MATHEMATICS

PRACTICE PROBLEMS

DPP No. 42

Total Marks : 33

Max. Time : 37 min.

Topics: Solution of Triangle, Application of Derivatives, Method of Differentiation

Type of Questions		М.М.	, Min.
Single choice Objective (no negative marking) Q. 1,2,3	(3 marks, 3 min.)	[9,	9]
Subjective Questions (no negative marking) Q.4,5,6,7	(4 marks, 5 min.)	[16,	20]
Match the Following (no negative marking) Q.8	(8 marks, 8 min.)	[8,	8]

- In a $\triangle ABC$, if $\frac{s-a}{11} = \frac{s-b}{12} = \frac{s-c}{13}$, then $\tan^2 \frac{A}{2}$ is equal to 1. (A) $\frac{143}{342}$ (B) $\frac{13}{33}$ (C) $\frac{11}{39}$ (D) $\frac{12}{37}$
- 2. The two adjacent sides of a cyclic quadrilateral are 2 and 5 and the angle between them is 60°. If the third side is 3, remaining fourth side is. (A) 2 (C) 4 (D) 5 (B) 3
- If y = cos⁻¹ $\sqrt{\frac{\sqrt{1+x^2}+1}{2\sqrt{1+x^2}}}$, then $\frac{dy}{dx}$ is equal to 3.

$$(A) \ \frac{1}{2(1+x^2)}, x \in R \qquad (B) \ \frac{1}{2(1+x^2)}, \ x > 0 \qquad (C) \ \frac{-1}{2(1+x^2)}, \ x < 0 \qquad (D) \ \frac{1}{2(1+x^2)}, x < 0$$

4. In a triangle ABC, if $\cos A + 2 \cos B + \cos C = 2$. Prove that the sides of the triangle are in A.P.

If x and y are positive numbers and x + y = 1, then prove that $\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right) \ge 9$ 5.

6. Prove following inequalities :

(i)	$\frac{x}{1+x} < \ln(1+x) < x$	for	x > 0
(ii)	$2x > 3 \sin x - x \cos x$	for	$0 < x < \pi/2$

Find the greatest & least value of $f(x) = \sin^{-1} \frac{x}{\sqrt{x^2 + 1}} - \ln x \ln \left[\frac{1}{\sqrt{3}}, \sqrt{3}\right]$. 7.

8. If $P(x) = x^3 + px^2 + qx + 6$, then match the entries in column - I with column - II Column - I Column - II

If P(x) is divisible by $x^2 + ax + b$ and $x^2 + bx + a$, (A) (a, b, \in R), a \neq b, then P(x)

(B) If $3q > p^2$, then P(x)

- If p and q are two consecutive natural numbers (C) such that p > q, then P(x)
- (D) If $Q(x) = P(x) - 2x^3 - 2qx$ and $p^2 > 3q$, then Q(x)

- have point of local maximum
- (p) less than point of local minimum
- is monotonic $\forall x \in R$ (q)
- (r) has point of local maximum greater than point of local minimum
- (s) possesses local maxima and local minima

Answers Key

- **1.** (B) **2.** (A) **3.** (B)(C)
- 7. $(\pi/6) + (1/2) \ell n 3$, $(\pi/3) (1/2) \ell n 3$
- 8. (A) \rightarrow p, s; (B) \rightarrow q; (C) \rightarrow p, s; (D) \rightarrow r, s