b) Heart                     | (c) Kidney                                                | (d) Liver              |  |
| 117                            |                                                                        | in the embryonic stages ha    | •                                                         | (u) Liver              |  |
| 11/.                           | (a) Fossa ovalis                                                       | (b) Fenestra ovalis           |                                                           |                        |  |
|                                | (c) Fenestra rotunda                                                   | (d) Inter-auricular apertu    | ro                                                        |                        |  |
| 118                            | The sinu-auricular valv                                                |                               |                                                           |                        |  |
| 110.                           | (a) In the sinus venosus                                               |                               | (b) In the edges of sinu                                  | -auricular aperture    |  |
|                                | (c) In the truncus arteri                                              |                               | (d) At the auriculo-ven                                   | *                      |  |
| 110                            | . ,                                                                    | he heart is situated along i  |                                                           | incular aperture       |  |
| 117.                           | (a) Left margin                                                        | ne heart is situated along i  | (b) Right margin                                          |                        |  |
|                                | C C                                                                    |                               | (d)Lower boarder of th                                    | e heart                |  |
| 120                            | (c) Diaphragmatic surf                                                 |                               |                                                           |                        |  |
| 120.                           | Purkinje fibre is found                                                |                               | (h) Proin                                                 |                        |  |
|                                | <ul><li>(a) Conduction system</li><li>(c) Nephrons of kidney</li></ul> |                               | <ul><li>(b) Brain</li><li>(d) Sensation of skin</li></ul> |                        |  |
|                                | TO THEODRODS OF KIGNEV                                                 | ×                             |                                                           |                        |  |

| 121. | Neurogenic heart is cha                                                                                                                                                          | aracteristic of                |                              |                           |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------|---------------------------|
|      | (a) Lower vertebrates                                                                                                                                                            | (b) Humans                     | (c) Rat                      | (d) Rabbit                |
| 122. | Eustachian valve which                                                                                                                                                           | h is of no significance in the | he adult mammal, is a ve     | estigial organ, a vestige |
| 0    | of                                                                                                                                                                               |                                |                              |                           |
|      | (a) Spiral valve                                                                                                                                                                 | (b) Sinus venosus              | (c) Sino-auricular valve     | e (d) Semilunar valve     |
| 123. | Which is not true for ca                                                                                                                                                         | ardiac muscles                 |                              |                           |
|      | (a) Presence of intercal                                                                                                                                                         | lated disc                     | (b) Striated nature          |                           |
|      | (c) Involuntary                                                                                                                                                                  |                                | (d) Voluntary                |                           |
| 124. | The pericardium and th                                                                                                                                                           | ne pericardial fluid help in   |                              |                           |
|      | (a) Protecting the heart                                                                                                                                                         | from friction, shocks and      | keeps it moist               | (b) Pumping the blood     |
|      | (c) Receiving the blood                                                                                                                                                          | l from various parts of the    | body                         | (d) None of the above     |
| 125. | The atrio-ventricular val                                                                                                                                                        | ves of the heart is prevented  | d from turning inside out b  | y tough strands of        |
| с    | onnective tissue is called                                                                                                                                                       | as                             |                              |                           |
|      | (a) Tendinous cords                                                                                                                                                              | (b) Tricuspid                  | (c) Pocket valve             | (d) Mitral valve          |
| 126. | Wenckebach phenomer                                                                                                                                                              | non is seen in                 |                              |                           |
|      | (a) Complete heart bloc                                                                                                                                                          | ck (b)Partial heart block      |                              |                           |
|      | (c) Ventricular fibrillat                                                                                                                                                        | ion (d)Myocardial infarc       | tion                         |                           |
| 127. | Since it is the sinu-auri                                                                                                                                                        | cular node which initiates     | the impulses the heart o     | f mammal is called        |
|      | (a) Cholinergic                                                                                                                                                                  | (b) Adrenergic                 | (c) Neurogenic               | (d) Myogenic              |
| 128. | Which one of the follow                                                                                                                                                          | wing doctors performed th      | ne first heart transplant    |                           |
|      | (a) Hargovind Khorana                                                                                                                                                            |                                | (c) Watson                   | (d) William Harvey        |
| 129. | The tricuspid valve is p                                                                                                                                                         | C C                            |                              |                           |
|      | (a) Carotid arch                                                                                                                                                                 | •                              | (c) Truncus arteriosus       | (d) Systemic arch         |
| 130. | Bicuspid and tricuspid                                                                                                                                                           |                                |                              |                           |
|      | (a) Columnae carnae                                                                                                                                                              | (b) Endocardium                | (c) Chordae tendinae         | (d) Epicardium            |
| 131. |                                                                                                                                                                                  | mpathetic nervous system       |                              |                           |
|      | (a) Heartbeat increases                                                                                                                                                          |                                | (b) Cardiac output decreases |                           |
|      | (c) Blood pressure is lo                                                                                                                                                         |                                | (d) Pulse becomes erra       | tic and falls steadily    |
| 132. | Sinus venosus is spread                                                                                                                                                          |                                |                              |                           |
|      | (a) Dorsal surface of th                                                                                                                                                         | -                              | (b) Dorsal surface of th     |                           |
| 100  | (c) Ventral surface of t                                                                                                                                                         | -                              | (d) Ventral surface of t     |                           |
| 133. | <b>33.</b> In the diagram of the vertical section of human heart given below certain parts have been indicated by alphabete, shows the answer in which these alphabete have been |                                |                              |                           |

indicated by alphabets; choose the answer in which these alphabets have been correctly matched with the parts they indicate



- (a) A = Aorta, B = Pulmonary vein, C = Pulmonary arteries, D = Left ventricle, E = Semilunar valves, F = Left auricle, G = Right auricle, H = Superior vena cava, I = Right ventricle, J = Tricuspid valves, K = Inferior vena cava.
- (b) A = Aorta, B = Pulmonary artery, C = Pulmonary veins, D = Left auricle, E = Tricuspid and Mitral valves, F = Left ventricle, G = Right ventricle, H = Inferior vena cava, I = Right auricle, J = Semi lunar valves, K = Superior vena cava.
- (c) A = Aorta, B = Superior vena cava, C = Inferior vena cava, D = Right ventricle, E = Tricuspid and Mitral valves, F = Left auricle, G = Left auricle, H = Pulmonary veins, I = Left ventricle, J = Semilunar valves, K = Pulmonary artery.
- (d) A = Aorta, B = Superior vena cava, C = Inferior vena cava, D = Left ventricle, E = Semilunar valves, F = Left auricle, G = Right auricle, H = Pulmonary artery, I = Right ventricle, J = Tricuspid valves, K = Pulmonary vein.

134. Largest heart occurs in

|      | (a) Lion                                                         | (b) Crocodile             | (c) Horse                     | (d) Giraffe     |  |  |
|------|------------------------------------------------------------------|---------------------------|-------------------------------|-----------------|--|--|
| 135. | 135. In India first successful heart transplant was performed at |                           |                               |                 |  |  |
|      | (a) Escorts Hospital, N                                          | ew Delhi                  | (b) Apollo Hospital, Madras   |                 |  |  |
|      | (c) AIIMS, New Delhi                                             |                           | (d) Batra Hospital, New Delhi |                 |  |  |
| 136  | First successful heart the                                       | cansplant was conducted b | У                             |                 |  |  |
|      | (a) Dr. N. Trihan                                                | (b) Dr. Venugopal         | (c) Dr. M.S. Mani             | (d) Dr. Gambhir |  |  |
| 137. | <b>137.</b> Foramen of panizzae is found in the heart of         |                           |                               |                 |  |  |
|      | (a) Frog                                                         | (b) Pigeon                | (c) Crocodile                 | (d) Rabbit      |  |  |

#### CARDIAC CYCLE

#### **Basic Level**

138. What is not true about the pace maker

- (a) It initiates and maintains heart beat at the rate of 72/min.
- (b) It is present in the right auricle
- (c) Its activity is modulated by various chemicals
- (d) It is not a characteristic of myogenic heart

| 139. | What is true about the pace maker present in hu                                               | ıman heart              |                       |  |  |
|------|-----------------------------------------------------------------------------------------------|-------------------------|-----------------------|--|--|
|      | (a) Initiates and regulates heart beat                                                        | (b)Increases cardiac o  | utput                 |  |  |
|      | (c) Is not affected by acetylcholine                                                          | (d)Does not respond t   | o epinephrine         |  |  |
| 140. | What is not true about human heart                                                            |                         |                       |  |  |
|      | (a) Myogenic                                                                                  | (b) Rhythmicity         |                       |  |  |
|      | (c) Heart beat initiated and controlled by SA no                                              | ode                     |                       |  |  |
|      | (d) AV node modulate and dominate the activit                                                 | ies of pace maker       |                       |  |  |
| 141. | AV node was discovered by                                                                     |                         |                       |  |  |
|      | (a) Loewis (b) His                                                                            | (c) Ringer              | (d) Harvey            |  |  |
| 142. | Bundle of His is a network of                                                                 |                         |                       |  |  |
|      | (a) Nerve fibres found throughout the heart                                                   |                         |                       |  |  |
|      | (b) Muscle fibres distributed throughout the hea                                              | art walls               |                       |  |  |
|      | (c) Muscle fibres found only in the ventricle wall (d) Nerve fibres distributed in ventricles |                         |                       |  |  |
| 143. | 143. If the pace maker is absent                                                              |                         |                       |  |  |
|      | (a) Only auricles will contract                                                               | (b) Only ventricles wi  | ll contract           |  |  |
|      | (c) Cardiac muscles will contract in a coordinated manner                                     |                         |                       |  |  |
|      | (d) Cardiac muscles will not contract in a coord                                              | linated manner          |                       |  |  |
| 144. | A pace maker is meant for                                                                     |                         |                       |  |  |
|      | (a) Transplanting liver                                                                       | (b) Transplanting hear  | rt                    |  |  |
|      | (c) Initiation of heart beats                                                                 | (d) Regulation of bloc  | od flow               |  |  |
| 145. | Identify the incorrectly matched pair                                                         |                         |                       |  |  |
|      | (a) Diastole – Phase of contraction of cardiac n                                              | nuscle                  |                       |  |  |
|      | (b)Systole – Dilation phase of cardiac muscle                                                 |                         |                       |  |  |
|      | (c) Duration of cardiac cycle in humans $-0.8$ s                                              | ec.(d) Haemoglobin – Re | espiratory pigment    |  |  |
| 146. | QRST is related with                                                                          |                         |                       |  |  |
|      | (a) Ventricular contraction or depolarization                                                 | (b) Auricular contract  | ion                   |  |  |
|      | (c) Auricular relaxation                                                                      | (d) Cardiac cycle       |                       |  |  |
| Adve | ance Level                                                                                    |                         |                       |  |  |
| 147. | In an ECG, QRS wave represent                                                                 |                         |                       |  |  |
|      | (a) Activity of pace setter (b)Auricular relaxa                                               | tion                    |                       |  |  |
|      | (c) Ventricular contraction (d)Ventricular relax                                              |                         |                       |  |  |
| 148. | In an old man's ECG, <i>T</i> -waves shall be                                                 |                         |                       |  |  |
|      | (a) Flat (b) Inverted                                                                         | (c) Very prominent      | (d) Same as in adults |  |  |
| 149. | Although much $co_2$ is carried in the blood, yet                                             |                         |                       |  |  |
|      |                                                                                               |                         |                       |  |  |

|      | This is because                                                                          |                              |                                         |                            |  |
|------|------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------|----------------------------|--|
|      | (a) In $co_2$ transport, block                                                           | ood buffers play an impor    | tant role                               |                            |  |
|      | (b) $CO_2$ combines with water to form $H_2CO_3$ which is neutralised by $NaCO_3$        |                              |                                         |                            |  |
|      | (c) $co_2$ is continuously diffused through the tissues and is not allowed to accumulate |                              |                                         |                            |  |
|      | (d) $co_2$ is absorbed by leucocytes                                                     |                              |                                         |                            |  |
| 150. | <b>50.</b> What is the end diastolic volume of blood in a normal adult heart             |                              |                                         |                            |  |
|      | (a) 50 <i>ml</i>                                                                         | (b) 70 <i>ml</i>             | (c) 90 <i>ml</i>                        | (d) 110 <i>ml</i>          |  |
| 151. | . Which of the following                                                                 | cardiac effects can be ob    | served if the potassium of              | concentration is increased |  |
| t    | two to three times the normal value                                                      |                              |                                         |                            |  |
|      | (a) Weakness of heart                                                                    | (b) Abnormal rhythm          | (c) Death                               | (d) All the above          |  |
| 152. | In all the leads of ECG                                                                  | , all following are positive | e waves except                          |                            |  |
|      | (a) <i>P</i>                                                                             | (b) <i>Q</i>                 | (c) <i>R</i>                            | (d) <i>T</i>               |  |
| 153. | . Which of the following                                                                 | is a repolarization wave     |                                         |                            |  |
|      | (a) <i>P</i>                                                                             | (b) <i>T</i>                 | (c) QRS                                 | (d) None of these          |  |
| 154. | ECG records                                                                              |                              |                                         |                            |  |
|      | (a) Electric current of the                                                              | he body                      | (b) Potential differences               |                            |  |
|      | (c) Pulse rate                                                                           |                              | (d) Quantity of blood pumped per minute |                            |  |
| 155. | Sinu-atrial node is inne                                                                 | rvated by branches of        |                                         |                            |  |
|      | (a) V cranial nerve                                                                      |                              | (b) X cranial nerve                     |                            |  |
|      | (c) IX cranial nerve                                                                     |                              | (d) VI cranial nerve                    |                            |  |

#### **BLOOD VESSEL AND PRESSURE**

### Basic Level

| <b>156.</b> A man will be unconscious if the blood supply to the brain is stopped for more than |                             |                                    |               |  |
|-------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------|---------------|--|
| (a) 2 second                                                                                    | (b) 5 second                | (c) 10 second                      | (d) 30 second |  |
| <b>157.</b> The blood pressure i                                                                | s high in                   |                                    |               |  |
| (a) Arteries                                                                                    | (b) Veins                   |                                    |               |  |
| (c) Capillaries                                                                                 | (d) Veins of portal         | system                             |               |  |
| 158. Fall in blood pressur                                                                      | e due to loss of blood      | is soon restored because th        | e             |  |
| (a) Blood vessels dilate                                                                        |                             | (b) Blood cells decrease in number |               |  |
| (c) Heart beat is incr                                                                          | (c) Heart beat is increased |                                    | creased       |  |
| <b>159.</b> Serotonin in the bloc                                                               | od                          |                                    |               |  |
| (a) Relaxes blood vessels                                                                       |                             | (b)Prevents clotting of blood      |               |  |
| (c) Helps in clotting                                                                           | of blood                    | (d) Constricts blood               | d vessels     |  |
|                                                                                                 |                             |                                    |               |  |

|                                                                                                                                            |                               | higher than diastolic pressure | le because                  |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|-----------------------------|--------------------------|
|                                                                                                                                            | (a) Arteries are contr        | acting during systole          |                             |                          |
|                                                                                                                                            | (b) Blood is pumped diastole. | with a pressure in the arter   | ies by the heart during sy  | stole but not during     |
|                                                                                                                                            | (c) Arteries resist du        | ring systole only              |                             |                          |
|                                                                                                                                            | (d) Volume of blood           | is higher in systole than th   | at of diastole in the heart |                          |
| 161.                                                                                                                                       | In several vertebrates        | s the rate of heart beat and   | increase in blood pressure  | e is caused by a hormon  |
|                                                                                                                                            | (a) Thyroxin                  | (b) Secretin                   | (c) Noradrenalin            | (d) Adrenalin            |
| 162.                                                                                                                                       | In man, blood passes          | from the post caval into th    | e diastolic right atrium of | f the heart because of   |
|                                                                                                                                            | (a) Pushing of venou          | s valves                       | (b) Suction pull            |                          |
|                                                                                                                                            | (c) Beating of S.A. n         | ode                            | (d) Pressure between p      | ost caval and atrium     |
| 163.                                                                                                                                       | Sphygmomanometer              | measure                        |                             |                          |
|                                                                                                                                            | (a) Nerve conduction          | n rate (b)Heart beat rate      | (c) Blood pressure          | (d) Pulse rate           |
| 164.                                                                                                                                       | Renin is released by          | the kidney when the arteria    | al blood pressure           |                          |
|                                                                                                                                            | (a) Gets elevated             | (b) Becomes low                | (c) Remains constant        | (d) Becomes high         |
| 165.                                                                                                                                       | Cardiac output signif         | ies                            |                             |                          |
| <ul><li>(a) The amount of blood entering the heart per unit time</li><li>(b) The amount of blood entering the lung per unit time</li></ul> |                               |                                |                             |                          |
|                                                                                                                                            |                               |                                |                             |                          |
|                                                                                                                                            | (c) The amount of bl          | ood leaving the heart per u    | nit time                    |                          |
|                                                                                                                                            | (d) The amount of bl          | ood leaving the lung per ur    | nit time                    |                          |
| 166.                                                                                                                                       | Normal diastolic pres         | ssure in young man is abou     | t                           |                          |
|                                                                                                                                            | (a) 20 mm Hg                  | (b) 80 <i>mm Hg</i>            | (c) 110 mm Hg               | (d) 130 mm Hg            |
| 167.                                                                                                                                       | How much arterial p           | ressure rises during arterial  | contraction (mm Hg)         | _                        |
|                                                                                                                                            | (a) 2 – 4                     | (b) 4 – 6                      | (c) $6 - 8$                 | (d) Does not rise at all |
| 168.                                                                                                                                       | If glucose is to be inj       | ected in human blood, the      | property to be matched w    | ith glucose is           |
|                                                                                                                                            | (a) Density                   | (b) Viscosity                  | (c) Osmotic potential       | -                        |
| 169.                                                                                                                                       | For the diffusion to t        | ake place effectively in cap   | -                           |                          |
|                                                                                                                                            |                               | (b) $5-9$ second               | -                           | -                        |
| 170.                                                                                                                                       |                               | d by all the following exce    |                             |                          |
|                                                                                                                                            | (a) Anoxia                    |                                | (b) Moderate $co_2$ exce    | ess                      |
|                                                                                                                                            | (c) Elevated body ter         | merature                       | (d) Increased intracran     |                          |
| 171                                                                                                                                        | -                             | on is preceded by atrial cor   |                             |                          |
| ./1.                                                                                                                                       | (a) 1 <i>second</i>           | (b) 1/2 second                 | (c) 1/4 second              | (d) 1/6 <i>second</i>    |
| 172                                                                                                                                        | Uremia disease is ass         |                                | () 1/T SCOM                 | (a) 1/0 second           |
|                                                                                                                                            |                               |                                |                             |                          |

| 173.                                                                    | Heart beat and pulse rat            | te is increased under cond     | itions of                           |                             |  |
|-------------------------------------------------------------------------|-------------------------------------|--------------------------------|-------------------------------------|-----------------------------|--|
|                                                                         | (a) Psychogenic stress              | (b) Fever                      | (c) Muscular exercise               | (d) All of the above        |  |
| 174.                                                                    | The heart beat increase             | s at the time of interview     | due to                              |                             |  |
|                                                                         | (a) Corticotrophic hormone          |                                | (b) Hyper secretion of a            | renin                       |  |
|                                                                         | (c) Secretion of adrenal            | line                           | (d) Antidiuretic hormon             | ne secretion                |  |
| 175.                                                                    | Pulse can easily be dete            | ected on superficial artery    | like that of                        |                             |  |
|                                                                         | (a) Diaphragm (b) Thigh             |                                | (c) Wrist                           | (d) Humerus                 |  |
| 176.                                                                    | An adult human with av              | verage health has systolic     | and diastolic pressure as           | 5                           |  |
|                                                                         | (a) 80 <i>mm Hg</i> and 88 <i>m</i> | ım Hg                          | (b) 70 <i>mm Hg</i> and 120         | mm Hg                       |  |
|                                                                         | (c) 120 mm Hg and 80                | mm Hg                          | (d) 50 <i>mm Hg</i> and 80 <i>n</i> | ım Hg                       |  |
| 177.                                                                    | The thickening of walls             | s of arteries are called       |                                     |                             |  |
|                                                                         | (a) Arthritis                       | (b) Aneurysm                   | (c) Arteriosclerosis                | (d) Both (a) and (b)        |  |
| <b>178.</b> Putting adrenaline on the heat will cause the heart beat to |                                     |                                |                                     |                             |  |
|                                                                         | (a) Retard                          | (b) Accelerate                 | (c) Produce louder sour             | nd (d) Stop                 |  |
| <b>179.</b> Average cardiac output is                                   |                                     |                                |                                     |                             |  |
|                                                                         | (a) 4 litres per minute             | (b) 6.3 litres per minute      | (c) 5.3 litres per minute           | e (d) 7.3 litres per minute |  |
| 180.                                                                    | Heart beats are affected            | l by                           |                                     |                             |  |
|                                                                         | (a) Carbon dioxide                  | (b) Oxygen                     | (c) Vagus nerve                     | (d) All the above           |  |
| 181.                                                                    | We feel sleepy just after           | er taking meals because        |                                     |                             |  |
|                                                                         | (a) Blood pressure incre            | eases                          | (b) Blood pressure decreases        |                             |  |
|                                                                         | (c) Body weight increase            | ses                            | (d) We feel lithargic               |                             |  |
| 182.                                                                    | The pulse beat is measu             | ured by the                    |                                     |                             |  |
|                                                                         | (a) Artery                          | (b) Capillary                  | (c) Vein                            | (d) None                    |  |
| 183.                                                                    | Identify the correct stat           | ement                          |                                     |                             |  |
|                                                                         | (a) When the ventricles             | contract, the pressure is h    | nighest                             |                             |  |
|                                                                         | (b) Blood pressure in h             | uman varies with age           |                                     |                             |  |
|                                                                         | (c) Systolic pressure in            | human is 120 mm of <i>Hg</i> a | and diastolic is 80 mm of           | f Hg                        |  |
|                                                                         | (d) All of the above                |                                |                                     |                             |  |
| 184.                                                                    | Blood clot inside a bloo            | od vessel is known as          |                                     |                             |  |
|                                                                         | (a) Thrombus                        | (b) Fibrinolysis               | (c) Thrombosis                      | (d) Clot                    |  |
| 185.                                                                    | Heart beat are accelerat            | ted by                         |                                     |                             |  |
|                                                                         | (a) Cranial nerves and a            | acetylcholine                  | (b) Sympathetic nerves              | and acetylcholine           |  |
|                                                                         | (c) Cranial nerves and a            | adrenaline                     | (d) Sympathetic nerves              | and epinephrine             |  |
|                                                                         |                                     |                                |                                     |                             |  |

| 186. | <b>186.</b> Blood capillaries are made of                                                                                    |                              |                          |                             |  |
|------|------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|-----------------------------|--|
|      | (a) Endothelium and the                                                                                                      | nin coat of connective tiss  | ue                       |                             |  |
|      | (b) Endothelium and the                                                                                                      | nin coat of muscle fibres    |                          |                             |  |
|      | (c) Endothelium and the                                                                                                      | nin coat of connective tissu | ue and muscle fibres     |                             |  |
|      | (d) Only endothelium                                                                                                         |                              |                          |                             |  |
| 187. | Stethoscope was inven                                                                                                        | ted by                       |                          |                             |  |
|      | (a) Waksman                                                                                                                  | (b) Koch                     | (c) Laennec              | (d) Jenner                  |  |
| Adv  | ance Level                                                                                                                   |                              |                          |                             |  |
| 188. | Below normal heart be                                                                                                        | at is called                 |                          |                             |  |
|      | (a) Bradycardia                                                                                                              | (b) Tachycardia              | (c) Hyperpiesis          | (d) All of these            |  |
| 189. | Blood pressure increas                                                                                                       | es and heart rate decrease   | s in response to         |                             |  |
|      | (a) Exercise                                                                                                                 |                              | (b) Haemorrage           |                             |  |
|      | (c) Exposure to high al                                                                                                      | ltitude                      | (d) Increased intracran  | nial pressure               |  |
|      | <b>190.</b> Deficiency of which of the following causes obesity, low plasma $Na^+$ , high $K^+$ and increased blood pressure |                              |                          |                             |  |
|      | (a) Growth hormone                                                                                                           | (b) Adrenaline               | (c) Cortisol             | (d) Thyroxine               |  |
| 191. | Starling's law is related                                                                                                    | l to                         |                          |                             |  |
|      | (a) Venous return to he                                                                                                      | eart (b)Force of heart bea   | nt                       |                             |  |
|      | (c) Frequency of heart                                                                                                       | beat (d)Peripheral resistan  | nce                      |                             |  |
| 192. | Oxygen-fick method is                                                                                                        | s used to measure            |                          |                             |  |
|      | (a) Blood pressure                                                                                                           | (b) Cardiac reserve          |                          |                             |  |
|      | (c) Cardiac output                                                                                                           | (d) Capillary blood flow     | ,                        |                             |  |
| 193. | Plethysomograph is us                                                                                                        | ed to measure                |                          |                             |  |
|      | (a) Velocity of blood                                                                                                        |                              | (b) Mean volume flow     |                             |  |
|      | (c) Excitability of hear                                                                                                     | ť                            | (d) Conducting of stin   | nuli in heart               |  |
| 194. | Lymph flows in the ly                                                                                                        | mph vessels due to           |                          |                             |  |
|      | (a) Presence of valves                                                                                                       | in their walls               | (b) Gravity              |                             |  |
|      | (c) Contraction and dil                                                                                                      | ation of heart               |                          |                             |  |
|      | (d) Pressure exerted by                                                                                                      | the contraction of surrou    | nding body tissue        |                             |  |
| 195. | In allergy and urticaria                                                                                                     | the local arterioles dilate  | due to increased substan | nce from mast cells, called |  |
|      | (a) Adrenaline                                                                                                               | (b) Antitoxin                | (c) Epinephrine          | (d) Histamine               |  |
| 196. | In man, the normal blo                                                                                                       | od pressure is maintained    | by the blood protein ca  | lled                        |  |
|      | (a) Haemoglobin                                                                                                              | (b) Albumin                  | (c) Fibrinogen           | (d) Heparin                 |  |
|      |                                                                                                                              |                              |                          |                             |  |

| 197. | Stimulating of sympath         | netic nerves of the heart ac | ccelerates it through      |                         |  |
|------|--------------------------------|------------------------------|----------------------------|-------------------------|--|
|      | (a) Release of acetylch        | oline                        | (b) Inhibition of adrena   | alin                    |  |
|      | (c) Release of adrenali        | n                            | (d) Inhibition of renin    |                         |  |
| 198. | <i>pH</i> of blood in artery a | nd vein is                   |                            |                         |  |
|      | (a) Same                       |                              | (b) More in artery and     | less in vein            |  |
|      | (c) More in vein and le        | ss in artery                 | (d) Not definite           |                         |  |
|      |                                | <u>ARTERY AN</u>             | ID VEINS                   |                         |  |
| Basi | c Level                        |                              |                            |                         |  |
| 199. | Identify the main syste        | mic artery which originate   | es from the left ventricle |                         |  |
|      | (a) Carotid                    | (b) Pulmonary                | (c) Jugular                | (d) Aorta               |  |
| 200. | The artery which suppl         | ies blood to the diaphgram   | n is known as              |                         |  |
|      |                                | or                           |                            |                         |  |
|      | The diaphragm is supp          | lied with blood by           |                            |                         |  |
|      | (a) Cardiac artery             | (b) Phrenic artery           | (c) Lingual artery         | (d) Lumber artery       |  |
| 201. | Diameter of capillaries        | for RBC to pass should b     | e                          |                         |  |
|      | (a) 4 µ                        | (b) Less than $5\mu$         | (c) More than $5\mu$       | (d) More than $10\mu$   |  |
| 202. | Femoral artery supplies        | s blood to                   |                            |                         |  |
|      | (a) Hind limb                  |                              | (b) Rectum                 |                         |  |
|      | (c) Dorsal region of thi       | gh                           | (d) Ventral region thigh   |                         |  |
| 203. | Iliac artery carries bloc      | od to the                    |                            |                         |  |
|      | (a) Lungs                      | (b) Ileum                    | (c) Hind limbs             | (d) Brain               |  |
| 204. | The wall of blood capi         | llaries is made up of        |                            |                         |  |
|      | (a) Mesenchymal cells          | (b) Connective tissues       | (c) Endothelial cells      | (d) Fibrocytes          |  |
| 205. | Which of the following         | g has no muscular wall       |                            |                         |  |
|      | (a) Artery                     | (b) Vein                     | (c) Arteriol               | (d) Capillary           |  |
| 206. | Select the correctly ma        | tched pair                   |                            |                         |  |
|      | (a) Papillary muscles –        | Blinking of eye lids         | (b) Carotid artery – Ox    | ygenated blood to heart |  |
|      | (c) Blood vessels of dia       | aphragm – Phrenic vessels    | s (d) Systole – Causes er  | ntry of blood in heart  |  |
| 207. | Smallest lumen blood           | vessel in the body is        |                            |                         |  |
|      | (a) Capillary                  | (b) Artery                   | (c) Vein                   | (d) Venacava            |  |
| 208. | In which region the lyr        | nphatic system and blood     | circulatory system meet    |                         |  |
|      | (a) Liver                      | (b) Precaval                 | (c) Pulmonary artery       | (d) Systematic arch     |  |
| 209. | The process of blood c         | lot formation within the c   | irculatory system is       |                         |  |
|      | (a) Thrombosis                 | (b) Thrombocytes             | (c) Thrombin               | (d) Thrombocytopenia    |  |
|      |                                |                              |                            |                         |  |

| 210. | Blood vessels that cont                                             | tain valves are called        |                                        |                         |  |  |
|------|---------------------------------------------------------------------|-------------------------------|----------------------------------------|-------------------------|--|--|
|      | (a) Arteries                                                        | (b) Veins                     | (c) Capillaries                        | (d) All the above       |  |  |
| 211. | Thrombin occurs in the                                              | e vertebrates in              |                                        |                         |  |  |
|      | (a) The liver and is imp                                            | portant for bile secretion    | (b) The stomach and di                 | gests proteins          |  |  |
|      | (c) The blood and is in                                             | nportant for clotting         | (d) The blood and give                 | s it red colour         |  |  |
| 212. | Blood leaving lungs is                                              | rich in                       |                                        |                         |  |  |
|      | (a) Oxygen                                                          | (b) Haemoglobin               |                                        |                         |  |  |
|      | (c) Carbon dioxide                                                  | (d) More number of RBC        | 2                                      |                         |  |  |
| 213. | Juxta glomerular cells                                              | are present in                |                                        |                         |  |  |
|      | (a) Afferent arteriole                                              | (b) Efferent arteriole        | (c) Between (a) & (b)                  | (d) All the above       |  |  |
| 214. | <b>214.</b> The artery can be distinguished from the vein in having |                               |                                        |                         |  |  |
|      | (a) Thicker walls                                                   | (b) More blood cells          | (c) More plasma                        | (d) Larger cavity       |  |  |
| 215. | A vein differs from the                                             | e artery in having            |                                        |                         |  |  |
|      | (a) Narrow lumen                                                    |                               | (b) Strong cuticular and muscular wall |                         |  |  |
|      | (c) Valves to control direction of flow                             |                               | (d) Dark pigmented wall                |                         |  |  |
| 216. | Oxygenated blood is ca                                              | arried by                     |                                        |                         |  |  |
|      | (a) Pulmonary vein                                                  | (b) Pulmonary artery          | (c) Renal vein                         | (d) Hepatic portal vein |  |  |
| 217. | Blood to the heart is be                                            | rought by the venous syste    | m by                                   |                         |  |  |
|      | (a) Innominate and ant                                              | erior abdominal               | (b) Subclavian alone                   |                         |  |  |
|      | (c) Vena cavae                                                      |                               | (d) Anterior abdominal alone           |                         |  |  |
| 218. | What is blood pressure                                              |                               |                                        |                         |  |  |
|      | (a) The pressure of blo                                             | ood on the heart muscle       |                                        |                         |  |  |
|      | (b) The pressure of blo                                             | ood exerted on the walls of   | arteries and veins                     |                         |  |  |
|      | (c) The pressure of blo                                             | ood on the walls of veins of  | nly                                    |                         |  |  |
|      | (d) The pressure of blo                                             | od on the walls of arteries   | only                                   |                         |  |  |
| 219. | The velocity of blood f                                             | flow is minimum in            |                                        |                         |  |  |
|      | (a) Capillaries                                                     | (b) Arterioles                | (c) Small arteries                     | (d) Aorta               |  |  |
| 220. | Valves are necessary in                                             | n veins but not in arteries l | because                                |                         |  |  |
|      | (a) Blood flows with g                                              | reater force in veins         | (b) Blood in veins flows without jerk  |                         |  |  |
|      | (c) Blood from heart m                                              | nay not be pushed back int    | o veins                                |                         |  |  |
|      | (d) Pressure in veins is                                            | low, which can flow the b     | blood                                  |                         |  |  |
| 221. | The blood coming out                                                | of lungs is richer than that  | entering into lungs in                 |                         |  |  |
|      | (a) Oxygen                                                          | (b) Carbon dioxide            | (c) (a) and (b) both                   | (d) None of these       |  |  |
|      |                                                                     |                               |                                        |                         |  |  |

| 222. | The veins                                 |                               |                                         |                        |  |  |
|------|-------------------------------------------|-------------------------------|-----------------------------------------|------------------------|--|--|
|      | (a) Have thick elastic w                  | valls                         | (b) Contain valves                      |                        |  |  |
|      | (c) Are called resistanc                  | e vessels                     | (d) Store less blood than arteries      |                        |  |  |
| 223. | Which part of the circu                   | latory system serves to su    | pply blood to the heart                 |                        |  |  |
|      | (a) Coronary                              | (b) Portal                    | (c) Pulmonary                           | (d) Systemic           |  |  |
| 224. | Pulmonary veins                           |                               |                                         |                        |  |  |
|      | (a) Carry pure blood from heart to lungs  |                               | (b) Carry impure blood                  | l from lungs to heart  |  |  |
|      | (c) Carry pure blood free                 | om lungs to heart             | (d) Carry impure blood                  | l to lungs             |  |  |
| 225. | The posterior venacava                    | l                             |                                         |                        |  |  |
|      | (a) Divides into the hepatic portal veins |                               | (b) Opens into the left                 | auricle                |  |  |
|      | (c) Commences at the l                    | kidney                        | (d) Begins at the hind e                | end of abdomen         |  |  |
| 226. | Oxygenated blood is for                   | ound in                       |                                         |                        |  |  |
|      | (a) Pulmonary veins                       | (b) Pulmonary arteries        | (c) Right atrium                        | (d) Right ventricle    |  |  |
| 227. | Which is correct about                    | veins                         |                                         |                        |  |  |
|      | (a) Valves are absent                     |                               | (b) Carry blood towards heart           |                        |  |  |
|      | (c) Always carry oxygenated blood         |                               | (d) Always carry deoxygenated blood     |                        |  |  |
| 228. | The blood vessel which                    | n brings oxygenated blood     | from lungs towards the heart of frog is |                        |  |  |
|      | (a) Pre caval                             | (b) Post caval                | (c) Pulmonary vein                      | (d) Pulmonary artery   |  |  |
| 229. | When the right ventricl                   | e contracts the blood goes    | s into                                  |                        |  |  |
|      | (a) Aorta                                 | (b) Brain                     | (c) Pulmonary artery                    | (d) None               |  |  |
| 230. | Arteries are                              |                               |                                         |                        |  |  |
|      | (a) Thin-walled and blo                   | ood flows under diminishe     | ed pressure                             |                        |  |  |
|      | (b) Thick-walled and b                    | lood flows under high pre     | ssure                                   |                        |  |  |
|      | (c) Thin-walled and blo                   | ood flows under high pres     | sure                                    |                        |  |  |
|      | (d)Thick-walled and bl                    | ood flows under diminish      | ed pressure                             |                        |  |  |
| 231. | All arteries carry oxyge                  | enated blood except           |                                         |                        |  |  |
|      | (a) Systemic                              | (b) Hepatic                   | (c) Pulmonary                           | (d) Cardiac            |  |  |
| 232. | The pre-caval veins col                   |                               |                                         |                        |  |  |
|      | · · /                                     | bs (b)Fore limbs and him      |                                         |                        |  |  |
|      | (c) Head and fore limbs                   |                               | ıbs                                     |                        |  |  |
| 233. | The post-caval vein col                   | llects blood from             |                                         |                        |  |  |
|      | (a) Hind limbs                            |                               | (b) Hind limbs and org                  | ans of the body cavity |  |  |
|      | (c) Body cavity organs                    |                               | (d) Renal organs                        |                        |  |  |
| 234. | -                                         | g is different from others in |                                         |                        |  |  |
|      | (a) Veins                                 | (b) Arteries                  | (c) Capillaries                         | (d) Arterioles         |  |  |
| 1    |                                           |                               |                                         |                        |  |  |

| 235.                                                                    | Right systemic arch is a                                                   | bsent in                                                                                |                           |                         |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------|-------------------------|
|                                                                         | (a) Reptiles                                                               | (b) Birds                                                                               | (c) Mammals               | (d) None of the above   |
| 236.                                                                    | Iliac artery carries blood                                                 | d to                                                                                    |                           |                         |
|                                                                         | (a) Hind limb                                                              | (b) Fore limb                                                                           | (c) Lung                  | (d) Brain               |
| 237.                                                                    | -                                                                          | g which opens in its right                                                              |                           | genated blood is        |
|                                                                         | (a) Pulmocutaneum arte                                                     | ery (b)Inferior vena cava                                                               |                           |                         |
|                                                                         | (c) Pulmocutaneum vein                                                     | n (d)Superior vena cava                                                                 | a                         |                         |
| 238.                                                                    | Splenic artery arises fro                                                  | m                                                                                       |                           |                         |
|                                                                         | (a) Anterior mesenteric                                                    | •                                                                                       | (b) Coeliac artery        |                         |
|                                                                         | (c) Posterior mesenteric artery (d) Intestinal artery                      |                                                                                         |                           |                         |
| 239.                                                                    | Thoracic duct is associa                                                   |                                                                                         |                           |                         |
|                                                                         |                                                                            | (b) Hepatic duct                                                                        |                           | (d) Aorta               |
| 240.                                                                    | -                                                                          | frog is concerned with the                                                              |                           |                         |
|                                                                         |                                                                            | (b) Number of WBCs                                                                      |                           | (d) Blood glucose level |
| 241.                                                                    | <b>41.</b> Common thrombosis leading to myocardial infarction is of        |                                                                                         |                           |                         |
| (a) Right circumflex coronary artery (b) Left circumflex coronary arter |                                                                            |                                                                                         |                           |                         |
|                                                                         | (c) Left anterior descend                                                  |                                                                                         | (d) Right coronary artery |                         |
| 242.                                                                    | •                                                                          | Pulmonary aorta in mammalian embryo communicates with carotico - systemic aorta by a th |                           |                         |
|                                                                         | vessel called ductus arteriosus which later closes and remains in adult as |                                                                                         |                           |                         |
|                                                                         | (a) Fossa ovalis                                                           |                                                                                         | (b) Ligamentum arterio    | osus                    |
|                                                                         | (c) Carotico-pulmonary                                                     | •                                                                                       | (d) None of these         |                         |
| 243.                                                                    | The internal carotid arte                                                  | •                                                                                       |                           |                         |
|                                                                         | (a) Supplies impure blo                                                    |                                                                                         | (b) Supplies oxygenate    |                         |
|                                                                         | (c) Brings impure blood                                                    | from the brain                                                                          | (d) Supplies oxygenate    | d blood to heart        |
|                                                                         | ince Level                                                                 |                                                                                         |                           |                         |
| 244.                                                                    | The two branches of the                                                    | e iliac artery are                                                                      |                           |                         |
|                                                                         | (a) Femoral and renal                                                      |                                                                                         | (b) Femoral and sciatic   |                         |
|                                                                         | (c) Vesiculo – epigastrio                                                  |                                                                                         | (d) Renal and sciatic     |                         |
| 245.                                                                    | The pre-caval vein is for                                                  |                                                                                         |                           |                         |
|                                                                         | (a) External jugular and                                                   |                                                                                         | (b) Innominate and sub    |                         |
|                                                                         |                                                                            | ominate and subclavian                                                                  | (d) External jugular and  | d subclavian            |
| 246.                                                                    | The post-caval is constit                                                  | -                                                                                       |                           |                         |
|                                                                         | (a) Renal, gonadial and                                                    | -                                                                                       | (b) Renal and gonadial    |                         |
|                                                                         | (c) Gonadial and hepatie                                                   | с                                                                                       | (d) Hepatic and renal     |                         |
| 247.                                                                    | The unpaired systemic b                                                    | branch is                                                                               |                           |                         |
|                                                                         | (a) Coeliaco-mesentric                                                     | (b) Renal artery                                                                        | (c) Iliac                 | (d) Vesiculo-epigastric |
|                                                                         |                                                                            |                                                                                         |                           |                         |

| 2 | 248. | The shoulder and fore l   | limb are connected to the l | neart by                 |                        |  |
|---|------|---------------------------|-----------------------------|--------------------------|------------------------|--|
|   |      | (a) Dorsal aorta          | (b) Subclavian artery       | (c) Oesophageal          | (d) Occipito-vertebral |  |
| 2 | 249. | Which of the following    |                             |                          |                        |  |
|   |      | (a) Hepatic artery        | (b) Hepatic portal vein     | (c) Pulmonary vein       | (d) None of these      |  |
| 2 | 250. | Which of the following    | amount of urea              |                          |                        |  |
|   |      | (a) Hepatic portal vein   | (b) Hepatic vein            | (c) Renal artery         | (d) Hepatic artery     |  |
| 2 | 251. | What percent of total b   | lood coming out of heart,   | goes to kidney           |                        |  |
|   |      | (a) 25%                   | (b) 50%                     | (c) 75%                  | (d) 40%                |  |
| 2 | 252. | What is the approximat    | te number of capillaries in | human body               |                        |  |
|   |      | (a) 10 thousand           | (b) 10 million              | (c) 10 billion           | (d) 10 trillion        |  |
| 2 | 253. | All followings are vaso   | constrictor agents except   |                          |                        |  |
|   |      | (a) Norepinephrine        | (b) Angiotensin             | (c) Vasopressin          | (d) Prostaglandins     |  |
| 2 | 254. | Vasa vasorum supplies     | blood to                    |                          |                        |  |
|   |      | (a) Pericardium           |                             |                          | (b) Blood vessels      |  |
|   |      | (c) Tunica adventitia ar  | nedia                       | (d) Vas deferens         |                        |  |
| 2 | 255. | Rouget cells surround t   |                             |                          |                        |  |
|   |      | (a) Arteries              | (b) Veins                   | (c) Arterioles           | (d) Capillaries        |  |
| 2 | 256. | Which one of the follow   | wing has elastic wall       |                          |                        |  |
|   |      | (a) Arteriole             | (b) Dorsal aorta            | (c) Precaval             | (d) Post caval         |  |
| 2 | 257. | In the inguinal canal lie | es                          |                          |                        |  |
|   |      | (a) Posterior mesentric   | artery                      | (b) Spermatic artery     |                        |  |
|   |      | (c) Internal carotid arte | ry                          | (d) Dorsal aorta         |                        |  |
| 2 | 258. | Which one of the follow   | wing is found both in frog  | and in rabbit            |                        |  |
|   |      | (a) Spinal accessory ne   | rve (b)Diaphragm            |                          |                        |  |
|   |      | (c) Hepatic portal syste  | em (d)Eustachian tube       |                          |                        |  |
| 2 | 259. | Largest blood vessel in   | body is                     |                          |                        |  |
|   |      | (a) Carotid artery        | (b) Dorsal aorta            | (c) Phrenic artery       | (d) Coronary artery    |  |
| 2 | 260. | Thrombosis in which c     | oronary artery is met most  | t frequency in MI        |                        |  |
|   |      | (a) Right coronary arter  | ry                          | (b) Left anterior descer | iding artery           |  |
|   |      | (c) Left circumflex core  | onary artery                | (d) Right circumflex co  | pronary artery         |  |
|   |      |                           |                             |                          |                        |  |

| <b>261.</b> Systemic heart refe | rs to                                                              |                            |                              |  |
|---------------------------------|--------------------------------------------------------------------|----------------------------|------------------------------|--|
| (a) The two ventric             | les together in humans                                             |                            |                              |  |
| (b) The heart that c            | (b) The heart that contracts under stimulation from nervous system |                            |                              |  |
| (c) Left auricle and            | (c) Left auricle and left ventricle in higher vertebrates          |                            |                              |  |
| (d) Entire heart in l           | ower vertebrates                                                   |                            |                              |  |
| <b>262.</b> The lymphatic fluid | l opens into the blood circu                                       | lation via a duct into the | e                            |  |
| (a) Artery supplyin             | g the spleen                                                       | (b) Vein coming fro        | om liver                     |  |
| (c) Jugular vein                |                                                                    | (d) Venacava near t        | he heart                     |  |
| <b>263.</b> Which substance is  | more in blood flowing three                                        | ough hepatic vein than b   | blood flowing through portal |  |
| vein                            |                                                                    |                            |                              |  |
| (a) Water                       | (b) Urea                                                           |                            |                              |  |
| (c) Fatty acid                  | (d) Amino acid + oxy                                               | gen                        |                              |  |
| 264. Carotid artery carri       | es                                                                 |                            |                              |  |
| (a) Impure blood fr             | om brain (b) Oxygenated l                                          | blood to anterior region   | of body or to brain          |  |
| (c) Impure blood to             | kidney (d) Oxygenated                                              | blood to heart             |                              |  |
| <b>265.</b> Innominate is       |                                                                    |                            |                              |  |
| (a) A nerve and arte            | ery                                                                | (b) A muscle and an        | tery                         |  |
| (c) Skeleton part ar            | id artery                                                          | (d) A nerve and veir       | n                            |  |
| <b>266.</b> Valves are found in | veins to check the backflo                                         | w of blood flowing und     | er                           |  |
| (a) Low pressure                | (b) High pressure                                                  | (c) No pressure            | (d) Very high pressure       |  |
| 267 Match the blood w           | again of human heart list                                          | ad unden Calumn I wit      | 1. (1 f.,                    |  |

**267.** Match the blood vessels of human heart listed under Column-I with the functions given under Column-II; Choose the answer which gives the correct combination of the alphabets of the two columns

|   | Column-I<br>(Blood vessel) |   | Column-II<br>(Function)                                                             |
|---|----------------------------|---|-------------------------------------------------------------------------------------|
| A | Superior vena cava         | р | Carries deoxygenated blood to lungs                                                 |
| В | Inferior vena cava         | q | Carries oxygenated blood to lungs                                                   |
| С | Pulmonary artery           | r | Brings deoxygenated<br>blood from lower<br>parts of the body to<br>the right atrium |

| D | Pulmonary vein | S | Brings oxygenated<br>blood to the left<br>atrium                                      |
|---|----------------|---|---------------------------------------------------------------------------------------|
|   |                | t | Brings deoxygenated<br>blood from upper<br>parts of the body into<br>the right atrium |

| (a) $A = t, B = p$ | , $C = r$ , $D = q$ |
|--------------------|---------------------|
|--------------------|---------------------|

**268.** Hepatic portal system starts from

(b) A =t, B = r, C= p, D = sA =t, B = p, C= q, D = r

(c) A = s, B = t, C = r, D = p(d)

#### PORTAL SYSTEM

#### Basic Level

|      | (a) Digestive system to                          | liver                                           | (b) Kidney to liver             |                          |
|------|--------------------------------------------------|-------------------------------------------------|---------------------------------|--------------------------|
|      | (c) Liver to heart                               |                                                 | (d) Liver to kidney             |                          |
| 269. | Digested food materials                          | s entering the blood reach                      | the heart by                    |                          |
|      | (a) Hepatic portal vein,                         | hepatic vein and post cav                       | al (b)Hepatic vein              | and post caval           |
|      | (c) Hepatic portal vein                          | and post caval                                  | (d)Hepatic porta                | al vein and hepatic vein |
| 270. | Blood circulation that s                         | starts in capillaries and enc                   | ls in capillaries is ca         | lled                     |
|      | (a) Portal circulation                           | (b) Hepatic circulation                         | (c) Cardiac circulat            | tion (d) None            |
| 271. | Renal portal system is a                         | absent in                                       |                                 |                          |
|      | (a) Rabbit                                       | (b) Frog                                        | (c) Toad                        | (d) Salamander           |
| 272. | A portal system is pres                          | ent in                                          |                                 |                          |
|      | (a) Liver                                        | (b) Hypothalamus                                | (c) Pituitary                   | (d) All of the above     |
|      | When a vein instead of ntermediate organ like li | carrying the blood directl<br>iver, is known as | y into the heart, first         | carries it to some       |
|      | (a) Portal vein                                  | (b) Renal portal vein                           | (c) Hepatic portal v            | vein (d) Pulmonary vein  |
| Adve | ance Level                                       |                                                 |                                 |                          |
| 274. | Which one of the follow                          | wing vein breaks up into c                      | apillaries                      |                          |
|      | (a) Renal vein                                   | (b) Hepatic portal vein                         | (c) Pelvic vein                 | (d) Pulmonary vein       |
| 275. | The renal portal system                          | n is made of                                    |                                 |                          |
|      | (a) Femoral, renal porta                         | al veins                                        | (b) Sciatic, renal portal veins |                          |
|      | (c) Renal portal veins                           |                                                 | (d) Femoral, sciatio            | c, renal portal veins    |
|      |                                                  |                                                 |                                 |                          |

**276.** A portal system is a system in which (a) A vein starts from an organ and ends up in heart (b) An artery breaks up in an organ and restarts by the union of its capillaries (c) The blood from the gut is brought into the kidney before it is poured into posterior venacava (d) A vein breaks up in an organ into capillaries and restarts by their union as a new vein in the same organ **277.** The hepatic portal vein before reaching the liver, joins the (a) Dorso-lumbar (b) Gonadial veins (c) Anterior abdominal vein (d) Femoro-renal **278.** Venous system of frog differs from that of rabbit in presence of (a) Hepatic portal system (b)Renal portal system (c) 3 vena cavae (d)Hepatic vein **279.** Which of the following organs has portal circulation (d) All of the above (a) Hypothalamus (b) Hypophysis (c) Kidney and liver **280.** Hypophysial portal system is found in (a) Kidney (b) Liver (c) Brain (d) Heart LYMPHATIC SYSTEM **Basic Level 281.** Antibodies of the plasma are partly manufactured by (b) Lymphocytes (c) Eosinophils (d) Neutrophils (a) Monocytes **282.** Lymph (nodes) glands form (c) Antigens (d) Antibodies (a) Hormones (b) Lymphs **283.** The principle function of the lymph node in the man is (a) Destruction of old RBC (b) Destruction of old WBC (c) Collection and destruction of pathogens blood (d) Production of WBC **284.** What will happen to an adult human being if spleen is removed (a) RBC production will be lowered (b) Antibody production will be lowered (c) Filteration of dead RBC will not be there (d) WBC production will be lowered **285.** Identify the organ which serves as storage depot for RBC (a) Spleen (b) Bone marrow (c) Liver (d) Gall bladder **286.** Identify the correct statement (a) Interstitial fluid is returned to blood by lymph (b) Kidney produces a hormone erythropoietin which stimulates RBC formation (c) Spleen controls blood volume in blood vessels (d) All of the above

| 287. | Which of the following   | body fluid is colourless   |                            |                      |
|------|--------------------------|----------------------------|----------------------------|----------------------|
|      | (a) Plasma               | (b) Lymph                  | (c) Cerebrospinal fluid    | (d) All of the above |
| 288. | Lymph is colourless be   | cause                      |                            |                      |
|      | (a) WBC are absent       |                            | (b) WBC are present        |                      |
|      | (c) Heamoglobin is abs   | ent                        | (d) RBC are absent         |                      |
| 289. | Spleen is                |                            |                            |                      |
|      | (a) Haemopoeitic         | (b) Lymphoid               | (c) Reproductive           | (d) Celluloid        |
| 290. | Lymphoid tissue is four  | nd in                      |                            |                      |
|      | (a) Thymus               | (b) Tonsils                | (c) Lymph nodes            | (d) All of these     |
| 291. | The lymphocytes provi    | de the principal defence m | nechanism by producing     |                      |
|      | (a) Antigens             | (b) Haemoglobin            | (c) Immunoglobins          | (d) Myoglobins       |
| 292. | In our body, the blood   | bank is                    |                            |                      |
|      | (a) Red bone marrow      | (b) Spleen                 | (c) Liver                  | (d) Heart            |
| 293. | The lymphocytes prote    | ct from                    |                            |                      |
|      | (a) Pathogens            | (b) Lymph                  | (c) Leucocytes             | (d) Toxins           |
| 294. | The lymph differs from   | the blood in having        |                            |                      |
|      | (a) Blood with more RI   | BC and less WBC            | C (b) Blood without plasma |                      |
|      | (c) Plasma without prot  | teins                      | (d) No RBC but more WBC    |                      |
| 295. | Lymph is blood minus     |                            |                            |                      |
|      | (a) Blood corpuscles     | (b) Blood plasma           | (c) RBC                    | (d) WBC              |
| 296. | The old worn out RBC     | s are filtered out by      |                            |                      |
|      | (a) Kidney               | (b) Liver                  | (c) Spleen                 | (d) Heart            |
| 297. | Lymph glands and node    | es help to                 |                            |                      |
|      | (a) Excrete the urea     | (b) Eliminate the ammon    | ia                         |                      |
|      | (c) Prepare blood        | (d) Destroy the bacteria   |                            |                      |
| Adva | ance Level               |                            |                            |                      |
| 298. | In connection with circ  | ulatory system, valves are | present                    |                      |
| (    | a) Not only in heart an  | d blood vessels or vertebr | ates and invertebrates, b  | ut in vertebrate     |
| 1    | ymphatics as well        |                            |                            |                      |
|      | (b) Vertebrate heart onl | ly                         |                            |                      |
|      | (c) Vertebrate heart and | l invertebrate hearts only |                            |                      |
| 1    |                          |                            |                            |                      |

- (d) Vertebrate hearts, invertebrate hearts and their blood vessels
- **299.** Humoral antibodies are produced by

| (a) $\beta$ - cells (b) $T$ - cells (c) G | obulins (d) Plasma cells |
|-------------------------------------------|--------------------------|
|-------------------------------------------|--------------------------|

| 300. | After vaccination, the b                                                                                        | oody build up                |                                  |                          |
|------|-----------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|--------------------------|
|      | (a) Toxins                                                                                                      | (b) Antibodies               | (c) Lymph                        | (d) Plasma               |
| 301. | Cords of billroth are bl                                                                                        | ood spaces which at found    | l in which of the followi        | ngs                      |
|      | (a) Liver                                                                                                       | (b) Kidneys                  | (c) Spleen                       | (d) Tonsils              |
| 302. | A yellow substance oo                                                                                           | zing out from wound has      |                                  |                          |
|      | (a) Lymph+RBC+WB                                                                                                | C                            | (b) Lymph+RBC+dead               | l bacteria               |
|      | (c) Lymph+WBC+dead                                                                                              | d bacteria                   | (d) Lymph+dead leuco             | cytes                    |
| 303. | Function of human sple                                                                                          | een is to                    |                                  |                          |
|      | (a) Control the pulse ra                                                                                        | te (b)Secrete hormone        |                                  |                          |
|      | (c) Stimulate heart                                                                                             | (d)Control blood volu        | ume                              |                          |
| 304. | Which organ is conside                                                                                          | ered as "Graveyard of RBC    | C" where most of them a          | are destroyed by         |
| n    | nacrophages                                                                                                     |                              |                                  |                          |
|      | (a) Red bone marrow                                                                                             | (b) Spleen                   | (c) Kidney                       | (d) Intestine            |
| 305. | Lymph vessels are unit                                                                                          | ed to form                   |                                  |                          |
|      | (a) Lymph heart                                                                                                 | (b) Cisterna chyle           | (c) Thoracic duct                | (d) Jugular vein         |
| 306. | The lymph serves to                                                                                             |                              |                                  |                          |
|      | (a) Transport $o_2$ to the brain(b) Transport $co_2$ to the lungs(c) Return the interstitial fluid to the blood |                              | (b)Transport $co_2$ to the lungs |                          |
|      |                                                                                                                 |                              |                                  |                          |
|      | (d)Return the WBCs an                                                                                           | nd the RBCs to the lymph     | nodes                            |                          |
| 307. | In rabbit, function of sp                                                                                       | pleen is                     |                                  |                          |
|      | (a) Blood purification                                                                                          | (b) Respiration              | (c) Excretion                    | (d) None of the above    |
| 308. | Which vertebrate organ                                                                                          | n receives only oxygenated   | d blood                          |                          |
|      | (a) Gill                                                                                                        | (b) Lung                     | (c) Spleen                       | (d) Liver                |
| 309. | Squeezing of leucocyte                                                                                          | es out from the endothelium  | m of capillaries to fight        | foreign agents is known  |
| a    | IS                                                                                                              |                              |                                  |                          |
| I    | (a) Haemolysis                                                                                                  | (b) Diapaedesis              | (c) phagocytosis                 | (d) Rouleaux             |
| 310. | Antibodies defend the                                                                                           | body from the invading an    | ntigen by                        |                          |
| (    | a) Combining with it t                                                                                          | to abolish its free mobility | and thus preventing it fa        | rom acting in a damaging |
| n    | nanner                                                                                                          |                              |                                  |                          |
|      | (b) Eliminating the tox                                                                                         | ins released by it           |                                  |                          |
|      | (c) Phagocytosis                                                                                                |                              |                                  |                          |
|      | (d) Transporting it to the                                                                                      | ne liver where it is destroy | ed                               |                          |
|      |                                                                                                                 |                              |                                  |                          |
|      |                                                                                                                 |                              |                                  |                          |
|      |                                                                                                                 |                              |                                  |                          |

#### **BLOOD**

#### **Basic Level 311.** The life span of neutrophils is (a) 120 days (b) 118 days (c) 10-12 hours (d) 24-72 hours **312.** Basophil cells are the storage and release site for (b) Vitamin K (a) Prothrombin (c) Histamine (d) Epinephrine **313.** Identify the motile, phagocytic corpuscle of mammalian blood (a) Thrombocytes (b) Monocytes (c) Neutrophils (d) Basophils **314.** Blood coagulation is assisted by (a) Phagocytes (b) Thrombocytes (c) Erythrocytes (d) Leucocytes **315.** Where the granulocytes are formed (a) In kidney (b) In liver (c) In red bone marrow (d) In small intestine **316.** In which one of the following white ghost are found (a) Thrombocytes (b) Lymphocytes (c) Choanocytes (d) Erythrocytes **317.** If the number of leucocytes is increased beyond normal limits in the blood it shows that (a) The person is becoming stronger by acquiring more WBCs (b) It is a normal process (c) There is some infection in the body (d) He is anaemic **318.** Neutrophils serve as (a) Mopping up (b) Histiocytes (c) Macrophages (d) Shock troops **319.** Heamoglobin is a type of (a) Vitamin (b) Skin pigment (c) Carbohydrate (d) Respiratory pigment **320.** Which one of the following is the percentage of inorganic salt in the protoplasm (a) 5-7 percent (b) 50 - 60 percent (c) 0.1 - 2.5 percent (d) 2 - 3 percent **321.** Which element is responsible for the low haemoglobin content in the blood (c) Iodine (d) Aluminium (a) Sulphur (b) Iron **322.** The break down product of haemoglobin is (b) Bilirubin (c) Biliverdin (d) All the above (a) Iron **323.** If a child's blood does not clot, he is prescribed by the doctor (a) Heparin (b) Vitamin C (c) Vitamin D (d) Vitamin K **324.** Normal haemoglobin contents of a healthy man per 100 *ml* of blood is about (a) 11.5 to 12.5 gms (b) 12.0 to 14.0 gms (d) 14.0 to 16.0 gms (c) 12.5 to 14.5 gms **325.** The chief difference between the erythrocytes (RBC) of man and frog is (a) Human erythrocytes have more haemoglobin (b) Human erythrocytes have more nuclei

(c) Human erythrocytes have two nuclei (d) Human erythrocytes have no nuclei

| 326.       | The cation (mineral) ne   | ecessary for coagulation of   | f blood is                |                      |
|------------|---------------------------|-------------------------------|---------------------------|----------------------|
|            | (a) <i>Na</i>             | (b) <i>Ca</i>                 | (c) <i>K</i>              | (d) <i>Cl</i>        |
| 327.       | Significant role of clott | ting of blood is played by    |                           |                      |
|            | (a) Neutrophils           | (b) Thrombocytes              | (c) Erythrocytes          | (d) Leucocytes       |
| 328.       | Bicarbonate ions can be   | e generated in                |                           |                      |
|            | (a) Lymphocyte            | (b) Neutrophil                | (c) Basophil              | (d) RBC              |
| 329.       | Urea is transported by    |                               |                           |                      |
|            | (a) WBC                   | (b) Haemoglobin               | (c) RBC                   | (d) Blood and plasma |
| 330.       | Conversion of fibrinog    | en to fibrin is catalysed by  | ,                         |                      |
|            | (a) Thrombin              | (b) Prothrombin               | (c) Thromboplastin        | (d) Thrombokinase    |
| 331.       | A chemical that preven    | ts blood clotting is most u   | seful in the treatment of |                      |
|            | (a) Leukemia              |                               | (b) Anaemia               |                      |
|            | (c) Coronary thrombos     | is                            | (d) Haemophilia           |                      |
| 332.       | The nucleus in WBC is     | 3                             |                           |                      |
|            | (a) Round                 | (b) Oval                      | (c) Spindle shaped        | (d) Irregular        |
| 333.       | Accumulation of tissue    | fluid may be due to           |                           |                      |
|            | (a) Diapedesis            | (b) Rouleux                   | (c) Rupture of RBC        | (d) Phagocytosis     |
| 334.       | T-Lymphocytes origina     | ate from                      |                           |                      |
|            | (a) Thymus                | (b) Bone marrow               | (c) Liver                 | (d) None of these    |
| 335.       | The condition in which    | the body's internal enviro    | nment remains relatively  | constant within its  |
| <b>1</b> i | imits is                  |                               |                           |                      |
|            | (a) Autotrophy            | (b) Haemolysis                | (c) Homeostasis           | (d) Apoptosis        |
| 336.       | Blood platelets are con   | cerned with                   |                           |                      |
|            | (a) Transport of $co_2$   |                               | (b) Release of antitoxin  | S                    |
|            | (c) Production of antibe  | odies                         | (d) Release of thrombog   | plastin              |
| 337.       | The normal level of Ha    | emoglobin per 100 ml of       | blood in women is         |                      |
|            | (a) 14 gms                | (b) 18 <i>gms</i>             | (c) 12 gms                | (d) 20 gms           |
| 338.       | Hematology is the stud    | y of                          |                           |                      |
|            | (a) Bone                  | (b) Blood                     | (c) Cartilage             | (d) Nerve            |
| 339.       | Which of the following    | g is capable of carrying oxy  | ygen                      |                      |
|            | (a) Lymph                 | (b) Serum                     | (c) Blood                 | (d) Plasma           |
| 340.       | Number of RBC in man      | n increases if he lives at hi | gher altitude because     |                      |
|            | (a) There is more oxyg    | en                            | (b)There is less oxygen   |                      |
|            | (c) There are no germs    | in air                        | (d) More heat is needed   | to warm the body     |
| 341.       | Non-nucleated cell is     |                               |                           |                      |
|            | (a) Erythrocyte           | (b) Leucocyte                 | (c) Muscle cell           | (d) Bone cell        |
|            |                           |                               |                           |                      |

| 342. | Platelet plug is associat                                                  | ted with                      |                           |                         |
|------|----------------------------------------------------------------------------|-------------------------------|---------------------------|-------------------------|
|      | (a) Hemostasis                                                             | (b) Clot retraction           | (c) Fibrin formation      | (d) Homeostasis         |
| 343. | In which of the followi                                                    | ng ER is absent               |                           |                         |
|      | (a) Human monocyte                                                         | (b) WBC                       | (c) Embryo cell           | (d) Mammalian RBC       |
| 344. | Haemoglobin contains                                                       |                               |                           |                         |
|      | (a) 70% globin+30% h                                                       | aematin                       | (b) 80% globin+20% ha     | aematin                 |
|      | (c) 95% globin+05% h                                                       | aematin                       | (d) 90% globin+10% ha     | aematin                 |
| 345. | In some human beings                                                       | clotting of blood takes lor   | ng time due to the defect | in                      |
|      | (a) RBCs                                                                   | (b) WBCs                      | (c) Blood platelets       | (d) Blood plasma        |
| 346. | RBC of which are nucl                                                      | eated                         |                           |                         |
|      | (a) Rabbit                                                                 | (b) Camel & Ilama             | (c) Embryo of man         | (d) Both (a) and (c)    |
| 347. | <b>47.</b> If haemoglobin is replaced by haemocyanin, the blood will carry |                               |                           |                         |
|      | (a) Less oxygen                                                            | (b) More oxygen               |                           |                         |
|      | (c) No oxygen                                                              | (d) Same amount of oxyg       | gen                       |                         |
| 348. | The volume of RBC with                                                     | ill increase in               |                           |                         |
|      | (a) Isotonic solution                                                      | (b) Hypotonic solution        | (c) Hypertonic solution   | (d) None of these       |
| 349. | What remains after the removal of fibrinogen from plasma                   |                               |                           |                         |
|      | (a) Clot                                                                   | (b) Haemolymph                | (c) Lymph                 | (d) Serum               |
| 350. | The blood protein invo                                                     | lved in blood coagulation     | is                        |                         |
|      | (a) Thrombin                                                               | (b) Fibrinogen                | (c) Prothrombin           | (d) Fibrinoprotein      |
| 351. | Glomerular filtrate is al                                                  | lmost similar to blood plas   | sma except                |                         |
|      | (a) RBC                                                                    | (b) WBC                       | (c) Protein               | (d) All the above       |
| 352. | The white pus of an inf                                                    | fected part in the body is c  | omposed of                |                         |
|      | (a) Dead leucocytes+bl                                                     | ood serum                     | (b) Living erythrocytes   | +serum                  |
|      | (c) Dead erythrocytes+                                                     | plasma                        | (d) Living leucocytes+s   | serum                   |
| 353. | Carbonic anhydrase is                                                      | present in high concentration | ions in                   |                         |
|      | (a) Plasma                                                                 | (b) Erythrocytes              | (c) Leucocytes            | (d) Nephrons            |
| 354. |                                                                            | t of prolonged clotting ti    |                           | f plasma thromboplastin |
|      |                                                                            | or the formation of thromb    |                           |                         |
|      | (a) Christmas disease                                                      |                               | (b) Heamophilia           |                         |
|      | (c) Hypoprothrombinae                                                      |                               | (d) Hartnup disease       |                         |
| 355. | The blood groups in ma                                                     | -                             |                           |                         |
|      | (a) Mendel                                                                 | (b) Francis Nelton            | (c) S. Miller             | (d) Landstiener         |
|      |                                                                            |                               |                           |                         |

| 356. | . In a haemophilic person tooth extraction may result in death by excessive bleeding due to |                          |                            |  |  |
|------|---------------------------------------------------------------------------------------------|--------------------------|----------------------------|--|--|
|      | (a) Absence of a certain plasma protein necessary to change protein into thrombin           |                          |                            |  |  |
|      | (b) Presence of a certain plasma protein necessary to prevent blood clotting                |                          |                            |  |  |
|      | (c) Absence of a certain plasma protein necessary                                           | for haemorrhage          |                            |  |  |
|      | (d) Presence of a certain plasma protein necessary                                          | y for a haemorrhage      |                            |  |  |
| 357. | Coagulation will be retarded by                                                             |                          |                            |  |  |
|      | (a) Lowering of RBC count                                                                   | (b) Increasing temperat  | ure                        |  |  |
|      | (c) Removing heparin                                                                        | (d) Lowering thromboc    | cyte count                 |  |  |
| 358. | Which change is importance in blood coagulation                                             | 1                        |                            |  |  |
|      | (a) Trapping of blood cells                                                                 | (b) Formation of insolu  | ble fibres                 |  |  |
|      | (c) Shrinkage and hardening of clot                                                         | (d) Interweaving of fibr | res                        |  |  |
| 359. | For clotting of blood which of the following is ne                                          | ecessary                 |                            |  |  |
|      | (a) $Ca$ and thromboplastin (b) $Na$ and thrombopla                                         | astin                    |                            |  |  |
|      | (c) <i>Na</i> and <i>K</i> ions (d) <i>Na</i> and prothromb                                 | in                       |                            |  |  |
| 360. | Which of the following helps in blood coagulatio                                            | n                        |                            |  |  |
|      | (a) $K^+$ (b) $Na^+$                                                                        | (c) <i>Mg</i>            | (d) $Ca^{++}$              |  |  |
| 361. | In numerical system for international nomenclatu                                            | re of blood coagulation  | features, clotting factor- |  |  |
|      | VIII is                                                                                     |                          |                            |  |  |
|      | (a) Antihaemophilic factor (b)Antihaemophilic globulin                                      |                          |                            |  |  |
|      | (c) Platelet cofactor-I (d)All the above                                                    |                          |                            |  |  |
| 362. | Prothrombin time is longer in deficiency of all th                                          | e following factors exce | pt                         |  |  |
|      | (a) Factor-V (b) Factor-VII                                                                 | (c) Factor-X             | (d) Factor-XIII            |  |  |
| 363. | The number of leucocytes ranges from (per cc)                                               |                          |                            |  |  |
|      | (a) 4,000 to 13,000 (b) 1 million to 1.5 million                                            | on (c)2,000 to 3,000     | (d) 5,000 to 6,000         |  |  |
| 364. | Which of the following statements is false                                                  |                          |                            |  |  |
|      | (a) Red blood corpuscles are also called leucocyt                                           | es                       |                            |  |  |
|      | (b) White blood cells from a part of the body's de                                          | fence mechanism agains   | st infection               |  |  |
|      | (c) Platelets are also called thrombocytes                                                  |                          |                            |  |  |
|      | (d) In the blood, oxygen is mainly carried in cher                                          | nical combination with h | naemoglobin                |  |  |
| 365. | Number of <i>RBCs</i> in blood is                                                           |                          |                            |  |  |
|      | (a) 54 lakh / cubic mm (b) 50 lakh / cubic mm (c) 60 lakh / cubic mm (d) 30 lakh / cubic mm |                          |                            |  |  |
| 366. | 66. Polycythemia is                                                                         |                          |                            |  |  |
|      | (a) Increased RBCs count (b)Increased WBCs c                                                |                          |                            |  |  |
|      | (c) Decreased WBCs count (d)Decreased platelet                                              | s count                  |                            |  |  |
|      |                                                                                             |                          |                            |  |  |

| 367. | <b>367.</b> If <i>pH</i> of blood is artificially changed to 8, what is most likely to happen |                                          |                         |                               |  |
|------|-----------------------------------------------------------------------------------------------|------------------------------------------|-------------------------|-------------------------------|--|
| Ì    | (a) The tissues will not get oxygen as oxyhaemoglobin will not dissociate into oxygen and     |                                          |                         |                               |  |
| h    | aemoglobin                                                                                    |                                          |                         |                               |  |
|      |                                                                                               | will not be released from                |                         | nates                         |  |
|      | -                                                                                             | rase will be completely in               |                         |                               |  |
|      | (d) It will generate carbon monoxide and the animal will die of carbon monoxide poisoning     |                                          |                         |                               |  |
| 368. | C                                                                                             | statement is correct abou                |                         |                               |  |
|      | (a) Transport of $o_2$ by                                                                     | RBC and $co_2$ by blood pl               | asma                    |                               |  |
|      | (b) Transport of $o_2$ and                                                                    | $1 co_2$ both is carried by R            | BC and WBC              |                               |  |
|      | (c) Transport of $o_2$ by                                                                     | RBC and $co_2$ by WBC                    |                         |                               |  |
|      | (d) Transport of $o_2$ and                                                                    | $d_{co_2}$ by RBC and blood p            | plasma both             |                               |  |
| 369. | The main constituent of                                                                       | f plasma proteins is                     |                         |                               |  |
|      | (a) Heparin                                                                                   | (b) Fibrinogen                           | (c) Globulin            | (d) Albumin                   |  |
| 370. | The number of RBCs p                                                                          | er <i>mm</i> <sup>3</sup> of blood is mi | illions                 |                               |  |
|      | (a) 5.5                                                                                       | (b) 7.0                                  | (c) 8.0                 | (d) 3.0                       |  |
| 371. | <b>71.</b> What will be the volume of blood in a healthy adult male weighing 75 kg            |                                          |                         |                               |  |
|      | (a) 6.0 litre                                                                                 | (b) 5.6 litre                            | (c) 7.5 litre           | (d) 4 litre                   |  |
| 372. | Blood can be stored by                                                                        | addition of                              |                         |                               |  |
|      | (a) Histamine                                                                                 | (b) Epinephrine                          | (c) Citrate and oxalate | salts(d)Prothrombin           |  |
| 373. | If blood cells are elimin                                                                     | nated from the blood, the l              | iquid left is           |                               |  |
|      | (a) Serum                                                                                     | (b) Plasma                               | (c) Lymph               | (d) Synovial fluid            |  |
| 374. | The process of formation                                                                      | on of the various types of               | blood cells is known as |                               |  |
|      | (a) Haemagglutination                                                                         | (b) Haemolysis                           | (c) Haemophilia         | (d) Haemopoiesis              |  |
| 375. | Haemoglobin is a                                                                              |                                          |                         |                               |  |
|      | (a) Copper containing p                                                                       |                                          | (b) Iron containing pig |                               |  |
|      | (c) Magnesium contain                                                                         |                                          | (d) Calcium containing  | d) Calcium containing pigment |  |
| 376. | The RBCs of mammals                                                                           |                                          |                         |                               |  |
|      | (a) Circular biconcave                                                                        |                                          | (c) Circular biconvex   | (d) Oval biconvex             |  |
| 377. | •                                                                                             | ce in the bone marrow of                 |                         |                               |  |
|      | (a) Femur                                                                                     | (b) Radius                               | (c) Vertebrae           | (d) None of the above         |  |
| 378. |                                                                                               | or a cell swells or bursts if            |                         |                               |  |
|      | (a) Saturated                                                                                 | (b) Hypotonic                            | (c) Hypertonic          | (d) Isotonic                  |  |
| 379. | The buffer salts present                                                                      | t in the blood are                       |                         |                               |  |
|      | (a) Potassium                                                                                 | (b) Sodium                               | (c) Sodium and potassi  | um (d)Cobalt                  |  |
| 380. | -                                                                                             | r throughout the human lif               |                         |                               |  |
|      | (a) Blood cells                                                                               | (b) Retina                               | (c) Skin                | (d) Hair                      |  |
| 1    |                                                                                               |                                          |                         |                               |  |

| 3 | 81. | In mammalian RBC, th     | e percentage of haemoglo     | bin is                           |                     |  |
|---|-----|--------------------------|------------------------------|----------------------------------|---------------------|--|
|   |     | (a) 40% of biomass       | (b) 34% of biomass           | (c) 90% of biomass               | (d) 50% of biomass  |  |
| 3 | 82. | Haemoglobin $-S$ is pre- | esent in                     |                                  |                     |  |
|   |     | (a) Megaloblastic anae   | mia                          | (b)Hereditary spherocy           | rtosis              |  |
|   |     | (c) Sickel cell anaemia  |                              | (d) Erythroblastosis for         | etalis              |  |
| 3 | 83. | The rise of blood sugar  | above the normal level is    | known as                         |                     |  |
|   |     | (a) Glucosuria           | (b) Glycolysis               | (c) Hyperglycemia                | (d) Hypoglycemia    |  |
| 3 | 84. | The normal percentage    | of glucose in the blood of   | f man is 0.1%. It is found       | d in                |  |
|   |     | (a) Plasma               | (b) RBC                      | (c) WBC                          | (d) Serum           |  |
| 3 | 85. | The sample of a health   | y human blood is             |                                  |                     |  |
|   |     | (a) Alkaline             | (b) Acidic                   | (c) Neutral                      | (d) None of these   |  |
| 3 | 86. | Erythropoesis may be s   | stimulated by the deficient  | cy of                            |                     |  |
|   |     | (a) Iron                 | (b) Oxygen                   | (c) Protein                      | (d) None of these   |  |
| 3 | 87. | In which form the $co_2$ | is carried in the blood      |                                  |                     |  |
|   |     | (a) Sodium carbonate     |                              | (b) Sodium bicarbonate           |                     |  |
|   |     | (c) Potassium carbonat   | e                            | (d) Magnesium bicarbonate        |                     |  |
| 3 | 88. | An antibody is a         |                              |                                  |                     |  |
|   |     | (a) Molecule that speci  | fically inactivates an antig | gen (b)WBC which inva            | ades bacteria       |  |
|   |     | (c) Secretion of mamm    | alian RBC                    | (d)Component of blood            |                     |  |
| 3 | 89. | If RBC are placed in hy  | pertonic solution, they      |                                  |                     |  |
|   |     | (a) Burst                | (b) Shrink                   | (c) Die                          | (d) Retain the size |  |
| 3 | 90. | Formation of red blood   | cells in a normal human      | adult occurs in                  |                     |  |
|   |     | (a) Kidneys              | (b) Spleen                   | (c) Bone marrow                  | (d) Lymph nodes     |  |
| 3 | 91. | Mammals have biconca     | ave RBC. The physiologic     | al use for it is                 |                     |  |
|   |     | (a) To decrease the sur  | face area                    | (b) To increase the surface area |                     |  |
|   |     | (c) To be packed like c  | oins                         | (d) None of the above            |                     |  |
| 3 | 92. | Persons living in moun   | tains (high altitudes) have  | rosy cheeks because              |                     |  |
|   |     | (a) They are adapted to  | that environment             |                                  |                     |  |
|   |     | (b) They take apple dai  | ly                           |                                  |                     |  |
|   |     | (c) Their RBC concent    | ration becomes high due t    | o low oxygen pressure            |                     |  |
|   |     | (d) All the above        |                              |                                  |                     |  |
| 3 | 93. | Persons living at high a | altitude will have           |                                  |                     |  |
|   |     | (a) Increased alveolar c | capacity                     | (b) Increased number o           | f erythrocytes      |  |
|   |     | (c) Haemoglobin curve    | shifts towards right         | (d) All of the above             |                     |  |
|   |     | -                        | -                            |                                  |                     |  |

| 394. | Anaemia is due to define  | ciency of                   |                                      |                        |  |
|------|---------------------------|-----------------------------|--------------------------------------|------------------------|--|
|      | (a) <i>Ca</i>             | (b) <i>P</i>                | (c) <i>Fe</i>                        | (d) <i>Mg</i>          |  |
| 395. | At high altitude the RB   | C in the human blood wil    | 1                                    |                        |  |
|      | (a) Increase in size      | (b) Decrease in size        | (c) Increase in number               | (d) Decrease in number |  |
| 396. | Rabbit's RBC is           |                             |                                      |                        |  |
|      | (a) Spherical             | (b) Biconcave               | (c) Enucleate                        | (d) All the above      |  |
| 397. | A mature human erythmeter | cocyte has the typical char | acteristics of                       |                        |  |
|      | (a) A eukaryote cell      |                             | (b) A prokaryote cell                |                        |  |
|      | (c) Both eukaryote cell   | and prokaryote cell         | (d) Neither eukaryote n              | or prokaryote cell     |  |
| 398. | <b>398.</b> Blood is      |                             |                                      |                        |  |
|      | (a) Endodermal in orig    | in (b)Exodermal in orig     | in                                   |                        |  |
|      | (c) Mesodermal in orig    | in (d)Ectodermal in orig    | gin                                  |                        |  |
| 399. | Which one of the follow   | wing belongs to different   | group                                |                        |  |
|      | (a) Erythrocyte           | (b) Lymphocyte              | (c) Monocyte                         | (d) Neutrophil         |  |
| 400. | The $pH$ of the blood is  | maintained balancing the    | ratio of                             |                        |  |
|      | (a) Lactic acid and pyre  | uvic acid                   | (b) NaHCO <sub>3</sub> and $H_2CO_3$ |                        |  |
|      | (c) $CO_2$ and $H_2O$     |                             | (d) Pyruvic acid and $H_2CO_3$       |                        |  |
| 401. | The internal device to r  | maintain body temperature   | e constant is                        |                        |  |
|      | (a) Increasing and decr   | easing amount of urine      | (b) Variable blood circulation       |                        |  |
|      | (c) Variable rate of blo  | od digestion                | (d) None of the above                |                        |  |
| 402. | The medium of plasma      | is                          |                                      |                        |  |
|      | (a) Acidic                | (b) Basic                   | (c) Neutral                          | (d) None of these      |  |
| 403. | Clot of blood contains    |                             |                                      |                        |  |
|      | (a) Prothrombin           | (b) Thrombin                | (c) Fibrinogen                       | (d) Fibrin             |  |
| 404. | Which one of the follow   | wing in blood absorbs oxy   | gen                                  |                        |  |
|      | (a) WBCs                  | (b) Plasma                  | (c) RBCs                             | (d) Platelets          |  |
| 405. |                           | vents coagulation of blood  |                                      |                        |  |
|      | (a) Platelets             | (b) Globular protein        | (c) Albumin                          | (d) Heparin            |  |
| 406. | Oxygen is transported l   | -                           |                                      |                        |  |
|      | (a) Blood plasma          | (b) RBCs                    | (c) Leucocytes                       | (d) Thrombocytes       |  |
| 407. | White and red blood ce    |                             |                                      |                        |  |
|      | (a) Liver                 | (b) Heart                   | (c) Bone marrow                      | (d) Spleen             |  |
| 408. | -                         | is the smallest blood part  |                                      |                        |  |
|      | (a) Leucocytes            | (b) Thrombocytes            | (c) Phagocytes                       | (d) Erythrocytes       |  |
| 1    |                           |                             |                                      |                        |  |

| 409. | The fluid of the blood t                             | from which all blood corp   | uscles are removed is kn  | own as                  |  |
|------|------------------------------------------------------|-----------------------------|---------------------------|-------------------------|--|
|      | (a) Plasma                                           | (b) Vaccine                 | (c) Haem                  | (d) Serum               |  |
| 410. | If an experiment, animation                          | al is made anaemic, produ   | ction of which hormone    | will be stepped up      |  |
|      | (a) Erythrocytin                                     | (b) Erythroblastin          | (c) Erythropoietin        | (d) Enkephalin          |  |
|      |                                                      | wing substances in the blo  | od in man imparts the or  | xygen carrying capacity |  |
| to   | o it                                                 |                             |                           |                         |  |
|      | (a) Haemocyanin                                      |                             | (b) Haemoglobin           |                         |  |
|      | (c) Haemerythrin or ha                               | •                           | (d) Sodium ions           |                         |  |
| 412. |                                                      | dney, spleen, liver and bo  |                           |                         |  |
|      | (a) Erythropoietic                                   | (b) Red organs              | (c) Diapedic              | (d) (a) and (b)         |  |
| 413. | de Castello and Sturli d                             |                             |                           |                         |  |
|      | (a) A blood group                                    |                             |                           | (d) Rh blood group      |  |
| 414. | Factors present on surf                              | ace of RBC related to here  | edity are                 |                         |  |
|      | (a) Blood groups                                     | (b) Antigens                | (c) Antibodies            | (d) Haemoglobin         |  |
| 415. | Blood dust present in the                            | he blood plasma is known    | as                        |                         |  |
|      | (a) Blood platelets                                  | (b) Chylomicrons            | (c) Haemoconia            | (d) Chyluria            |  |
| 416. | <b>416.</b> One of the following cells can't respire |                             |                           |                         |  |
|      | (a) Epidermal                                        | (b) Intestinal              | (c) Erythrocytes          | (d) Leucocytes          |  |
| 417. | Rh factor is named after                             | r                           |                           |                         |  |
|      | (a) Monkey                                           | (b) Drosphlla               | (c) Rat                   | (d) Man                 |  |
| 418. | Blood sample of a heal                               | thy human being is          |                           |                         |  |
|      | (a) Acidic                                           | (b) Neutral                 | (c) Alkaline              | (d) Variable            |  |
| 419. | For safe blood transfus                              | ion                         |                           |                         |  |
|      | (a) Donor's RBC shoul                                | d not contain antibodies ag | gainst recepient serum    |                         |  |
|      | (b) Recepient serum sh                               | ould not contain antigens   | against donor's antibodie | es                      |  |
|      | (c) Recepient's serum s                              | should not contain antibod  | ies against RBC of dono   | rs                      |  |
|      | (d) Receipient's RBC s                               | hould not contain antibodi  | es against donor's antige | ens                     |  |
| 420. | In purpura of purple bl                              | ue there is thrombocytope   | nic                       |                         |  |
|      | (a) Change of haemogl                                | obin into blue              | (b) Change of haemogl     | obin into red black     |  |
|      | (c) Change of haemogl                                | obin into yellow            | (d) Change of haemogl     | obin into white         |  |
| 421. |                                                      | pura is a haemorrhagic dis  |                           |                         |  |
|      | (a) Very high platelet c                             |                             | (b) Very low platelet co  |                         |  |
|      | (c) Low concentration                                |                             | (d) Absence of vitamin    |                         |  |
|      |                                                      | J                           | . /                       |                         |  |

| Adva | ance Level                                           |                               |                           |                       |  |
|------|------------------------------------------------------|-------------------------------|---------------------------|-----------------------|--|
| 422. | Thrombocytopenia is a                                | a condition                   |                           |                       |  |
|      | (a) With decreased num                               | mber of platelets in blood    | (b) With decreased nur    | mber of RBCs in blood |  |
|      | (c) With increased nur                               | nber of platelets in blood    | (d) With increased nur    | nber of WBCs in blood |  |
| 423. | Blood cells that contai                              | n heparin and histamine is    |                           |                       |  |
|      | (a) RBC                                              | (b) Thrombocytes              | (c) Lymphocytes           | (d) Basophil          |  |
| 424. | Identify the incorrectly                             | v matched pair                |                           |                       |  |
|      | (a) Thromboplastin – l                               | Platelet secretion            | (b) Thrombin – Blood      | clotting              |  |
|      | (c) Lymphocytes – Im                                 | munocompetent cells           |                           |                       |  |
|      | (d) Macrophage – Bloo                                | od cells that transport antil | oodies                    |                       |  |
| 425. | Megakaryocytes                                       |                               |                           |                       |  |
|      | (a) Are carriers of oxygen (b)Produce leucocytes     |                               |                           |                       |  |
|      | (c) Produce blood platelets (d)Are called bone cells |                               |                           |                       |  |
| 426. | The life span of WBC                                 | in man is about               |                           |                       |  |
|      | (a) 160 – 180 days                                   | (b) 80 – 90 days              | (c) 20 – 25 days          | (d) 1 – 15 days       |  |
| 427. | "Diapedesis" means                                   |                               |                           |                       |  |
|      | (a) High mortality rate                              | of WBCs                       |                           |                       |  |
|      | (b)Squeezing out WBC                                 | Cs of the walls of capillarie | es                        |                       |  |
|      | (c) Squeezing out RBC                                | Cs of the walls of capillarie | es                        |                       |  |
|      | (d)Squeezing out blood                               | d platelets of the walls of c | capillaries               |                       |  |
| 428. | "Leucopenia" is                                      |                               |                           |                       |  |
|      | (a) Decrease in the tota                             | al number of WBCs below       | v 4,000/ mm <sup>3</sup>  |                       |  |
|      | (b) The destruction of                               | bone marrow by pathogen       | S                         |                       |  |
|      | (c) Decrease in the tota                             | al number of lymphocytes      | by 2-5%                   |                       |  |
|      | (d) Increase in the tota                             | l number of WBCs above        | $6,000/mm^3$              |                       |  |
| 429. | What is not true about                               | mammalian blood cells         |                           |                       |  |
|      | (a) Human WBC live                                   | for 12-13 days                |                           |                       |  |
|      | (b) RBC : WBC ratio i                                | s 600 : 1                     |                           |                       |  |
|      | (c) Abnormal increase                                | in RBC is called Leucope      | nia                       |                       |  |
|      | (d) Erypthropoietin sti                              | mulates RBC production i      | f a person goes and lives | s at high altitude    |  |
| 430. | Mitochondria are not f                               | found in                      |                           |                       |  |
|      | (a) Eucaryotic cells                                 | (b) Leucocytes                | (c) Erythrocytes          | (d) Neurons           |  |
| 1    |                                                      |                               |                           |                       |  |

| 431.       | <b>431.</b> All of the following are correct except                    |                                                       |                           |                           |  |  |
|------------|------------------------------------------------------------------------|-------------------------------------------------------|---------------------------|---------------------------|--|--|
|            | (a) Monocyte produces                                                  | fibrinogen                                            |                           |                           |  |  |
|            | (b) Megakaryocytes give                                                | ve rise to platelets                                  |                           |                           |  |  |
|            | (c) Leukocytes function                                                | n in immunological and in                             | flammatory condition      |                           |  |  |
|            | (d) Monocytes, granulo                                                 | ocytes, some lymphocytes                              | and RBCs are produced     | in the bone marrow        |  |  |
| 432.       | Intravascular clotting o                                               | f blood is prevented by                               |                           |                           |  |  |
|            | (a) Histamine                                                          | (b) Histamine and seroto                              | nin                       |                           |  |  |
|            | (c)Hirudin                                                             | (d) Heparin secreted by 1                             | iver                      |                           |  |  |
| 433.       | Albumin, fibrinogen, p                                                 | rothrombin are manufactu                              | red in                    |                           |  |  |
|            | (a) Liver                                                              | (b) Bone marrow                                       | (c) Spleen                | (d) Pancreas              |  |  |
| 434.       | The swelling in any par                                                | rt of our body, caused by i                           | nfiltration of serum into | subcutaneous cellular     |  |  |
| ti         | issue, is called                                                       |                                                       |                           |                           |  |  |
|            | (a) Abscess                                                            | (b) Oedema                                            | (c) Dropsy                | (d) Thrombus              |  |  |
| 435.       |                                                                        | me induces lysis of fibrin                            |                           |                           |  |  |
|            | (a) Fibrin                                                             | (b) Plasmin                                           | (c) Thrombin              | (d) Platelet factor VIII  |  |  |
| 436.       |                                                                        | bagulant in blood cells cou                           | -                         |                           |  |  |
|            | (a) $CH_3COOH$                                                         | (b) <i>H.CHO</i>                                      | (c) EDTA                  | (d) $C_6 H_6$             |  |  |
| 437.       | Fibrin is produced by                                                  |                                                       |                           |                           |  |  |
|            | (a) Proteolysis                                                        | (b) Thrombokinase                                     | (c) Liver                 | (d) Prothrombin           |  |  |
| 438.       |                                                                        | oth number and size of R                              |                           | ay show a multiplicity of |  |  |
|            | _                                                                      | s will result in anaemic co<br>a(b) Chlorotic anaemia |                           | (d) Macrocytic anaemia    |  |  |
| <b>130</b> | In blood $co_2$ is mainly                                              |                                                       | (c) where yet an acting   | (d) Macrocytic anacima    |  |  |
| т.)/,      |                                                                        |                                                       | (a) <b>DDC</b>            | (d) Dlagma                |  |  |
| 110        | <ul><li>(a) Haemoglobin</li><li><i>pH</i> of human blood var</li></ul> | (b) Lymph                                             | (c) RBC                   | (d) Plasma                |  |  |
| 440.       | (a) 6.0 to 7.0                                                         |                                                       | (a) $7.2 \pm 0.7.45$      | (d) $7.5 \pm 0.90$        |  |  |
| 111        | Identify the incorrectly                                               | (b) 7.0 to 8.0                                        | (c) 7.3 to 7.45           | (d) 7.5 to 8.0            |  |  |
| 441.       |                                                                        | -                                                     |                           |                           |  |  |
|            | -                                                                      | in blood – Haematocrit va                             |                           |                           |  |  |
|            | -                                                                      | - Inadequate blood flow to                            |                           |                           |  |  |
|            |                                                                        | nvolved with tissue rejecti                           |                           |                           |  |  |
| 112        | -                                                                      | ed nucleus and granular cy                            | ropiasin – neutrophil     |                           |  |  |
| 442.       | Blood groups in man w                                                  |                                                       |                           |                           |  |  |
| 112        | (a) Landsteiner                                                        | (b) Eccles                                            | (c) Linus Pauling         | (d) Waddington            |  |  |
| 443.       | -                                                                      | (b) Clotting factors                                  | (a) <b>D</b> load calls   | (d) All of the abarra     |  |  |
|            | (a) Fibrinogen                                                         | (b) Clotting factors                                  | (c) Blood cells           | (d) All of the above      |  |  |
|            |                                                                        |                                                       |                           |                           |  |  |

| 444. |                                                                              | mmals are non-nucleated      | -                                           |                         |  |
|------|------------------------------------------------------------------------------|------------------------------|---------------------------------------------|-------------------------|--|
|      | (a) Rabbit                                                                   | (b) Monkey                   | (c) Camel                                   | (d) Man                 |  |
| 445. | What is true about RBC                                                       |                              |                                             |                         |  |
|      | (a) It contains myoglob                                                      |                              |                                             |                         |  |
|      | (b) Fragile, abnormal R                                                      | BC are phagocytosed in s     | pleen, kidney and bone i                    | marrow                  |  |
|      | (c) Serum is blood min                                                       | us blood cells               |                                             |                         |  |
|      | (d) $Cu^{+2}$ is necessary fo                                                | r erythropoiesis in bone m   | narrow                                      |                         |  |
| 446. | The amount of blood su                                                       | upplied to brain per minut   | e is                                        |                         |  |
|      | (a) 450 <i>ml</i>                                                            | (b) 550 <i>ml</i>            | (c) 750 <i>ml</i>                           | (d) 1.000 <i>ml</i>     |  |
| 447. | Metals required for syn                                                      | thesis of haemoglobin are    | e following except                          |                         |  |
|      | (a) Iron                                                                     | (b) Copper                   | (c) Mercury                                 | (d) Cobalt              |  |
| 448. | Haemotocrit is related                                                       | with                         |                                             |                         |  |
|      | (a) Amount of <i>Hb</i> /100                                                 | <i>ml</i> of blood           | (b) Counting number of                      | f RBC                   |  |
|      | (c) Cell volume when packed together                                         |                              | (d) Oxygen carrying capacity of haemoglobin |                         |  |
| 449. | In haemoglobin iron is                                                       | attached with globin prote   | ein by                                      |                         |  |
|      | (a) Hydrogen bond                                                            | (b) Ionic bond               | (c) Covalent bond                           | (d) Coordinate bond     |  |
| 450. | 0. Which one of the following anticoagulant is added in blood during storage |                              |                                             |                         |  |
|      | (a) Sodium carbonate                                                         | (b) Sodium oxalate           | (c) Sodium chloride                         | (d) Sodium hydroxide    |  |
| 451. | The matured erythrocyt                                                       | te in a mammal does not h    | nave                                        |                         |  |
|      | (a) RNA                                                                      | (b) DNA                      | (c) Proteins                                | (d) Haemoglobin         |  |
| 452. | Heparin                                                                      |                              |                                             |                         |  |
|      | (a) Converts prothromb                                                       | oin to thrombin              | (b) Converts fibrinogen                     | to fibrin               |  |
|      | (c) Converts fibrin thre                                                     | ads to a clot and release so | erum                                        |                         |  |
|      | (d) Prevents coagulation                                                     | n of blood                   |                                             |                         |  |
| 453. | RBC are nucleated in                                                         |                              |                                             |                         |  |
|      | (a) Man                                                                      | (b) Rat                      | (c) Frog                                    | (d) Rabbit              |  |
| 454. | What does the human H                                                        | RBCs lack                    |                                             |                         |  |
|      | (a) Haemoglobin                                                              | (b) Cytoplasm                | (c) Nucleus                                 | (d) Cell membrane       |  |
| 455. | Breakdown of <i>Hb</i> form                                                  | IS                           |                                             |                         |  |
|      | (a) Bile pigments                                                            | (b) Glubulin                 | (c) <i>Hb</i> -protein                      | (d) Urea                |  |
| 456. | The lion that always ke                                                      | eps the cardiac muscle un    | it in contracting state is                  |                         |  |
|      | (a) Sodium                                                                   | (b) Potassium                | (c) Calcium                                 | (d) Magnesium           |  |
| 457. | Antibodies fight agains                                                      | t                            |                                             |                         |  |
|      | (a) Infection                                                                | (b) Thirst                   | (c) Starvation                              | (d) Heart failure       |  |
| 458. | The clinging of RBCs t                                                       | ogether in the blood and f   | forming a pile of coin lik                  | e structure is known as |  |
|      | (a) Coagulation                                                              | (b) Islets                   | (c) Lacuna                                  | (d) Rouleau             |  |
|      |                                                                              |                              |                                             |                         |  |

| 459. | The normal blood suga                                                                                    |                               |                                                       |                          |  |  |
|------|----------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------|--------------------------|--|--|
|      | -                                                                                                        | (b) 80-120 mg / 100 ml        | (c) 80-160 mg / 100 ml                                | (d) 80-140 mg / 100 ml   |  |  |
| 460. | Reticulocytes are                                                                                        |                               |                                                       |                          |  |  |
|      | (a) Immature RBC                                                                                         | (b) WBC                       | (c) Blood platelets                                   | (d) Lymphocytes          |  |  |
| 461. | In haemoglobin iron is                                                                                   | -                             |                                                       |                          |  |  |
|      | (a) Ferrous form                                                                                         | (b) Ferric form               | (c) Metallic form                                     | (d) Any form             |  |  |
| 462. | Cells containing hepari                                                                                  | n and serotonin are           |                                                       |                          |  |  |
|      | (a) Lymphoid cells                                                                                       | (b) Mast cells                | (c) Fibroblasts                                       | (d) Macrophages          |  |  |
| 463. | Which one of the follow                                                                                  | wing is not related to the c  | lotting of blood                                      |                          |  |  |
|      | (a) Fibrin                                                                                               | (b) Fibrinogen                | (c) $Ca^{++}$                                         | (d) $Na^+$ of the plasma |  |  |
| 464. | The life span of thromb                                                                                  | ocytes in blood of mamm       | al is                                                 |                          |  |  |
|      | (a) 1 – 10 days                                                                                          | (b) 1 – 5 days                | (c) 3 – 5 days                                        | (d) 10 – 12 days         |  |  |
| 465. | <b>65.</b> Sickle cell anaemia is very common in South Africa due to                                     |                               |                                                       |                          |  |  |
|      | (a) More pupulation of                                                                                   | tse-tse files                 | (b) Change in the $\gamma$ – chain in the haemoglobin |                          |  |  |
|      | (c) Change in the $\alpha$ – chain in the haemoglobin (d) Change in the $\beta$ – chain in the haemoglob |                               |                                                       |                          |  |  |
| 466. | <b>466.</b> RBC in mammals have no nucleus because                                                       |                               |                                                       |                          |  |  |
|      | (a) It has degenerated during development (b) They do not have nucleus since early                       |                               |                                                       |                          |  |  |
|      | (c) Nucleus is harmful                                                                                   | for RBC                       | (d) Nucleus decreases s                               | urface area              |  |  |
| 467. | One haemoglobin carry                                                                                    | how many molecule of $\alpha$ | $\mathcal{O}_2$                                       |                          |  |  |
|      | (a) 4                                                                                                    | (b) 2                         | (c) 6                                                 | (d) 8                    |  |  |
| 468. | Which one of the follow                                                                                  | wing prevents coagulation     |                                                       |                          |  |  |
|      | (a) Heparin                                                                                              | (b) Histamin                  | (c) Thyroxin                                          | (d) All                  |  |  |
| 469. | When RBCs are immer                                                                                      | sed in hypotonic solution,    | , one of the following occ                            | curs                     |  |  |
|      | (a) Crenation                                                                                            | (b) Haemolysis                | (c) Enucleation                                       | (d) None                 |  |  |
| 470. | The ratio of RBC to W                                                                                    | •                             |                                                       |                          |  |  |
|      | (a) 6 : 1                                                                                                | (b) 60 : 1                    | (c) 600 : 1                                           | (d) 6000 : 1             |  |  |
| 471. | The RBC in the body d                                                                                    | <b>``</b>                     |                                                       |                          |  |  |
|      | (a) 120 days                                                                                             | (b) 150 days                  | (c) 157 days                                          | (d) 70 days              |  |  |
| 472  | •                                                                                                        | pping the flow of blood ar    | •                                                     | (a) / o ango             |  |  |
|      |                                                                                                          |                               |                                                       | (d) Thrombooutos         |  |  |
| 170  | (a) WBC                                                                                                  | (b) Leucocytes                | (c) RBC                                               | (d) Thrombocytes         |  |  |
| 4/3. | Blood platelets are the                                                                                  |                               |                                                       |                          |  |  |
|      | (a) Fibrinogen                                                                                           | (b) $Ca^{++}$                 | (c) Thromboplastin                                    | (d) Haemoglobin          |  |  |

| 474. | "Haemolytic jaundice"                                                 | is caused due to             |                                                  |                        |  |  |
|------|-----------------------------------------------------------------------|------------------------------|--------------------------------------------------|------------------------|--|--|
|      | (a) High mortality rate                                               | of RBCs                      | (b) High mortality rate                          | of WBCs                |  |  |
|      | (c) High birth rate of F                                              | RBCs                         | (d) High birth rate of W                         | VBCs                   |  |  |
| 475. | "Obstructive jaundice"                                                | is                           |                                                  |                        |  |  |
|      | (a) Obstruction due to                                                | the gall bladder stone       | (b) Obstruction due to                           | the kidney stone       |  |  |
|      | (c) Obstruction due to                                                | heart failure                | (d) Obstruction in sple                          | en                     |  |  |
| 476. | In the 8 <sup>th</sup> month of hur                                   | nan embryo the haemopoe      | esis takes place in                              |                        |  |  |
|      | (a) Liver                                                             |                              | (b) Bone marrow                                  |                        |  |  |
|      | (c) Spleen                                                            |                              | (d) Endothelium of blo                           | ood vessels            |  |  |
| 477. | Blood clotting can be                                                 | prevented by the use of po   | tassium oxalate. It is due                       | e to                   |  |  |
|      | (a) Checking of conve                                                 | rsion of fibrinogen into fib | orin                                             |                        |  |  |
|      | (b)Inactivation of all fa                                             | actors for blood coagulation | on                                               |                        |  |  |
|      | (c) Neutralization of acidic medium (d)Removal of free $Ca^{++}$ ions |                              |                                                  |                        |  |  |
| 478. | In mammals the urea i                                                 | s transported by             |                                                  |                        |  |  |
|      | (a) Blood plasma                                                      | (b) Erythrocytes             | (c) Haemoglobin                                  | (d) Leucocytes         |  |  |
| 479. | Thrombin occurs in ve                                                 | rtebrates in                 |                                                  |                        |  |  |
|      | (a) Blood and imparts                                                 | red colour                   | (b) Blood and importan                           | nt for clotting        |  |  |
|      | (c) Liver and initiates                                               | secretion                    | (d) Stomach and digests proteins                 |                        |  |  |
| 480. | The iron free compour                                                 | nd of haemoglobin is         |                                                  |                        |  |  |
|      | (a) Globin                                                            | (b) Haematin                 | (c) Bilirubin                                    | (d) Haemotoxin         |  |  |
| 481. | The coagulation of blo                                                | od occurs due to             |                                                  |                        |  |  |
|      | (a) Formation of serun                                                | n                            | (b)Change of fibrinogen in the network of fibrin |                        |  |  |
|      | (c) Destruction of eryt                                               | hrocytes                     | (d) Destruction of leucocytes                    |                        |  |  |
| 482. | Blood coagulation in r                                                | ot interfered by             |                                                  |                        |  |  |
|      | (a) Low $Ca^{++}$                                                     | (b) Less number of blood     | d platelets                                      |                        |  |  |
|      | (c) Low fibrinogen                                                    | (d) Low WBC concentra        | ation                                            |                        |  |  |
| 483. | One of the diagnostic                                                 | feature of blood cancer is   |                                                  |                        |  |  |
|      | (a) Increased number of                                               | of $\beta$ – lymphocytes     | (b) Decrease in numbe                            | r of T – helper cells  |  |  |
|      | (c) Excessive increase                                                | of WBC                       | (d) Absence of platelet                          | S                      |  |  |
| 484. | Blood cancer is also ca                                               | alled                        |                                                  |                        |  |  |
|      | (a) Haemolytic anaem                                                  | ia(b) Leukemia               | (c) Anaemia                                      | (d) Pernicious anaemia |  |  |
|      |                                                                       |                              |                                                  |                        |  |  |

|                                                        | 485. | Sickle cell anaemia is n                          | nost common in               |                                                           |                         |
|--------------------------------------------------------|------|---------------------------------------------------|------------------------------|-----------------------------------------------------------|-------------------------|
|                                                        |      | (a) India                                         | (b) Africa                   | (c) Mexico                                                | (d) Europe              |
|                                                        | 486. | Chronic haemolytic and                            | aemia is characteristic of J | person afflicted with                                     |                         |
|                                                        |      | (a) Pernicious anaemia (b) Leukemia               |                              | (c) Polycythemia                                          | (d) Sickle cell anaemia |
|                                                        | 487. | <b>487.</b> Identify the correctly matched pair   |                              |                                                           |                         |
| (a) Serum – plasma anticoagulant factor (b) Pla        |      |                                                   | icoagulant factor            | (b) Plasma – Blood and blood cells                        |                         |
| (c) Phagocytic cells – Absent in lymph nodes (d) Lymph |      | (d) Lymphoid organ – A                            | Adam's apple                 |                                                           |                         |
|                                                        | 488. | The normal range of ur                            | ea in the blood of humans    | is                                                        |                         |
|                                                        |      | (a) $2mg - 5mg / 100 ml$                          | of blood                     | (b) $5mg - 10mg / 100 m$                                  | d of blood              |
|                                                        |      | (c) 17 <i>mg</i> – 30 <i>mg</i> / 100             | <i>ml</i> of blood           | (d)0.1 <i>mg</i> – 0.5 <i>mg</i> / 100 <i>ml</i> of blood |                         |
|                                                        | 489. | <b>489.</b> Identify the incorrectly matched pair |                              |                                                           |                         |
|                                                        |      | (a) Uremia – excessive                            | amount of urea in blood      | (b) Hyperglycemia – ex                                    | cess glucose in blood   |
|                                                        |      | (c) Absence of factor V                           | 'III – Haemophilia           | (d) X-linked disorder – Glycosuria                        |                         |

## **BLOOD GROUP GENETICS**

## Basic Level

| 490. | <b>490.</b> A person with blood group <i>O</i> receives blood transfusion from person with the blood group                                                  |                             |                                      |              |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------|--------------|--|
|      | (a) O only                                                                                                                                                  | (b) $O$ and $AB$            | (c) <i>O</i> , <i>A</i> and <i>B</i> | (d) AB only  |  |
| 491. | <b>191.</b> When blood of one person is mixed with the serum of an other person then in certain cases, clumping of RBCs takes place. the clumping is due to |                             |                                      |              |  |
|      | (a) Antitoxin – antibod                                                                                                                                     | y reaction                  | (b) Antigen – antibody               | reaction     |  |
|      | (c) Haemolysis                                                                                                                                              |                             | (d) Blood coagulation                |              |  |
| 492. | Which one of the follow                                                                                                                                     | wing has the least constan  | cy in shape                          |              |  |
|      | (a) Muscle fibres                                                                                                                                           | (b) Neurons                 | (c) RBC                              | (d) WBC      |  |
| 493. | Rh factor is a protein p                                                                                                                                    | resent                      |                                      |              |  |
|      | (a) On RBC                                                                                                                                                  | (b) In plasma               | (c) On WBC                           | (d) In serum |  |
| 494. | If mother has blood gro                                                                                                                                     | oup B, father has A group,  | the offspring will be of             |              |  |
|      | (a) A group                                                                                                                                                 | (b) O group                 | (c) Any of the group                 | (d) AB group |  |
| 495. | The royal bleeder disea                                                                                                                                     | ase or haemophilia is an ex | ample of                             |              |  |
|      | (a) Sex – linked inheritance(b)X – linked character                                                                                                         |                             |                                      |              |  |
|      | (c) Cris – cross inherita                                                                                                                                   | ance (d)All of these        |                                      |              |  |
|      |                                                                                                                                                             |                             |                                      |              |  |

| 496. | Incompatibility of <i>Rh</i> gr | roup between husband o    | r wife will result in the l | birth of a baby with a    |
|------|---------------------------------|---------------------------|-----------------------------|---------------------------|
|      | lisorder called                 | oup between nusbund o     | r whe whi result in the     |                           |
|      | (a) Anaemia                     | (b) Haemophilia           |                             |                           |
|      | (c) Pernicious anaemia          | (d) Erythroblastosis feta | alis                        |                           |
| 497. | Rh-factor was discovered        | ed by                     |                             |                           |
|      | (a) Land steiner and We         | einer                     | (b) Strasburger             |                           |
|      | (c) Wheeler                     |                           | (d) Hornberg                |                           |
| 498. | Persons with O blood g          | roup can take blood fror  | n                           |                           |
|      | (a) A                           | (b) B                     | (c) O                       | (d) AB                    |
| 499. | The blood group with an         | ntibody $-a$ and antibody | y - b is                    |                           |
|      | (a) <i>A</i>                    | (b) <i>B</i>              | (c) <i>O</i>                | (d) <i>AB</i>             |
| 500. | A cell with a kidney – s        | haped nucleus is          |                             |                           |
|      | (a) Eosinophil                  | (b) Lymphocyte            | (c) Monocyte                | (d) Neutrophil            |
| 501. | The possible blood grou         | ps of the offsprings of t | he parents with blood gr    | roup $O$ and $AB$ will be |
|      | (a) A and B                     | (b) O and AB              | (c) A, B and AB             | (d) O, A, B and AB        |
| 502. | What is the function of         | white blood cells         |                             |                           |
|      | (a) Clotting                    |                           | (b) Respiration             |                           |
|      | (c) Eating harmful organ        | nisms                     | (d) None of these           |                           |
| 503. | An 'antigen' is                 |                           |                             |                           |
|      | (a) that which acts with        | plasma                    | (b) That which oppos        | es the action of antibody |
|      | (c) The stimulus for ant        | ibody production          | (d) The antibody only       |                           |
| 504. | Universal donar has blo         | od group                  |                             |                           |
|      | (a) <i>AB</i>                   | (b) <i>o</i> -            | (c) <i>O</i> <sup>+</sup>   | (d) $O^-$ or $O^+$        |
| 505. | Between which two blo           | od groups, the blood tra  | nsfusion is possible        |                           |
|      | (a) A and O (A = Donor          | <i>:</i> )                | (b)B and A (B = Donor)      |                           |
|      | (c) AB and AB (AB = I           | Donor)                    | (d) AB and O (AB = Donor)   |                           |
| 506. | Besides blood transfusio        | on study of blood group   | s is also helpful in        |                           |
|      | (a) Personally estimatio        | n (b)Settling paternity   | disputes                    |                           |
|      | (c) Health status               | (d)None of the above      | ve                          |                           |
| 507. | Haemophilia is                  |                           |                             |                           |
|      | (a) A type of mosquito          | lacking a haemocoel       | (b) The royal disease       |                           |
|      | (c) Faulty blood clotting       | 5                         | (d) (b) and (c) both        |                           |
|      |                                 |                           |                             |                           |

| 508. | When both parents are                 | of blood type AB, they ca            | n have children with          |                         |  |  |  |  |  |  |
|------|---------------------------------------|--------------------------------------|-------------------------------|-------------------------|--|--|--|--|--|--|
|      | (a) A, B, AB and O blo                | od types                             | (b) A, B and AB blood         | types                   |  |  |  |  |  |  |
|      | (c) A and B blood type                | S                                    | (d) A, B and O blood types    |                         |  |  |  |  |  |  |
| 509. | Antigen-A and antibod                 | y-b are present in which b           | blood group                   |                         |  |  |  |  |  |  |
|      | (a) <i>B</i>                          | (b) <i>A</i>                         | (c) <i>AB</i>                 | (d) <i>O</i>            |  |  |  |  |  |  |
| 510. | Antibody is to                        |                                      |                               |                         |  |  |  |  |  |  |
|      | (a) To induce the formation           | ation of antigen                     | (b) To help in production     | on of WBC               |  |  |  |  |  |  |
|      | (c) Formed by WBC                     |                                      | (d) None of the above         |                         |  |  |  |  |  |  |
| 511. | Chemical nature of anti               | ibody is                             |                               |                         |  |  |  |  |  |  |
|      | (a) Protein                           | (b) Lipid                            | (c) Lipoprotein               | (d) Nucleoprotein       |  |  |  |  |  |  |
| 512. | A cubic millimeter of b               | lood contains about                  |                               |                         |  |  |  |  |  |  |
|      | (a) 50,000 white blood                | corpuscles                           | (b) 7, 000 white blood        | corpuscles              |  |  |  |  |  |  |
|      | (c) 1,000 white blood c               | corpuscles                           | (d) 20,000 white blood        | corpuscles              |  |  |  |  |  |  |
| 513. | Blood of which blood g                | group can be given to a pe           | erson with AB blood group     |                         |  |  |  |  |  |  |
|      | (a) AB only                           | (b) O only                           | (c) A or B                    | (d) All the above       |  |  |  |  |  |  |
| 514. | The possible blood gro                | up of children born to par           | ents having A and AB gr       | roups are               |  |  |  |  |  |  |
|      | (a) O, A                              | (b) A, B, AB                         | (c) O, A, B                   | (d) O, A, B, AB         |  |  |  |  |  |  |
| 515. | Which of the following                | diseases is related to abn           | ormality in clotting of bl    | ood                     |  |  |  |  |  |  |
|      | (a) Polycythemia                      | (b) Microcytic anaemia               | (c) Haemophilia               | (d) Sickle cell anaemia |  |  |  |  |  |  |
| 516. | • •                                   | nfant is removed which of            | C                             | orm                     |  |  |  |  |  |  |
|      | (a) $T$ – lymphocytes                 | (b) $\beta$ – lymphocytes            | (c) Erthryocytes              | (d) Granulocytes        |  |  |  |  |  |  |
| 517. | · ·                                   | ç                                    |                               | g blood group should be |  |  |  |  |  |  |
|      | -                                     | the patient's own blood g            |                               |                         |  |  |  |  |  |  |
| 518  | (a) A<br>Colls in blood that dost     | (b) B                                | (c) AB                        | (d) O                   |  |  |  |  |  |  |
| 510. | (a) Platelets                         | roy invading disease prod<br>(b) RBC | (c) Skin cells                | (d) WBC                 |  |  |  |  |  |  |
| 519  |                                       | statements is correct for            |                               | (u) WDC                 |  |  |  |  |  |  |
| 517. | (a) <i>A</i> and <i>B</i> antigen pre |                                      | tigen and b antibodies pr     | esent                   |  |  |  |  |  |  |
|      |                                       | lies both absent (d)No a             |                               |                         |  |  |  |  |  |  |
| 520. | -                                     | as a blood group B. His m            | -                             | -                       |  |  |  |  |  |  |
|      | roup of father                        |                                      | <i>6</i> • • <b>r</b> • • • • |                         |  |  |  |  |  |  |
|      | (a) A                                 | (b) B                                | (c) AB                        | (d) O                   |  |  |  |  |  |  |
| 1    |                                       |                                      |                               |                         |  |  |  |  |  |  |

| 521. | What is the meaning of                                                                                      | of blood group 'B'               |                                    |                             |  |  |  |  |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|-----------------------------|--|--|--|--|--|--|--|--|--|
|      | (a) The person can for                                                                                      | m antibody for 'B'               | (b) The person cann                | ot form antibody for 'B'    |  |  |  |  |  |  |  |  |  |
|      | (c) The person cannot                                                                                       | give blood to 'O' group          | (d) The person can a               | receive blood of group 'AB' |  |  |  |  |  |  |  |  |  |
| 522. | In sickle cell anaemia                                                                                      | RBC becomes                      |                                    |                             |  |  |  |  |  |  |  |  |  |
|      | (a) Sickle shaped                                                                                           |                                  | (b) More flexible an               | d strong                    |  |  |  |  |  |  |  |  |  |
|      | (c) Is genetically inher                                                                                    | rited                            | (d) Shape and size d               | lo not change               |  |  |  |  |  |  |  |  |  |
| 523. | Which blood group ac                                                                                        | cepts blood of groups A a        | nd <i>B</i>                        |                             |  |  |  |  |  |  |  |  |  |
|      | (a) <i>AB</i>                                                                                               | (b) <i>A</i>                     | (c) <i>B</i>                       | (d) None of these           |  |  |  |  |  |  |  |  |  |
| Adva | ance Level                                                                                                  |                                  |                                    |                             |  |  |  |  |  |  |  |  |  |
| 524. | Identify the correct sta                                                                                    | itement                          |                                    |                             |  |  |  |  |  |  |  |  |  |
|      | (a) Clumping of blood                                                                                       | l of one person with the of      | ther is an example of b            | lood coagulation            |  |  |  |  |  |  |  |  |  |
|      | (b) If the RBC contain both antigen A and B then the serum will be devoid of antibody <i>a</i> and <i>b</i> |                                  |                                    |                             |  |  |  |  |  |  |  |  |  |
|      | (c) Antigen A reacts with antibody B                                                                        |                                  |                                    |                             |  |  |  |  |  |  |  |  |  |
|      | (d) All antigens are glycoprotein                                                                           |                                  |                                    |                             |  |  |  |  |  |  |  |  |  |
| 525. | No antigens occur in t                                                                                      | he RBC of a person with          | the blood group                    |                             |  |  |  |  |  |  |  |  |  |
|      | (a) A                                                                                                       | (b) AB                           | (c) O                              | (d) B                       |  |  |  |  |  |  |  |  |  |
| 526. | The antigen present or                                                                                      | n the RBC of a person wit        | h blood group A, B an              | d AB are chemically         |  |  |  |  |  |  |  |  |  |
|      | (a) Sterols                                                                                                 | (b) Glycolysides                 | (c) Glycoprotein                   | (d) Protein                 |  |  |  |  |  |  |  |  |  |
| 527. | What will be the likely                                                                                     | y blood group of children        | born out of the marriag            | ge between father with      |  |  |  |  |  |  |  |  |  |
| b    | blood group O and moth                                                                                      | ner with AB.                     |                                    |                             |  |  |  |  |  |  |  |  |  |
|      | (a) A and B                                                                                                 | (b) AB                           | (c) O                              | (d) B and O                 |  |  |  |  |  |  |  |  |  |
| 528. | A person is detected to                                                                                     | o have antigen A in his RI       | BC, his blood group we             | ould be                     |  |  |  |  |  |  |  |  |  |
|      | (a) O                                                                                                       | (b) A                            | (c) A or O                         | (d) B                       |  |  |  |  |  |  |  |  |  |
| 529. | Person with this blood                                                                                      | group can receive blood          | only from a person wit             | th the same blood group     |  |  |  |  |  |  |  |  |  |
|      | (a) O                                                                                                       | (b) B                            | (c) AB                             | (d) A                       |  |  |  |  |  |  |  |  |  |
|      | Blood transfusion from                                                                                      | n a donor of <i>AB</i> group giv | ven to a patient of <i>B</i> group | oup is not successful       |  |  |  |  |  |  |  |  |  |
| -    |                                                                                                             | odv - a                          | (b) Patient lacks antibody - b     |                             |  |  |  |  |  |  |  |  |  |
| -    | (a) Patient lacks antibo                                                                                    | say a                            | (d) Patient has antibody - $b$     |                             |  |  |  |  |  |  |  |  |  |
| -    | <ul><li>(a) Patient lacks antibod</li><li>(c) Patient has antibod</li></ul>                                 | -                                | (d) Patient has antib              | -                           |  |  |  |  |  |  |  |  |  |
|      |                                                                                                             | -                                | (d) Patient has antib              | -                           |  |  |  |  |  |  |  |  |  |
|      | (c) Patient has antibod                                                                                     | -                                | (d) Patient has antib              | -                           |  |  |  |  |  |  |  |  |  |

| 532. | Which of the following                                                                                                           | g blood groups is a univers                | al recipient in blood tra        | insfusion               |  |  |  |  |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------|-------------------------|--|--|--|--|--|--|--|--|--|
|      | (a) A                                                                                                                            | (b) B                                      | (c) AB                           | (d) O                   |  |  |  |  |  |  |  |  |  |
| 533. | In a patient with blood                                                                                                          | group <i>AB</i> , the agglutinins          | present in serum are             |                         |  |  |  |  |  |  |  |  |  |
|      | (a) Antigen A and B                                                                                                              |                                            | (b) Antigen A                    |                         |  |  |  |  |  |  |  |  |  |
|      | (c) Antigen <i>B</i>                                                                                                             |                                            | (d) Neither antigen A            | nor antigen B           |  |  |  |  |  |  |  |  |  |
| 534. | M and N blood groups                                                                                                             | are of importance in                       |                                  |                         |  |  |  |  |  |  |  |  |  |
|      | (a) Blood transfusion                                                                                                            | (b) Medicolegal tests                      | (c) (a) and (b) both             | (d) None of these       |  |  |  |  |  |  |  |  |  |
| 535. | What is not true about                                                                                                           | Rh factor                                  |                                  |                         |  |  |  |  |  |  |  |  |  |
|      |                                                                                                                                  | ulation is <i>Rh</i> – and 5% <i>Rh</i> +  |                                  |                         |  |  |  |  |  |  |  |  |  |
|      | (c) <i>Rh</i> factor is named                                                                                                    | -                                          | (d) Rh+ man can marr             | y Rh+ women             |  |  |  |  |  |  |  |  |  |
| 536. | If the foetus is $Rh^+$ and                                                                                                      |                                            |                                  |                         |  |  |  |  |  |  |  |  |  |
|      |                                                                                                                                  | t antigen to mother blood                  |                                  |                         |  |  |  |  |  |  |  |  |  |
|      | <ul><li>(b) Foetus will transmit antibody to mother blood</li><li>(c) Foetus is attacked by antibodies of mother blood</li></ul> |                                            |                                  |                         |  |  |  |  |  |  |  |  |  |
|      |                                                                                                                                  |                                            |                                  |                         |  |  |  |  |  |  |  |  |  |
|      | (d)Foetus is attacked by antigen of mother blood                                                                                 |                                            |                                  |                         |  |  |  |  |  |  |  |  |  |
| 537. | Blood groups is due to                                                                                                           |                                            |                                  |                         |  |  |  |  |  |  |  |  |  |
|      | (a) Specific antigen on                                                                                                          | the surface of WBC                         | (b) Specific antibodies          | s on the surface of RBC |  |  |  |  |  |  |  |  |  |
|      | (c) Specific antigen on                                                                                                          | the surface of RBC                         | (d) Type of haemoglo             | bin present in blood    |  |  |  |  |  |  |  |  |  |
| 538. | Erythroblastosis foetai                                                                                                          | ls occurs                                  |                                  |                         |  |  |  |  |  |  |  |  |  |
|      | (a) When the mother is                                                                                                           | s <i>Rh</i> positive and child is <i>R</i> | <i>h</i> negative                |                         |  |  |  |  |  |  |  |  |  |
|      | (b) When the father an                                                                                                           | d child are both <i>Rh</i> negativ         | ve but the mother is <i>Rh</i>   | positive                |  |  |  |  |  |  |  |  |  |
|      | (c) When the mother a                                                                                                            | nd child are both <i>Rh</i> positi         | ve but the father is <i>Rh</i> i | negative                |  |  |  |  |  |  |  |  |  |
|      | (d) When the mother is                                                                                                           | s <i>Rh</i> negative and child is <i>I</i> | <i>Rh</i> positive               |                         |  |  |  |  |  |  |  |  |  |
| 539. | Erythroblastosis is cau                                                                                                          | sed due to                                 |                                  |                         |  |  |  |  |  |  |  |  |  |
|      | (a) Blood coagulation                                                                                                            |                                            |                                  |                         |  |  |  |  |  |  |  |  |  |
|      | (b) Mixing of 'A' and '                                                                                                          | B' blood groups                            |                                  |                         |  |  |  |  |  |  |  |  |  |
|      | -                                                                                                                                | etus brought about by the <i>l</i>         | <i>Rh</i> incompatibility        | (d) Haemophilia         |  |  |  |  |  |  |  |  |  |
| 540. | Erythroblastosis foetai                                                                                                          |                                            | 1 2                              |                         |  |  |  |  |  |  |  |  |  |
|      | (a) Husband is $Rh^-$ and                                                                                                        |                                            | (b) Wife is $Rh^+$ and           | husband <i>Rh</i> -     |  |  |  |  |  |  |  |  |  |
|      | (c) Wife is $Rh^+$ and hu                                                                                                        |                                            | (d)Wife is $Rh^-$ and            |                         |  |  |  |  |  |  |  |  |  |
|      |                                                                                                                                  |                                            |                                  |                         |  |  |  |  |  |  |  |  |  |

| 541. | The genotype $I^{B}I^{B}$ and                                                                                                         | $I^{B}I^{O}$ produces the blood g            | roup type                             |                               |  |  |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|-------------------------------|--|--|--|--|--|--|--|
|      | (a) <i>A</i>                                                                                                                          | (b) <i>B</i>                                 | (c) <i>AB</i>                         | (d) <i>O</i>                  |  |  |  |  |  |  |  |
| 542. | The problem, due to Rh                                                                                                                | <sup>-</sup> factor arises when the b        | lood of two $(Rh^+ and Rh^-)$         | mixup                         |  |  |  |  |  |  |  |
|      | (a) In a test tube                                                                                                                    | (b) Through transfusion                      | (c) During pregnancy                  | (d) In the laboratory         |  |  |  |  |  |  |  |
| 543. | Antiserum contains                                                                                                                    |                                              |                                       |                               |  |  |  |  |  |  |  |
|      | (a) Antigens                                                                                                                          | (b) Leucocytes                               | (c) Antibodies                        | (d) None of these             |  |  |  |  |  |  |  |
|      | The two children of a c<br>What is the blood group                                                                                    | ouple have the blood grou<br>of their father | P P P P P P P P P P P P P P P P P P P | r's blood group is <i>O</i> . |  |  |  |  |  |  |  |
|      | (a) <i>A</i>                                                                                                                          | (b) <i>B</i>                                 | (c) <i>O</i>                          | (d) <i>AB</i>                 |  |  |  |  |  |  |  |
|      | A women with the bloc<br>ave the blood group                                                                                          | od group A <sup>+</sup> married a man        | n with the $B^+$ blood grou           | ıp. Their children would      |  |  |  |  |  |  |  |
|      | (a) $A$ and $B$                                                                                                                       | (b) $A$ and $AB$                             | (c) $B$ and $AB$                      | (d) $A$ , $B$ , $AB$ and $O$  |  |  |  |  |  |  |  |
|      | <b>546.</b> The genotype of the husband was $I^{0}I^{0}$ and that of the wife $I^{A}I^{B}$ . Their children will have the blood group |                                              |                                       |                               |  |  |  |  |  |  |  |
|      | (a) A and B                                                                                                                           | (b) AB                                       | (c) A, AB                             | (d) A, AB, B + O              |  |  |  |  |  |  |  |
| 547. | If the father has the blo                                                                                                             | od group A and the child                     | O his genotype will be                |                               |  |  |  |  |  |  |  |
|      | (a) $I^{A}I^{O}$                                                                                                                      | (b) <i>I<sup>o</sup> I<sup>o</sup></i>       | (C) $I^A I^A$                         | (d) None of these             |  |  |  |  |  |  |  |
|      | A hematologist wanted ollowing is correct in the                                                                                      | to prepare a table showin<br>is regard       | g blood group donor and               | l recipient. Which of the     |  |  |  |  |  |  |  |
|      | (a) AB donor and O rec                                                                                                                | ipient                                       | (b) AB donor and AB                   | recipient                     |  |  |  |  |  |  |  |
|      | (c) B donor and A recip                                                                                                               | pient                                        | (d) A donor and O recipient           |                               |  |  |  |  |  |  |  |
| 549. | From the following, fin                                                                                                               | d the one where blood tra                    | nsfusion would be fatal               |                               |  |  |  |  |  |  |  |
|      | (a) AB donor and O rec                                                                                                                | cipient                                      | (b) O donor and B recipient           |                               |  |  |  |  |  |  |  |
|      | (c) O donor and O recip                                                                                                               | pient                                        | (d) O donor and AB re-                | cipient                       |  |  |  |  |  |  |  |
|      | If both antibodies <i>a</i> and group of the person shall                                                                             | l $b$ are present in the plasm<br>be         | na but there is no antiger            | n in RBC, the blood           |  |  |  |  |  |  |  |
|      | (a) <i>A</i>                                                                                                                          | (b) B                                        | (c) AB                                | (d) O                         |  |  |  |  |  |  |  |
| 551. | A person with blood gr                                                                                                                | oup A can donate blood to                    | person with blood grou                | ıp                            |  |  |  |  |  |  |  |
|      | (a) A                                                                                                                                 | (b) A and AB                                 | (c) AB and O                          | (d) B and O                   |  |  |  |  |  |  |  |
| 1    |                                                                                                                                       |                                              |                                       |                               |  |  |  |  |  |  |  |

# <u>ANSWER</u>

### **CIRCULATORY SYSTEM**

#### **BASIC AND ADVANCE LEVEL**

| 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| с   | d   | с   | d   | d   | с   | с   | с   | с   | b   | d   | a   | a   | a   | a   | a   | d   | a   | a   | d   |
| 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 40  |
| d   | d   | с   | a   | b   | a   | d   | d   | a   | d   | d   | с   | a   | с   | с   | b   | a   | d   | d   | b   |
| 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  |
| b   | а   | с   | b   | b   | b   | b   | b   | d   | b   | с   | a   | d   | b   | a   | a   | d   | с   | с   | a   |
| 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  |
| d   | а   | d   | d   | a   | с   | с   | b   | a   | a   | a   | d   | b   | d   | a   | d   | a   | a   | a   | a   |
| 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 90  | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 |
| d   | а   | a   | d   | d   | d   | a   | с   | с   | a   | b   | a   | d   | a   | b   | d   | d   | с   | a   | a   |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
| b   | с   | с   | b   | d   | d   | a   | a   | a   | с   | a   | d   | с   | d   | b   | b   | a   | b   | b   | a   |
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
| a   | С   | d   | a   | a   | b   | d   | b   | b   | с   | a   | a   | b   | d   | с   | b   | с   | d   | a   | d   |
| 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 |
| d   | с   | d   | с   | a   | a   | с   | a   | a   | d   | d   | b   | b   | b   | b   | b   | a   | c   | d   | b   |
| 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 |
| d   | d   | с   | b   | с   | b   | с   | с   | a   | d   | с   | с   | d   | с   | с   | с   | с   | b   | с   | d   |
| 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |
| b   | a   | d   | a   | d   | d   | с   | a   | d   | с   | b   | с   | b   | d   | d   | b   | с   | c   | d   | b   |
| 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 |
| a   | a   | с   | с   | d   | с   | a   | b   | a   | b   | с   | a   | d   | a   | с   | a   | с   | b   | a   | c   |
| 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 |
| a   | b   | a   | с   | d   | a   | b   | с   | с   | b   | с   | с   | b   | с   | b   | a   | a   | b   | с   | с   |
| 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 |
| d   | b   | b   | с   | с   | a   | a   | b   | b   | b   | a   | с   | d   | с   | d   | b   | b   | c   | b   | a   |
| 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 |
| с   | С   | b   | b   | с   | a   | b   | a   | a   | a   | a   | d   | с   | b   | d   | d   | с   | b   | d   | c   |
| 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 |
| b   | d   | с   | с   | a   | d   | d   | d   | b   | d   | с   | с   | a   | d   | с   | с   | d   | a   | a   | b   |
| 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 |
| с   | С   | d   | b   | с   | с   | a   | с   | b   | a   | с   | с   | b   | b   | с   | b   | с   | с   | d   | d   |
| 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

| b   | d   | d   | d   | d   | b   | b   | d   | d   | а   | С   | d   | a   | b   | с   | d   | a   | b   | с   | b   |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 |
| a   | b   | d   | С   | d   | b   | а   | b   | d   | b   | С   | a   | b   | a   | d   | a   | d   | b   | a   | d   |
| 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 | 376 | 377 | 378 | 379 | 380 |
| d   | d   | а   | а   | a   | a   | С   | a   | d   | а   | a   | с   | b   | d   | b   | a   | a   | b   | с   | a   |
| 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 |
| b   | с   | с   | а   | a   | b   | b   | a   | b   | с   | b   | с   | d   | с   | с   | d   | b   | с   | a   | b   |
| 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 |
| d   | b   | d   | С   | d   | b   | С   | b   | a   | с   | b   | a   | с   | b   | с   | с   | a   | с   | с   | a   |
| 421 | 422 | 423 | 424 | 425 | 426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 |
| b   | а   | d   | d   | с   | d   | b   | a   | с   | с   | a   | d   | a   | b   | b   | с   | d   | с   | d   | с   |
| 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 | 451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 |
| с   | а   | d   | С   | b   | с   | С   | с   | d   | b   | b   | d   | с   | с   | a   | с   | a   | d   | b   | a   |
| 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 | 476 | 477 | 478 | 479 | 480 |
| a   | b   | d   | d   | d   | a   | а   | a   | b   | с   | a   | d   | с   | a   | a   | b   | d   | a   | b   | a   |
| 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 | 500 |
| b   | d   | С   | b   | b   | d   | а   | с   | d   | а   | b   | d   | a   | с   | d   | d   | a   | с   | с   | c   |
| 501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 |
| a   | с   | С   | d   | с   | b   | d   | b   | b   | С   | a   | b   | d   | b   | с   | a   | d   | d   | d   | a   |
| 521 | 522 | 523 | 524 | 525 | 526 | 527 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 |
| b   | a   | a   | b   | с   | d   | a   | b   | a   | с   | b   | с   | d   | b   | a   | с   | с   | d   | с   | d   |
| 541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 | 550 | 551 |     |     |     |     |     |     |     |     |     |
| b   | b   | С   | d   | d   | a   | а   | b   | a   | d   | b   |     |     |     |     |     |     |     |     |     |

\*\*\*