

DPP No. 24

Total Marks:30 Max. Time:30 min.

Topics :	Limits, Straight Line, Continuity & Derivability, Function, Sequence & Series			
Type of Questions			M.M., Min.	
Single choice Objective (no negative marking) Q.1,2,3,4 (3 marks, 3 min.)			[12,	12]
Multiple choice objective (no negative marking) Q.5,6 (5 marks, 4 min.)		[10,	8]	
Subjective Questions (no negative marking) Q.7,8		(4 marks, 5 min.)	[8,	10]

 $\frac{\left(\frac{\pi}{2} - \cot^{-1}\{x\}\right)x}{\operatorname{sgn}(x) - \cos x}$ (where {.} and sgn(.) denotes fractional part function and signum function Lim

2. Let
$$\lim_{x\to 0} \frac{[x]^2}{x^2} = \ell$$
 and $\lim_{x\to 0} \frac{[x^2]}{x^2} = m$, then
(A) ℓ exists but m does not
(C) ℓ and m both exist
(D) neither ℓ nor m exists

3. Least value of function
$$f(x) = \frac{2 \sec^2 x + 2 \sec x + 1}{\sec^2 x + \sec x + 5}$$
 is :

(B) $\frac{1}{5}$ (C) $\frac{2}{19}$ (D) $\frac{5}{7}$ (A) 2

4. Through the centriod of an equilateral triangle a line parallel to the base is drawn. On this line, an arbitrary point P is taken inside the triangle. Let h denote the distance of P from the base of the triangle. Let h, and h_2 be the distance of P from the other two sides of the triangle, then (A) h is the H.M. of h_1 , h_2 (B) h is the G.M. of h_1 , h_2

(C) h is the A.M. of
$$h_1, h_2$$
 (D) none of these

5. Given two straight lines x - y - 7 = 0 and x - y + 3 = 0. Equation of a line which divides the distance between them in the ratio 3 : 2 (internally) can be :

(A)
$$x - y - 1 = 0$$
 (B) $x - y - 3 = 0$ (C) $y = x$ (D) $x - y + 1 = 0$

6. If f(x) = [x], $g(x) = \begin{cases} 0 & , & x \in Z \\ x^2 & , & x \in (R-Z) \end{cases}$, then (where [.] is greatest integer function)

(A) $\lim_{x \to 1} g(x)$ exists but g(x) is discontinuous at x = 1

(B) $\lim_{x \to 1} f(x)$ does not exist and f(x) is not continuous at x = 1

- (C) gof is continuous function
- (D) g(x) is discontinuous at all integer points

7. Let $f(x) = \csc 2x + \csc 2^2 x + \csc 2^3 x + \ldots + \csc 2^n x$, $x \in \left(0, \frac{\pi}{2}\right)$ and $g(x) = f(x) + \cot 2^n x$.

 $If H(x) = \begin{cases} (\cos x)^{g(x)} + (\sec x)^{\cos ecx} & \text{if } x > 0 \\ p & \text{if } x = 0 \\ \frac{e^x + e^{-x} - 2\cos x}{x \sin x} & \text{if } x < 0 \end{cases}$

continuous at x = 0.

8. (i) If
$$\lim_{x \to 0} \frac{729^x - 243^x - 81^x + 9^x + 3^x - 1}{x^3} = K(\ell n 3)^3$$
, then find the value of k.

(ii) If $\lim_{x \to 0} \frac{(1+a^3)+8e^{\frac{1}{x}}}{1+(2+b+b^2)e^{\frac{1}{x}}} = 2$, where $a, b \in \mathbb{R}$, then find the possible ordered pair (a, b).

Answers Key

- 1. (A)
 2. (B)
 3. (B)
 4. (C)

 5. (A)(B)
 6. (A)(B)(C)
 7. p = 2
- **8.** (i) 6 (ii) (1, 1) and (1, -2)