Class: XII

SESSION: 2022-2023

SUBJECT: Mathematics

SAMPLE QUESTION PAPER - 1 with SOLUTION

Time Allowed: 3 Hours

Maximum Marks: 80

General Instructions:

- 1. This Question paper contains **five sections** A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

Section A

$$1. \quad \int \sqrt{4-x^2} \, dx = ?$$

a) None of these

- b) $\frac{x}{2}\sqrt{4-x^2} + 2\sin^{-1}\frac{x}{2} + C$
- c) $x\sqrt{4-x^2} + \sin^{-1}\frac{x}{2} + C$
- d) $\frac{1}{2}x\sqrt{4-x^2} 2\sin^{-1}\frac{x}{2} + C$

2.
$$[\hat{i} \quad \hat{j} \quad \hat{k}] = ?$$
 [1]

a) 3

b) 1

c) 2

d) 0

3. If
$$P(A) = \frac{2}{5}$$
, $P(B) = \frac{3}{10}$ and $P(A \cap B) = \frac{1}{5}$, then $P\left(\frac{A'}{B'}\right) \cdot P\left(\frac{B'}{A'}\right)$ is equal to [1]

a) $\frac{25}{42}$

b) $\frac{5}{6}$

c) $\frac{5}{7}$

d) 1

4. The angle between two lines having direction ratios 1, 1, 2 and
$$(\sqrt{3}-1)$$
, [1] $(-\sqrt{3}-1)$, 4 is

a) $\frac{\pi}{4}$

b) $\frac{\pi}{3}$

c) $\frac{\pi}{6}$

d) $\frac{\pi}{2}$

a) $\frac{5}{8}$

b) $\frac{1}{6}$

c) $\frac{4}{9}$

d) $\frac{2}{3}$

6.	$\int e^x \left(rac{1-x}{1+x^2} ight)^2 dx$ is equal to		[1]
	a) $\frac{-e^x}{1+x^2}+C$	b) $\frac{e^x}{(1+x^2)} + \mathrm{C}$	
	$\text{c)} \tfrac{-e^x}{(1+x^2)^2} + \text{C}$	$\mathrm{d})\tfrac{e^x}{(1+x^2)^2} + C$	
7.	The direction ratios of two lines are 3, 2, between these lines is	-6 and 1, 2, 2 respectively. The acute angle	[1]
	a) $\cos^{-1}\left(\frac{5}{18}\right)$	b) $\cos^{-1}\left(\frac{8}{21}\right)$	
	c) $\cos^{-1}\left(\frac{5}{21}\right)$	d) $\cos^{-1}\left(\frac{3}{20}\right)$	
8.	The area of the region bounded by the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ is		
	a) $20\pi^2$ sq. units	b) 25π sq. units	
	c) 20π sq. units	d) $16\pi^2$ sq. units	
9.	If \vec{a} and \vec{b} are unit vectors inclined at an angle θ , then the value of $ \vec{a} - \vec{b} $ is		
	a) $2\cos\frac{\theta}{2}$	b) $2\sin\frac{\theta}{2}$	
	c) 2 cos	d) $2\sin\theta$	
10.	The area enclosed by the circle $x^2 + y^2 =$	= 2 is equal to	[1]
	a) $4\pi^2$ sq units	b) 4π sq units	
	c) 2π sq units	d) $2\sqrt{2}\pi$ sq units	
11.	The degree of the differential equation	$\left[1+\left(rac{dy}{dx} ight)^2 ight]^{rac{3}{2}}=rac{d^2y}{dx^2}$ is	[1]
	a) 2	b) $\frac{3}{2}$	
	c) not defined	d) 4	
12.	$\int \sin^3(2x+1) \mathrm{d}x = ?$		[1]
	a) $\frac{1}{2}\cos(2x+1) + \frac{1}{3}\cos^{3}(2x+1) + C$	b) $-\frac{1}{2}\cos(2x+1) + \frac{1}{6}\cos^{3}(2x+1) + C$	
	c) $\frac{1}{8} \sin^4(2 x+1) + C$	d) None of these	
13.	If $\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$, and $A + A' = I$, if t	he value of α is	[1]

b)

a)

	$\frac{\pi}{6}$	$\frac{\pi}{3}$		
	c) $\frac{3\pi}{2}$	d) π		
14.	function $f(x) = 2x^3 - 9x^2 + 12x + 29$ is monotonically decreasing when [1]			
	a) $x > 2$	b) $1 \le x \le 2$		
	c) $x < 2$	d) $x > 3$		
15.	Let A be a non-singular square matrix of order 3 \times 3. Then adj A is equal to			
	a) A	b) 3 A		
	c) A 3	d) A 2		
16.	If A is a 3 \times 3 matrix such that $ A = 8$, t	hen 3 A equals.	[1]	
	a) 8	b) 72		
	c) 216	d) 24		
17.	What is the equation of a curve passing equation is given by $dy = y \tan x dx$?	through (0, 1) and whose differential	[1]	
	a) $y = \sec x$	b) $y = \sin x$		
	c) $y = \csc x$	$d) y = \cos x$		
18.	Domain of $\cos^{-1}x$ is		[1]	
	a) [-1, 0]	b) [0, 1]		
	c) None of these	d) [-1, 1]		
19.	Assertion (A): If manufacturer can sell x items at a price of $\mathbb{Z}(5 - \frac{x}{100})$ each. The cost price of x items is $\mathbb{Z}(\frac{x}{5} + 500)$. Then, the number of items he should sell to earn maximum profit is 240 items. Reason (R): The profit for selling x items is given by $\frac{24}{5}x - \frac{x^2}{100} - 300$.			
	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not the correct explanation of A.		
	c) A is true but R is false.	d) A is false but R is true.		
20.	Assertion (A): The matrix $A = \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$	is singular.	[1]	
		[4 8] Reason (R): A square matrix A is said to be singular, if A - 0.		
	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not the correct explanation of A.		
	c) A is true but R is false.	d) A is false but R is true.		

Section B

21. Write the cofactor of
$$a_{12}$$
 in the matrix
$$\begin{bmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{bmatrix}$$

OR

[2]

Solve the system of equations by matrix method

$$8x + 4y + 3z = 18$$

$$2x + y + z = 5$$

$$x + 2y + z = 5$$

22. Find the value of
$$\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) + \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) + \tan^{-1}\left[\sin\left(\frac{-\pi}{2}\right)\right]$$
. [2]

23. Verify that
$$y = (a + bx)e^{2x}$$
 is the general solution of the differential equation
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0.$$
 [2]

- 24. Given the probability that A can solve a problem is 2/3, and the probability that B can solve the same problem is 3/5, find the probability that at least one of A and B will solve the problem.
- 25. For what value of λ are the vectors \vec{a} and \vec{b} perpendicular to each other? where; $\vec{a} = \lambda \hat{i} + 2\hat{j} + \hat{k}$ and $\vec{b} = 4\hat{i} 9\hat{j} + 2\hat{k}$

Section C

26. Find the particular solution of the differential equation $e^x \sqrt{1 - y^2} dx + \frac{y}{x} dy = 0$, [3] given that y = 1, when x = 0.

OR

Solve the initial value problem: $(x^2 + 1) y' - 2xy = (x^4 + 2x^2 + 1) \cos x$, y(0) = 0

27. Prove
$$\int_0^{\frac{\pi}{4}} 2 \tan^3 x dx = 1 - \log 2$$
 [3]

28. Evaluate:
$$\int \frac{x^2}{(x^4 - x^2 - 12)} dx$$
. [3]

OR

Evaluate:
$$\int \sin^{-1} \sqrt{\frac{x}{a+x}} dx$$

OR

Prove using vectors: The quadrilateral obtained by joining midpoints of adjacent sides of a rectangle is a rhombus.

30. If
$$x = a (1 - \cos^3 \theta)$$
, $y = a \sin^3 \theta$, prove that $\frac{d^2y}{dx^2} = \frac{32}{27a}$ at $\theta = \frac{\pi}{6}$

31. Sketch the region bounded by the curve $y = 2x - x^2$ and the x-axis and find it's area. [3]

Section D

- Minimize Z = x + 2y subject to $2x + y \ge 3, x + 2y \ge 6, x, y \ge 0$. Show that the 32. minimum of Z occurs at more than two points.
 - [5]
- Show that the function f: $R_0 \to R_0$, defined as $f(x) = \frac{1}{x}$, is one-one onto, where R_0 33. [5] is the set non-zero real numbers. Is the result true, if the domain R₀ is replaced by N with co-domain being same as R_0 ?

OR

Show that the function $\mathrm{f}:\mathrm{R}\to\mathrm{R}$ defined by $f(x)=rac{x}{x^2+1},\ orall x\in R$, is neither one-one nor onto.

34. Find the vector equation of the line passing through (1, 2, 3) and parallel to each of [5] the planes $\vec{\mathbf{r}}\cdot(\hat{i}-\hat{j}+2\hat{k})=5$ and $\vec{r}\cdot(3\hat{i}+\hat{j}+\hat{k})=6$. Also find the point of intersection of the line thus obtained with the plane $ec{r}\cdot(2\hat{i}+\hat{j}+\hat{k})=4$.

Show that the lines $\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 4\hat{k})$ and $\vec{r} = (4\hat{i} + \hat{j})$ $+\mu(5\hat{i}+2\hat{j}+\hat{k})$ intersect. Also, find their point intersection.

[5] Find $\frac{dy}{dx}$ of the function $x^y + y^x = 1$ 35.

Section E

36. Read the text carefully and answer the questions: [4]

On the request of villagers, a construction agency designs a tank with the help of an architect. Tank consists of a rectangular base with rectangular sides, open at the top so that its depth is 2 m and volume is 8 m³ as shown below. The construction of the tank costs ₹70 per sq. metre for the base and ₹45 per square metre for sides.

- Express making cost C in terms of length of rectangle base. (i)
- If x and y represent the length and breadth of its rectangular base, then find the (ii) relation between the variables.
- (iii) Find the value of x so that the cost of construction is minimum.

OR

Verify by second derivative test that cost is minimum at a critical point.

37. Read the text carefully and answer the questions:

[4]

Three car dealers, say A, B and C, deals in three types of cars, namely Hatchback cars, Sedan cars, SUV cars. The sales figure of 2019 and 2020 showed that dealer A sold 120 Hatchback, 50 Sedan, 10 SUV cars in 2019 and 300 Hatchback, 150 Sedan, 20 SUV cars in 2020; dealer B sold 100 Hatchback, 30 Sedan, 5 SUV cars in 2019 and 200 Hatchback, 50 Sedan, 6 SUV cars in 2020; dealer C sold 90 Hatchback, 40 Sedan, 2 SUV cars in 2019 and 100 Hatchback, 60 Sedan, 5 SUV cars in 2020.

- (i) Write the matrix summarizing sales data of 2019 and 2020.
- (ii) Find the matrix summarizing sales data of 2020.
- (iii) Find the total number of cars sold in two given years, by each dealer?

OR

If each dealer receives a profit of ₹ 50000 on sale of a Hatchback, ₹100000 on sale of a Sedan and ₹200000 on sale of an SUV, then find the amount of profit received in the year 2020 by each dealer.

38. Read the text carefully and answer the questions:

[4]

To teach the application of probability a maths teacher arranged a surprise game for 5 of his students namely Govind, Girish, Vinod, Abhishek and Ankit. He took a bowl containing tickets numbered 1 to 50 and told the students go one by one and draw two tickets simultaneously from the bowl and replace it after noting the numbers.

- (i) Teacher ask Govind, what is the probability that tickets are drawn by Abhishek, shows a prime number on one ticket and a multiple of 4 on other ticket?
- (ii) Teacher ask Girish, what is the probability that tickets drawn by Ankit, shows an even number on first ticket and an odd number on second ticket?

SOLUTION

Section A

1. **(b)**
$$\frac{x}{2}\sqrt{4-x^2} + 2\sin^{-1}\frac{x}{2} + C$$

Explanation: The given integral is $\int \sqrt{4-x^2} dx$

Using
$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + C$$

$$\int \sqrt{4 - x^2} dx = \int \sqrt{2^2 - x^2} dx$$

$$= \frac{x}{2} \sqrt{4 - x^2} + 2\sin^{-1} \frac{x}{2} + C$$

2. **(b)** 1

Explanation:
$$[\hat{i} \quad \hat{j} \quad \hat{k}] = \hat{i}. (\hat{j} \times \hat{k}) = \hat{i}. \hat{i} \quad \dots (\because \hat{j} \times \hat{k} = \hat{i}) = |\hat{i}|^2 = 1$$

3. (a) $\frac{25}{42}$

Explanation: Here,
$$P(A) = \frac{2}{5}$$
, $P(B) = \frac{3}{10}$ and $P(A \cap B) = \frac{1}{5}$

$$P(A'/B') = \frac{P(A' \cap B')}{P(B')} = \frac{1 - P(A \cup B)}{1 - P(B)}$$
$$= \frac{1 - [P(A) + P(B) - P(A \cap B)]}{1 - P(B)}$$

$$= \frac{1 - \left(\frac{2}{5} + \frac{3}{10} - \frac{1}{5}\right)}{1 - \frac{3}{10}}$$

$$= \frac{1 - \left(\frac{4+3-2}{10}\right)}{\frac{7}{10}} = \frac{1 - \frac{1}{2}}{\frac{7}{10}} = \frac{5}{7}$$

And
$$P(B'/A') = \frac{P(B' \cap A')}{P(A')} = \frac{1 - P(A \cup B)}{1 - P(A)}$$

$$= \frac{1 - \frac{1}{2}}{1 - \frac{2}{5}} = \frac{1/2}{3/5} = \frac{5}{6} \left[\because P(A \cup B) = \frac{1}{2} \right]$$
$$\therefore P(A'/B') \cdot P(B'/A') = \frac{5}{7} \cdot \frac{5}{6} = \frac{25}{42}$$

4. **(d)**
$$\frac{\pi}{2}$$

Explanation: Let
$$\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$$
 and $\vec{b} = (\sqrt{3} - 1)\hat{i} + (-\sqrt{3} - 1)\hat{j} + 4\hat{k}$
 $|\vec{a}| = \sqrt{6}, |\vec{b}| = \sqrt{(4 - 2\sqrt{3}) + (4 + 2\sqrt{3}) + 16} = 2\sqrt{6}$

$$\hat{(i+j+2\hat{k})} \cdot ((\sqrt{3}-1)\hat{i} + (-\sqrt{3}-1)\hat{j} + 4\hat{k})$$

$$\cos \alpha = \frac{(\hat{i}+\hat{j}+2\hat{k}) \cdot ((\sqrt{3}-1)\hat{i} + (-\sqrt{3}-1)\hat{j} + 4\hat{k})}{(-\sqrt{3}-1)\hat{i} + (-\sqrt{3}-1)\hat{i} + (-\sqrt{$$

$$\cos \alpha = \frac{\sqrt{3} - 1 - \sqrt{3} - 1 + 8}{12}$$

$$\cos \alpha = \frac{1}{2}$$

$$\alpha = 60$$
 °

5. (a)
$$\frac{5}{8}$$

Explanation: The sum will be even when; both numbers are either even or odd, i.e. for both numbers to be even, the total cases ${}^5C_1 \times {}^4C_1$ (Both the numbers are odd)+ ${}^4C_1 \times {}^3C_1$ (Both the numbers are even) = 32

The favourable number of cases will be,

Both odd, i.e. selecting numbers from 1, 3, 5, 7, or 9, i.e.

$$^{5}C_{1} \times ^{4}C_{1} = 20$$

Thus, the probability that both numbers are odd will be

Favorable outcomes

Total outcomes

$$\Rightarrow \frac{20}{32} = \frac{5}{8}$$

6. **(b)**
$$\frac{e^x}{(1+x^2)}$$
 + C

Explanation: Given
$$\int e^x \left(\frac{1-x}{1+x^2}\right)^2 dx$$

$$\Rightarrow \int e^{x} \left(\frac{1-x}{1+x^{2}}\right)^{2} dx = \int e^{x} \left(\frac{1+x^{2}-2x}{\left(1+x^{2}\right)^{2}}\right) dx$$

$$\Rightarrow \int e^{x} \left(\frac{1+x^{2}-2x}{\left(1+x^{2}\right)^{2}}\right) dx = \int e^{x} \left\{\left(\frac{1+x^{2}}{\left(1+x^{2}\right)^{2}}\right) + \left(\frac{-2x}{\left(1+x^{2}\right)^{2}}\right)\right\} dx$$

$$= \int e^{x} \left\{\left(\frac{1}{\left(1+x^{2}\right)^{2}}\right) + \left(\frac{-2x}{\left(1+x^{2}\right)^{2}}\right)\right\} dx$$

Now using the property: $\int e^{X} (f(x) + f'(x)) dx = e^{X} f(x)$

Now in
$$\int e^x \left\{ \left(\frac{1}{\left(1 + x^2 \right)} \right) + \left(\frac{-2x}{\left(1 + x^2 \right)^2} \right) \right\} dx$$

$$\Rightarrow f(x) = \frac{1}{\left(1 + x^2 \right)}$$

$$\Rightarrow f'(x) = \frac{-2x}{\left(1 + x^2 \right)^2}$$

$$\Rightarrow \int e^{x} \left\{ \left(\frac{1}{\left(1 + x^{2} \right)} \right) + \left(\frac{-2x}{\left(1 + x^{2} \right)^{2}} \right) \right\} dx = \frac{e^{x}}{1 + x^{2}} + C$$

$$\Rightarrow \int e^{x} \left(\frac{1-x}{1+x^2} \right)^2 dx = \frac{e^{x}}{1+x^2} + C.$$

Which is the required solution.

7. (c)
$$\cos^{-1}\left(\frac{5}{21}\right)$$

Explanation: Direction ratios are given implies that we can write the parallel vector towards that line, lets consider first parallel vector to be $\vec{a} = 3\hat{i} + 2\hat{j} - 6\hat{k}$ and second parallel vector be $\vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}$

For the angle, we can use the formula $\cos \alpha = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \times |\vec{b}|}$

For that, we need to find the magnitude of these vectors

$$|\vec{a}| = \sqrt{3^2 + 2^2 + (-6)^2}$$

$$= 7$$

$$|\vec{b}| = \sqrt{1 + 2^2 + 2^2}$$

$$= 3$$

$$\Rightarrow \cos\alpha = \frac{(3\hat{i} + 2\hat{j} - 6\hat{k}) \cdot (\hat{i} + 2\hat{j} + 2\hat{k})}{7 \times 3}$$

$$\Rightarrow \cos\alpha = \frac{3 + 4 - 12}{21}$$

$$\Rightarrow \cos\alpha = \frac{-5}{21}$$

$$\therefore \alpha = \cos^{-1}\left(-\frac{5}{21}\right)$$

The negative sign does not affect anything in cosine as cosine is positive in the fourth quadrant.

$$\alpha = \cos^{-1}\left(\frac{5}{21}\right)$$

8. (c) 20π sq. units

Explanation: The area of the standard ellipse is given by; πab . Here, a = 5 and b = 4 Therefore, the area of curve is $\pi(5)(4) = 20\pi$.

9. **(b)** $2\sin\frac{\theta}{2}$

Explanation: Given \vec{a} and \vec{b} are unit vectors with inclination is θ

now,
$$|\vec{a} - \vec{b}|^2 = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) = |\vec{a}|^2 - \vec{a} \cdot \vec{b} - \vec{b} \cdot \vec{a} + |\vec{b}|^2$$

$$=1-2(\vec{a}.\vec{b})+1$$

$$=2-2|\vec{a}||\vec{b}|\cos\theta$$

=
$$2-2\cos\theta$$
 (where vectors are unit vectors)

$$=2(1-\cos\theta)$$

$$=4sin^2\frac{\theta}{2}$$

thus
$$|\vec{a} - \vec{b}|^2 = 4sin^2 \frac{\theta}{2}$$

$$|\vec{a} - \vec{b}| = 2\sin\frac{\theta}{2}$$

10. (c) 2π sq units

Explanation: Since Area = $4\int_{0}^{\sqrt{2}} \sqrt{2-x^2}$

$$=4\left(\frac{x}{2}\sqrt{2-x^2}+\sin^{-1}\frac{x}{\sqrt{2}}\right)_0^{\sqrt{2}}=2\pi \text{ sq. units}$$

11. (a) 2

Explanation: In general terms for a polynomial the degree is the highest power.

The differential equation is
$$\left(1 + \left(\frac{dy}{dx}\right)^2\right)^{\frac{3}{2}} = \frac{d^2y}{dx^2}$$

Square both the sides

$$\Rightarrow \left(1 + \left(\frac{dy}{dx}\right)^2\right)^3 = \left(\frac{d^2y}{dx^2}\right)^2$$

Now for degree to exist the given differential equation must be a polynomial in some differentials.

Here differentials mean $\frac{dy}{dx}$ or $\frac{d^2y}{dx^2}$ or ... $\frac{d^ny}{dx^n}$

The given differential equation is polynomial in differentials $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$

Degree of differential equation is defined as the highest integer power of highest order derivative in the equation.

Here the highest derivative is $\frac{d^2y}{dx^2}$ and there is only one term of highest order derivative in

the equation which is $(\frac{d^2y}{dx^2})^2$ whose power is 2 hence degree is 2.

12. **(b)**
$$-\frac{1}{2}\cos(2x+1) + \frac{1}{6}\cos^3(2x+1) + C$$

Explanation: Formula :-
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c; \int \frac{1}{1+x^2} dx = \tan^{-1}x + c$$

Therefore,

$$\Rightarrow \int \sin^2(2x+1)\sin(2x+1)dx = \int (1-\cos^2(2x+1))\sin(2x+1)dx$$

$$= \int \sin(2x+1)dx - \int \cos^2(2x+1)\sin(2x+1)dx$$

Put $\cos(2x+1) = t$

$$\Rightarrow$$
 $-2\sin(2x+1)dx = dt$

$$I = -\int \frac{dt}{2} - \left(-\frac{1}{2}\right) \int t^2 dt$$
$$= -\frac{1}{2} \int dt + \frac{1}{2} \int t^2 dt$$

$$= -\frac{1}{2}t + \frac{1}{2}\frac{t^3}{3} + c$$

$$= -\frac{1}{2}t + \frac{t^3}{6} + c$$

$$= -\frac{1}{2}\cos(2x+1) + \frac{\left[\cos(2x+1)\right]^3}{6} + c$$
13. **(b)** $\frac{\pi}{3}$

Explanation: Given
$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

Therefore,
$$A' = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$

Also given that A + A' = I ...(1) (Putting the values in equation (1))

$$\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} + \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \cos\alpha + \cos\alpha & -\sin\alpha + \sin\alpha \\ \sin\alpha - \sin\alpha & \cos\alpha + \cos\alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2\cos\alpha & 0 \\ 0 & 2\cos\alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

We know the two matrices are equal only when all their corresponding elements or entries are equal i.e. if A = B, then a_{ij} and b_{ij} for all i and j.

This implies,

$$2\cos\alpha = 1$$

$$\Rightarrow \cos \alpha = \frac{1}{2}$$

$$\Rightarrow \cos \alpha = \cos \frac{\pi}{3} \dots \left(\because \cos \frac{\pi}{3} = \frac{1}{2} \right)$$

$$\Rightarrow \alpha = \frac{\pi}{3}$$

14. **(b)**
$$1 \le x \le 2$$

Explanation: $1 \le x \le 2$

15. **(d)**
$$|A|^2$$

Explanation: For a square matrix of order $n \times n$,

We know that A. adjA = |A|I

Here, n=3

$$|A. adjA| = |A|^{n}$$

$$|adjA| = |A|^{n-1}$$

So,
$$|AdjA| = |A|^{3-1} = |A|^2$$

16. (c) 216

Explanation: Given A is a square matrix of order 3 and also |A| = 8

$$|3A| = (3)^3 \times |A| = 27 \times 8 = 216$$

17. (a) $y = \sec x$

Explanation: The given differential equation of the curve is,

$$dy = y \tan x dx \implies \int \frac{dy}{y} = \int \tan x \cdot dx$$
 [on integrating]

$$\Rightarrow$$
 log y = log sec x + log C \Rightarrow log y = log C sec x

$$\Rightarrow$$
 y = C sec x ...(i)

Since, the curve passes through the origin (0, 1), then

$$1 = C \sec 0 \implies C = 1$$

$$\therefore$$
 Required equation of curve is, $y = \sec x$

18. **(d)** [-1, 1]

Explanation: To Find: The range of $\cos^{-1}(x)$

Here, the inverse function is given by $y = f^{-1}(x)$

The graph of the function $y = cos^{-1}(x)$ can be obtained from the graph of

 $Y = \cos x$ by interchanging x and y axes.i.e, if a, b is a point on $Y = \cos x$ then b, a is the point on the function $y = \cos^{-1}(x)$

Below is the Graph of the range of $\cos^{-1}(x)$

From the graph, it is clear that the domain of $\cos^{-1}(x)$ is [-1, 1]

19. (c) A is true but R is false.

Explanation: Let S(x) be the selling price of x items and let C(x) be the cost price of x items.

Then, we have

$$S(x) = (5 - \frac{x}{100})x = 5x - \frac{x^2}{100}$$

and
$$C(x) = \frac{x}{5} + 500$$

Thus, the profit function P(x) is given by

$$P(x) = S(x) - C(x) = 5x - \frac{x^2}{100} - \frac{x}{5} - 500$$

i.e.
$$P(x) = \frac{24}{5}x - \frac{x^2}{100} - 500$$

On differentiating both sides w.r.t. x, we get

$$P'(x) = \frac{24}{5} - \frac{x}{50}$$

Now, P'(x) = 0 gives x = 240.

Also, P'(x) =
$$\frac{-1}{50}$$
.
So, P'(240) = $\frac{-1}{50}$ < 0

Thus, x = 240 is a point of maxima.

Hence, the manufacturer can earn maximum profit, if he sells 240 items.

20. (a) Both A and R are true and R is the correct explanation of A.

Explanation: The determinant of the matrix
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$$
 is $|A| = \begin{vmatrix} 1 & 2 \\ 4 & 8 \end{vmatrix} = 8 - 8 = 0$

Hence, A is a singular matrix.

Section B

21. Given the matrix is,
$$\begin{bmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{bmatrix}$$

We need to find the cofactor of a₁₂ in the matrix

$$\begin{bmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{bmatrix}$$

Firstly we know what the element at position a₁₂ in the matrix is.

$$a_{12} = -3$$

And as discussed above, the sign at a₁₂ is (-).

For cofactor of -3, eliminate first row and second column in the matrix.

Cofactor of -3 =
$$\begin{vmatrix} 6 & 4 \\ 1 & -7 \end{vmatrix}$$

- \Rightarrow Cofactor of -3 = $(6 \times -7) (4 \times 1)$
- \Rightarrow Cofactor of -3 = -42 4
- \Rightarrow Cofactor of -3 = -46

Since, the sign of cofactor of -3 is (-), then

Cofactor of -3 = -(-46)

 \Rightarrow Cofactor of -3 = 46

Thus, the cofactor of -3 is 46.

OR

Given system of equations

$$8x + 4y + 3z = 18$$

$$2x + y + z = 5$$

$$x + 2y + z = 5$$

The given system can be re- written in matrix form as:

$$\begin{bmatrix} 8 & 4 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} X \\ y \\ z \end{bmatrix} = \begin{bmatrix} 18 \\ 5 \\ 5 \end{bmatrix}$$

$$AX = B$$

Now,
$$|A| = 8 \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} - 4 \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} + 3 \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix}$$

$$= 8(-1) - 4(1) + 3(3)$$

$$= -8 - 4 + 9$$

$$= -3$$

So, the above system has a unique solution, given by

$$X = A^{-1}B$$

Cofactors of A are:

$$C_{11} = (-1)^{1+1} 1 - 2 = -1$$

$$C_{21} = (-1)^{2+1} 4 - 6 = 2$$

$$C_{31} = (-1)^{3+1} 4 - 3 = 1$$

$$C_{12} = (-1)^{1+2} 2 - 1 = -1$$

$$C_{22} = (-1)^{2+1} 8 - 3 = 5$$

$$C_{32} = (-1)^{3+1} 8 - 6 = -2$$

$$C_{13} = (-1)^{1+2} 4 - 1 = 3$$

$$C_{23} = (-1)^{2+1} 16 - 4 = -12$$

$$C_{33} = (-1)^{3+1} 8 - 8 = 0$$

$$adjA = \begin{bmatrix} -1 & -1 & 3 \\ 2 & 5 & -12 \\ 1 & -2 & 0 \end{bmatrix}^{T}$$

$$= \begin{bmatrix} -1 & 2 & 1 \\ -1 & 5 & -2 \\ 3 & -12 & 0 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \operatorname{adj} A$$

Now,
$$X = A^{-1}B = \frac{1}{-3} \begin{bmatrix} -1 & 2 & 1 \\ -1 & 5 & -2 \\ 3 & -12 & 0 \end{bmatrix} \begin{bmatrix} 18 \\ 5 \\ 5 \end{bmatrix}$$

$$x = \frac{1}{3} \begin{bmatrix} -18 + 10 + 5 \\ -18 + 25 - 10 \\ 54 - 60 + 0 \end{bmatrix}$$

$$x = \frac{1}{-3} \begin{bmatrix} -3 \\ -3 \\ -6 \end{bmatrix}$$

$$x = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

Hence, X = 1, Y = 1 and Z = 2

22. We have,
$$\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) + \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) + \tan^{-1}\left[\sin\left(\frac{-\pi}{2}\right)\right]$$
.

$$= \tan^{-1}\left(\tan\frac{5\pi}{6}\right) + \cot^{-1}\left(\cot\frac{\pi}{3}\right) + \tan^{-1}(-1).$$

$$= \tan^{-1} \left[\tan \left(\pi - \frac{\pi}{6} \right) \right] + \cot^{-1} \left[\cot \left(\frac{\pi}{3} \right) \right] + \tan^{-1} \left[\tan \left(\pi - \frac{\pi}{4} \right) \right]$$

$$= \tan^{-1}\left(-\tan\frac{\pi}{6}\right) + \cot^{-1}\left(\cot\frac{\pi}{3}\right) + \tan^{-1}\left(-\tan\frac{\pi}{4}\right)$$

$$\because \tan^{-1}(\tan x) = x, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$\cot^{-1}(\cot x) = x, x \in (0, \pi)$$

and
$$\tan^{-1}(-x) = -\tan^{-1}x$$

$$= -\frac{\pi}{6} + \frac{\pi}{3} - \frac{\pi}{4} = \frac{-2\pi + 4\pi - 3\pi}{12}$$

$$=\frac{-5\pi+4\pi}{12}=\frac{-\pi}{12}$$

23.
$$y = (a + bx)e^{2x}$$

Differentiating above equation with respect to x,we get

$$\frac{dy}{dx} = be^{2x} + 2(a + bx) e^{2x}$$

On differentiating again w.r.t.x,we get

$$\frac{d^2y}{dx^2} = 2be^{2x} + 2be^{2x} + 4(a+bx)e^{2x}$$

Now,
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y$$

= $2be^{2x} + 2be^{2x} + 4(a + bx)e^{2x} - 4be^{2x} - 8(a + bx)e^{2x} + 4(a + bx)e^{2x}$
= 0
 $y = (a + bx)e^{2x}$ is the solution of $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0$

24. Given: Here probability of A and B that can solve the same problem is given, i.e., P(A) =

$$\frac{2}{3}$$
 and P(B) = $\frac{3}{5}$ \Rightarrow $P(\overline{A}) = \frac{1}{3}$ and $P(\overline{B}) = \frac{2}{5}$

Also, A and B are independent . not A and not B are independent.

To Find: atleast one of A and B will solve the problem

Now, P(at least one of them will solve the problem) = 1 - P(both are unable to solve)

$$=1-P(\bar{A}\cap\bar{B})$$

$$= 1 - P(\bar{A}) \times P(\bar{B})$$

$$=1-\left(\frac{1}{3}\times\frac{2}{5}\right)$$

$$=\frac{13}{15}$$

25. Since, \vec{a} and \vec{b} are perpendicular

$$\vec{a} \cdot \vec{b} = 0$$

$$\Rightarrow (\lambda \hat{i} + 2\hat{j} + \bar{k}) \cdot (4\hat{i} - 9\hat{j} + 2\hat{k}) - \mathbf{0}$$

$$\Rightarrow$$
 (λ)(4) + (2)(- 9) + (1)(2) = 0

$$\Rightarrow 4\lambda - 18 + 2 = 0$$

$$\Rightarrow 4\lambda - 16 = 0$$

$$\Rightarrow 4\lambda = 16$$

$$\Rightarrow \lambda = \frac{16}{4}$$

$$\Rightarrow \lambda = 4$$

Section C

26. We have,

$$e^x \sqrt{1 - y^2} dx + \frac{y}{x} dy = 0$$

$$\Rightarrow e^x \sqrt{1 - y^2} dx = \frac{-y}{x} dy$$

Therefore, on separating the variables, we get,

$$\frac{-y}{\sqrt{1-y^2}}dy = xe^X dx$$

Therefore, on integrating both sides, we get,

$$\int \frac{-y}{\sqrt{1-y^2}} dy = \int x e^X dx$$

On putting
$$1 - y^2 = t \Rightarrow -ydy = \frac{dt}{2}$$
 in LHS, we get

$$\int \frac{1}{2\sqrt{t}} dt = \int x e^x dx$$
III

$$\Rightarrow \frac{1}{2}[2\sqrt{t}] = x \int e^x dx - \int \left[\frac{d}{dx}(x) \int e^x dx \right] dx \text{ [using integration by parts]}$$

$$\Rightarrow \sqrt{1 - y^2} = xe^x - \int e^x dx \quad \left[\text{ put } t = 1 - y^2 \right]$$

$$\Rightarrow \sqrt{1 - y^2} = xe^x - e^x + C \dots (i)$$

Also, given that y = 1, when x = 0

On putting y = 1 and x = 0 in Eq. (i), we get

$$\sqrt{1-1} = 0 - e^0 + C$$

$$\Rightarrow$$
 $C=1$ $\left[\because e^0=1\right]$

On substituting the value of C in Eq. (i), we get

$$\sqrt{1-y^2} = xe^x - e^x + 1$$

which is the required particular solution of given differential equation.

OR

The given differential equation is:

$$(x^{2} + 1) y' - 2xy = (x^{4} + 2x^{2} + 1) \cos x$$

 dy $2x$

$$\Rightarrow \frac{dy}{dx} - \frac{2x}{x^2 + 1}y = (x^2 + 1)\cos x \dots (i)$$

This is a linear differential equation with $P = \frac{-2x}{x^2 + 1}$ and $Q = (x^2 + 1) \cos x$

$$\therefore \text{ I.F. } = e^{\frac{-2x}{x^2+1}} dx = e^{-\log(x^2+1)} = (x^2+1)^{-1}$$

Multiplying (i) by $\frac{1}{x^2+1}$, we get

$$\frac{1}{x^{2}+1} \frac{dy}{dx} - \frac{2x}{\left(x^{2}+1\right)^{2}} y = \cos x$$

Integrating both sides with respect to x, we get

$$y \times \frac{1}{x^2 + 1} = \int \cos x \, dx + C$$

$$\Rightarrow \frac{y}{x^2 + 1} = \sin x + C \dots (ii)$$

It is given that y(0) = 0 i.e. y = 0 when x = 0

Put x = 0, y = 0 in (ii), we get: C = 0

Put
$$C = 0$$
 in (ii), we get

$$\frac{y}{x^2+1} = \sin x \implies y = (x^2+1)\sin x.$$

27. Given integral is: $\int_{\overline{a}}^{\pi} 2\tan^3 x dx$

To Prove:
$$\int_{0}^{\pi} 2\tan^3 x dx = 1 - \log 2$$

Let
$$I = \int_{\overline{Q}}^{\pi} 2 \tan^3 x dx$$
 ...(i)

$$= \int_{0}^{\pi} 2 \cdot \tan^2 x dx$$

$$= 2. \int_{\overline{\mathbf{Q}}}^{\pi} \tan x \cdot \left(\sec^2 x - 1 \right) dx$$

$$\Rightarrow I = 2 \left\{ -\int \frac{\pi}{\mathbf{q}} \tan x dx + \int \frac{\pi}{\mathbf{q}} \tan x \cdot \sec^2 x dx \right\}$$

$$\Rightarrow$$
 I = - [2logcosx] $\sqrt[\pi]{4}$ + 2. I₁ ...(ii)

Solving I₁:

$$\Rightarrow I_1 = \int_{\overline{\mathbf{Q}}}^{\pi} \tan x \cdot \sec^2 x dx$$

$$\Rightarrow I_1 = \int_{\overline{\mathbf{Q}}}^{\pi} \tan x \cdot \sec^2 x dx$$

Let,
$$\tan x = t \implies \sec^2 x \, dx = dt$$

When
$$x = 0$$
 then $t = 0$ and when $x = \frac{\pi}{4}$ then $t = 1$

$$\Rightarrow I_1 = \int_0^1 t dt$$

$$= \left[\frac{t^2}{2}\right]_0^1$$

$$\Rightarrow I_1 = \frac{1}{2}$$

Using this in equation (ii)

$$\Rightarrow I = [2\log \cos x]_0^{\pi/4} + 2 \cdot \frac{1}{2}$$

$$\Rightarrow I = 2 \left\{ \log \cos \frac{\pi}{4} - \log \cos 0 \right\} + 1$$

$$\Rightarrow I = 2 \left\{ \log \frac{1}{\sqrt{2}} - \log 1 \right\} + 1$$

$$\Rightarrow I = \left\{ \log \left(\frac{1}{\sqrt{2}} \right)^2 - \log(1)^2 \right\} + 1$$

$$\Rightarrow I = 1 - \log 2 + \log 1$$

$$\Rightarrow I = 1 - \log 2$$
Hence Proved.

28. Let,
$$I = \int \frac{x^2}{\left(x^4 - x^2 - 12\right)} dx$$

Using partial fractions,

$$\frac{x^2}{\left(x^4 - x^2 - 12\right)} = \frac{t}{t^2 - t - 12} = \frac{t}{(t - 4)(t + 3)} = \frac{A}{t - 4} + \frac{B}{t + 3} \dots (1)$$

Where
$$t = x^2$$

$$A(t+3) + B(t-4) = t$$

Now put
$$t + 3 = 0$$

$$t = -3$$

$$A(0) + B(-7) = -3$$

$$B=\frac{3}{7}$$

Now put
$$t - 4 = 0$$

$$t = 4$$

$$A(4+3) + B(0) = 4$$

$$A = \frac{4}{7}$$

From equation(1)

$$\frac{t}{(t-4)(t+3)} = \frac{4}{7} \times \frac{1}{t-4} + \frac{3}{7} \times \frac{1}{t+3}$$

$$\frac{x^2}{\left(x^2-4\right)\left(x^2+3\right)} = \frac{4}{7} \times \frac{1}{x^2-2^2} + \frac{3}{7} \times \frac{1}{x^2+(\sqrt{3})^2}$$

$$\int \frac{x^2}{\left(x^2-4\right)\left(x^2+3\right)} dx = \frac{4}{7} \int \frac{1}{x^2-2^2} dx + \frac{3}{7} \int \frac{1}{x^2+(\sqrt{3})^2} dx$$

$$= \frac{4}{7} \times \frac{1}{2} \times \frac{1}{2} \log \left| \frac{x-2}{x+2} \right| + \frac{3}{7} \times \frac{1}{\sqrt{3}} \tan^{-1} \frac{x}{\sqrt{3}} + c$$

$$= \frac{1}{7} \log \left| \frac{x-2}{x+2} \right| + \frac{\sqrt{3}}{7} \tan^{-1} \frac{x}{\sqrt{3}} + c$$

OR

Let the given integral be,

$$I = \int \sin^{-1} \sqrt{\frac{x}{a+x}} dx$$

Let
$$x = a \tan^2 \theta$$

$$dx = 2a \tan \theta \sec^2 \theta d\theta$$

$$I = (\sin^{-1} \sqrt{\frac{a \tan^2 \theta}{a + a \tan^2 \theta}}) (2a \tan \theta \sec^2 \theta) d\theta$$

$$= \int \left(\sin^{-1} \sqrt{\frac{\tan^2 \theta}{\sec^2 \theta}} \right) (2a \tan \theta \sec^2 \theta) d\theta$$

$$= \int \sin^{-1}(\sin \theta) (2a \tan \theta \sec^2 \theta) d\theta$$

=
$$2a \int \theta (\tan \theta \sec^2 \theta) d\theta$$

=
$$2a \left[\theta \int \tan \theta \sec^2 \theta \, d\theta - \int \left(\int \tan \theta \sec^2 \theta \, d\theta\right) \, d\theta$$

$$=2a\left[\theta\frac{\tan^2\theta}{2}-\int\frac{\tan^2\theta}{2}d\theta\right]$$

$$= a\theta \tan^2 \theta - \frac{2a}{2} \int (\sec^2 \theta - 1) d\theta$$

$$= a\theta \tan^2 \theta - a \tan \theta + a\theta + c$$

$$= a \left(\tan^{-1} \sqrt{\frac{x}{a}} \right) \frac{x}{a} - a \sqrt{\frac{x}{a}} + a \tan^{-1} \sqrt{\frac{x}{a}} + c \right)$$

$$I = x \tan^{-1} \sqrt{\frac{x}{a}} - \sqrt{ax} + a \tan^{-1} \sqrt{\frac{x}{a}} + c$$

29. The given points are A (1, 2, 7), B (2, 6, 3) and C(3, 10, -1) respectively.

$$\therefore \text{ Position vector of point } A = \overrightarrow{OA} = \hat{i} + 2\hat{j} + 7\hat{k}$$

Position vector of point
$$B = \overrightarrow{OB} = 2\hat{i} + 6\hat{j} + 3\hat{k}$$

Position vector of point
$$C = \overrightarrow{OC} = 3\hat{i} + 10\hat{j} - \hat{k}$$

Now AB = Position vector of point B – Position vector of point A

$$= 2\hat{i} + 6\hat{j} + 3\hat{k} - (\hat{i} + 2\hat{j} + 7\hat{k})$$

= $2\hat{i} + 6\hat{j} + 3\hat{k} - \hat{i} - 2\hat{j} - 7\hat{k} = \hat{i} + 4\hat{j} - 4\hat{k}...(i)$

And AC = Position vector of point C – Position vector of point A

$$=3\hat{i}+10\hat{j}-\hat{k}-(\hat{i}+2\hat{j}+7\hat{k})$$

$$=3\hat{i}+10\hat{j}-\hat{k}-\hat{i}-2\hat{j}-7\hat{k} = 2\hat{i}+8\hat{j}-8\hat{k} = 2\left(\hat{i}+4\hat{j}-4\hat{k}\right)...(ii)$$

$$\Rightarrow AC = 2.AB$$
 [Using eq. (i)]

$$\Rightarrow$$
 Vectors \overrightarrow{AB} and \overrightarrow{AC} are parallel. $[\because \overrightarrow{a} = mb]$

But AB and AC have a common point A and hence they can't be parallel. Thus, the points A, B, C are collinear.

OR

ABCD be rectangle.

Let P, Q, R and S be the midpoints of the sides AB, BC, CD and DA respectively,

$$PQ - P\bar{B} + BQ - \frac{1}{2}(AB + B\bar{C}) - \frac{1}{2}AC$$
....(i)

$$SR - SD + DR - \frac{1}{2}(AD + DC) - \frac{1}{2}AC \dots(ii)$$

From (i) and (ii) we have

$$PQ = SR$$
 i, e. sides PQ and SR are equal and parallel

PQRS is a parallelogram.

$$(PQ)^2 = PQ \cdot PQ = (PB + BQ) \cdot (PB + BQ) - PE^2 + BQ^2 \dots$$
 (iii)

$$(PS)^2 - PS \cdot PS - (PA + PS) \cdot (PA + PS) - PA|^2 + AS|^2 - PEP^2 + |BQ|^2$$
(iv)

From (iii) and (iv) we get,

$$(PQ)^2 = (PQ)^2$$
 i. e. $PQ = PS$

= The adjacent sides of PQRS are equal.

PQRS is a rhombus.

30. Given,

$$x = a (1 - \cos^3 \theta) ...(i)$$

$$y = a \sin^3 \theta$$
, ...(ii)

To prove:
$$\frac{d^2y}{dx^2} = \frac{32}{27a}$$
 at $\theta = \frac{\pi}{6}$

To find the above we will differentiate the function y wrt x twice.

As
$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$$

So, lets first find dy/dx using parametric form and differentiate it again.

$$\frac{dx}{d\theta} = \frac{d}{d\theta}a\left(1 - \cos^3\theta\right) = 3a\cos^2\theta\sin\theta \dots (iii) \text{ [using chain rule]}$$

Similarly,

$$\frac{dy}{d\theta} = \frac{d}{d\theta} a \sin^3 \theta = 3 a \sin^2 \theta \cos \theta \dots (iv)$$

$$\left[\because \frac{d}{dx} \cos x = -\sin x & \frac{d}{dx} \cos x = \sin x \right]$$

$$\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{3a\sin^2\theta\cos\theta}{3a\cos^2\theta\sin\theta} = \tan\theta$$

Differentiating again w.r.t. x:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right) = \frac{\mathrm{d}}{\mathrm{d}x} (\tan \theta)$$

$$\frac{d^2y}{dx^2} = \sec^2\theta \frac{d\theta}{dx} \dots (v)$$

[using chain rule and $\frac{d}{dx} \tan x = \sec^2 x$]

From equation (iii)

$$\frac{dx}{d\theta} = 3a\cos^2\theta\sin\theta$$

$$\therefore \frac{d\theta}{dx} = \frac{1}{3a\cos^2\theta\sin\theta}$$

Putting the value in equation ...(v)

$$\frac{d^2y}{dx^2} = \sec^2\theta \frac{1}{3\cos^2\theta\sin\theta}$$

$$\frac{d^2y}{dx^2} = \frac{1}{3a\cos^4\theta\sin\theta}$$

Put
$$\theta = \pi/6$$

$$\left(\frac{d^{2}y}{dx^{2}}\right) at \left(x = \frac{\pi}{6}\right) = \frac{1}{3a\cos^{4}\frac{\pi}{6}\sin\frac{\pi}{6}} = \frac{1}{3a\left(\frac{\sqrt{3}}{2}\right)^{4}\frac{1}{2}}$$

$$\therefore \left(\frac{d^2y}{dx^2}\right) \text{ at } \left(x = \frac{\pi}{6}\right) = \frac{32}{27a}$$

Hence proved

31. The equation of curve is

$$y = 2x - x^2$$
....(1)

$$\Rightarrow x^2 - 2x = -y$$

$$\Rightarrow x^2 - 2x + 1 = -y + 1$$

 $(x-1)^2 = -(y-1)$, which is a downward parabola with vertex (1,1).

putting y = 0 in (1), we get, $0 = 2x - x^2$,

$$\therefore x(x-2)=0$$

$$x = 0, 2$$

 \therefore parabola meets x-axis at (0,0),(2,0)

 \therefore required area = Area bounded by the curve $y = 2x - x^2$ and the x-axis

$$=\int_0^1 y dx$$

$$=\int_{0}^{2} (2x - x^{2}) dx$$

$$= \left[x^2 - \frac{x^3}{3} \right]_0^2$$

$$= \left[4 - \frac{8}{3} - (0 - 0)\right]$$

$$= \frac{4}{3} sq \ units$$

Section D

32. Consider $2x + y \ge 3$

Let $2x + y = 3 \implies y = 3 - 2x$

x	0	1	-1
у	3	1	5

(0, 0) is not contained in the required half plane as (0, 0) does not satisfy the inequation $2x + y \ge 3$.

Again
$$x + 2y \ge 6$$

$$Let x + 2y = 6$$

$$\Rightarrow \frac{x}{6} + \frac{y}{3} = 1$$

Here also (0, 0) does not contain the required half plane. The double shaded region XABY is the solution set. Its corners are A (6, 0) and B (0, 3).

At A
$$(6, 0)$$
 Z = $6 + 0 = 6$

At B
$$(0, 3)$$
 Z = $0 + 2 \times 3 = 6$

Therefore, at both points the value of Z = 6 which is minimum. In fact at every point on the line AB makes Z = 6 which is also minimum.

33. We observe the following properties of f.

Injectivity: Let $x, y \in R_0$ such that f(x) = f(y). Then,

$$f(x) = f(y) \Rightarrow \frac{1}{x} = \frac{1}{y} \Rightarrow x = y$$

So, $f: R_0 \rightarrow R_0$ is one-one.

Surjectivity: Let y be an arbitrary element of R_0 (co-domain) such that f(x) = y. Then,

$$f(x) = y \Rightarrow \frac{1}{x} = y \Rightarrow x = \frac{1}{y}$$

Clearly, $x = \frac{1}{v} \in R_0$ (domain) for all $y \in R_0$ (co-domain).

Thus, for each $y \in R_0$ (co-domain) there exits $x = \frac{1}{y} \in R_0$ (domain) such that

$$f(x) = \frac{1}{x} = y$$

So, $f: R_0 \rightarrow R_0$ is onto.

Hence, f: $R_0 \rightarrow R_0$ is one-one onto.

This is also evident from the graph of f(x) as shown in fig.

Let us now consider $f: N \to R_0$ given by $f(x) = \frac{1}{x}$

For any $x, y \in N$, we find that

$$f(x) = f(y) \implies \frac{1}{x} = \frac{1}{y} \implies x = y$$

So, f: N \rightarrow R₀ is one-one.

We find that $\frac{2}{3}$, $\frac{3}{5}$ etc. in co-domain R₀ do not have their pre-image in domain N. So, f: N \rightarrow R₀ is not onto.

Thus, f: $N \rightarrow R_0$ is one-one but not onto.

OR

For $x_1, x_2 \in R$, consider

$$f(x_1) = f(x_2)$$

$$\Rightarrow \frac{x_1}{x_1^2 + 1} = \frac{x_2}{x_2^2 + 1}$$

$$\Rightarrow x_1 x_2^2 + x_1 = x_2 x_1^2 + x_2$$

$$\Rightarrow x_1 x_2 (x_2 - x_1) = x_2 - x_1$$

$$\Rightarrow x_1 = x_2 \text{ or } x_1 x_2 = 1$$

We note that there are point, x_1 and x_2 with $x_1 \neq x_2$ and $f(x_1) = f(x_2)$ for instance, if we take $x_1 = 2$ and $x_2 = \frac{1}{2}$, then we have $f(x_1) = \frac{2}{5}$ and $f(x_2) = \frac{2}{5}$ but $2 \neq \frac{1}{2}$. Hence f is not one-one. Also, f is not onto for if so then for $1 \in R \exists x \in R$ such that f(x) = 1 which gives $\frac{x}{x^2 + 1} = 1$. But there is no such x in the domain R, since the equation $x^2 - x + 1 = 0$ does not give any real value of x.

- 34. Here the equation of two planes are: $\vec{r} \cdot (\hat{i} \hat{j} + 2\hat{k}) = 5$ and $\vec{r} \cdot (3\hat{i} + \hat{j} + \hat{k}) = 6$. Since the line is parallel to the two planes.
 - $\therefore \text{ Direction of line } \vec{b} = (\hat{i} \hat{j} + 2\hat{k}) \times (3\hat{i} + \hat{j} + \hat{k})$ $= -3\hat{i} + 5\hat{j} + 4\hat{k}$
 - : Equation of required line is

$$r = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(-3\hat{i} + 5\hat{j} + 4\hat{k})$$
 (i)

Any point on line (i) is $(1 - 3\lambda, 2 + 5\lambda, 3 + 4\lambda)$

For this line to intersect the plane $\vec{r} \cdot (2\hat{i} + \hat{j} + \hat{k})$ we have

$$(1 - 3\lambda)2 + (2 + 5\lambda)1 + (3 + 4\lambda)1 = 4$$

 $\Rightarrow \lambda = 1$

OR

Here, it is given that

$$\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 4\hat{k})$$

$$\vec{r} = (4\hat{i} + \hat{j}) + \mu(5\hat{i} + 2\hat{j} + \hat{k})$$

$$a_1 = i + 2\hat{j} + 3\hat{k}$$

$$\vec{b}_1 = 2\hat{i} + 3\hat{j} + 4\hat{k}$$

$$\vec{a}_2 = 4\hat{i} + \hat{j}$$

$$\vec{b}_2 = 5\hat{i} + 2\hat{j} + \hat{k}$$

Thus,

$$\overrightarrow{b_1} \times \overrightarrow{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 5 & 2 & 1 \end{vmatrix}$$

Now, we have

Thus, the distance between the given lines is

$$d = \begin{vmatrix} \overrightarrow{b_1 \times b_2} & \xrightarrow{\longrightarrow} & \xrightarrow{\longrightarrow} \\ (b_1 \times b_2) \cdot (a_2 - a_1) \\ \xrightarrow{\longrightarrow} & \xrightarrow{|b_1 \times b_2|} \end{vmatrix}$$

$$\therefore d = \left| \frac{0}{\sqrt{470}} \right|$$

d = 0 units

As
$$d = 0$$

Thus, the given lines intersect each other.

Now, to find a point of intersection, let us convert given vector equations into Cartesian equations.

For that putting $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ in given equations,

$$\Rightarrow \vec{L}_1 : x\hat{i} + y\hat{j} + z\hat{k} = (i + 2j + 3\hat{k}) + \lambda(2i + 3\hat{j} + 4\hat{k})$$

$$\Rightarrow \vec{L}_2 : x\hat{i} + y\hat{j} + z\hat{k} = (4\hat{i} + \hat{j}) + \mu(5\hat{i} + 2\hat{j} + \hat{k})$$

$$\Rightarrow \vec{L}_1: (x-1)\hat{i} + (y-2)\hat{j} + (z-3)\hat{k} = 2\lambda\hat{i} + 3\lambda\hat{j} + 4\lambda\hat{k}$$

$$\Rightarrow \vec{L}_2: (x-4)\hat{i} + (y-1)\hat{j} + (z-0)\hat{k} = 5\mu\hat{i} + 2\mu\hat{j} + \mu\hat{k}$$

$$\Rightarrow \vec{L}_1: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} = \lambda$$

$$\therefore \vec{L}_2 : \frac{x-4}{5} = \frac{y-1}{2} = \frac{z-0}{1} = \mu$$

General point on L1 is

$$x_1 = 2\lambda + 1$$
, $y_1 = 3\lambda + 2$, $z_1 = 4\lambda + 3$

Suppose, $P(x_1, y_1, z_1)$ be point of intersection of two given lines.

Thus, point P satisfies the equation of line \vec{L}_2 .

$$\Rightarrow \frac{2\lambda + 1 - 4}{5} = \frac{3\lambda + 2 - 1}{2} = \frac{4\lambda + 3 - 0}{1}$$

$$\therefore \frac{2\lambda - 3}{5} = \frac{3\lambda + 1}{2}$$

$$\Rightarrow 4\lambda - 6 = 15\lambda + 5$$

$$\Rightarrow 11\lambda = -11$$

$$\Rightarrow \lambda = -1$$

Thus,
$$x_1 = 2(-1) + 1$$
, $y_1 = 3(-1) + 2$, $z_1 = 4(-1) + 3$

$$\Rightarrow x_1 = -1, y_1 = -1, z_1 = -1$$

Therefore, point of intersection of given lines is (-1, -1, -1).

35. Given:
$$x^y + y^x = 1$$

Let
$$y = x^y + y^x = 1$$

Let
$$u = x^y$$
 and $v = y^x$

Then,
$$u + v = 1$$

$$\Rightarrow \frac{du}{dx} + \frac{dv}{dx} = 0$$

For,
$$u = x^y$$

Taking log on both sides, we get

$$\log u = \log x^y$$

$$\Rightarrow \log u = y \cdot \log(x)$$

Now, differentiating both sides with respect to x

$$\frac{d}{dx}(logu) = \frac{d}{dx}[y \cdot log(x)]$$

$$\Rightarrow \frac{1}{u}\frac{du}{dx} = \left\{ y \cdot \frac{d}{dx}(\log x) + \log x \cdot \frac{d}{dx}(y) \right\}$$

$$\Rightarrow \frac{du}{dx} = u \left[y \cdot \frac{1}{x} + \log x \cdot \left(\frac{dy}{dx} \right) \right]$$

$$\Rightarrow \frac{du}{dx} = x^y \left[\frac{y}{x} + \log x \cdot \left(\frac{dy}{dx} \right) \right]$$

For
$$v = y^X$$

Taking log on both sides, we get

$$\log v = \log y^X$$

$$\Rightarrow \log v = x \cdot \log(y)$$

Now, differentiate both sides with respect to x

$$\frac{d}{dx}(\log v) = \frac{d}{dx}[x \cdot \log(y)]$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = \left\{ x \cdot \frac{d}{dx} (\log y) + \log y \cdot \frac{d}{dx} x \right\}$$

$$\Rightarrow \frac{dv}{dx} = v \left[x \cdot \frac{1}{y} \cdot \frac{dy}{dx} + \log y \cdot \left(\frac{dx}{dx} \right) \right]$$

$$\Rightarrow \frac{dv}{dx} = y^{x} \left[\frac{x}{y} \cdot \frac{dy}{dx} + \log y \right]$$
because,
$$\frac{du}{dx} + \frac{dv}{dx} = 0$$
So,
$$x^{y} \left[\frac{y}{x} + \log x \cdot \left(\frac{dy}{dx} \right) \right] + y^{x} \left[\frac{x}{y} \cdot \frac{dy}{dx} + \log y \right] = 0$$

$$\Rightarrow \left(x^{y} \log x + xy^{x-1} \right) \cdot \frac{dy}{dx} + \left(yx^{y-1} + y^{x} \log y \right) = 0$$

$$\Rightarrow \left(x^{y} \log x + xy^{x-1} \right) \cdot \frac{dy}{dx} = -\left(yx^{y-1} + y^{x} \log y \right)$$

$$\frac{dy}{dx} = -\frac{\left(yx^{y-1} + y^{x} \log y \right)}{\left(x^{y} \log x + xy^{x-1} \right)}$$

Section E

36. Read the text carefully and answer the questions:

On the request of villagers, a construction agency designs a tank with the help of an architect. Tank consists of a rectangular base with rectangular sides, open at the top so that its depth is 2 m and volume is 8 m³ as shown below. The construction of the tank costs ₹70 per sq. metre for the base and ₹45 per square metre for sides.

(i) Since 'C' is cost of making tank

$$\therefore$$
 C = 70xy + 45 \times 2(2x + 2y)

$$\Rightarrow C = 70xy + 90(2x + 2y)$$

$$\Rightarrow C = 70xy + 180(x + y) \left[\because 2 \cdot x \cdot y = 8 \Rightarrow y = \frac{8}{2x} \Rightarrow y = \frac{4}{x} \right]$$

$$\Rightarrow$$
 C = 70x $\times \frac{4}{x} + 180\left(x + \frac{4}{x}\right)$

$$\Rightarrow$$
 C = 280 + 180 $\left(x + \frac{4}{x}\right)$

(ii)
$$x \cdot y = 4$$

Volume of tank = length \times breadth \times height (Depth)

$$8 = x \cdot y \cdot 2$$

$$\Rightarrow 2xy = 8 \Rightarrow xy = 4$$

(iii)For maximum or minimum

$$\frac{dC}{dx} = 0$$

$$\frac{d}{dx}(280 + 180(x + \frac{4}{x})) = 0 \implies 180\left(1 + 4\left(-\frac{1}{x^2}\right)\right) = 0$$

$$\Rightarrow 180\left(1 - \frac{4}{x^2}\right) = 0 \Rightarrow 1 - \frac{4}{x^2} = 0$$

$$\Rightarrow \frac{4}{x^2} = 1 \Rightarrow x^2 = 4$$

$$\Rightarrow x = \pm 2$$

 \Rightarrow x = 2 (length can never be negative)

OR

Now,
$$\frac{d^2C}{dx^2} = 180 \left(+\frac{8}{x^3} \right)$$

$$\Rightarrow \frac{d^2C}{dx^2}\bigg|_{x=2} = 180 \times \frac{8}{8} = 180 = +ve$$

Hence, to minimize C, x = 2m

37. Read the text carefully and answer the questions:

Three car dealers, say A, B and C, deals in three types of cars, namely Hatchback cars, Sedan cars, SUV cars. The sales figure of 2019 and 2020 showed that dealer A sold 120 Hatchback, 50 Sedan, 10 SUV cars in 2019 and 300 Hatchback, 150 Sedan, 20 SUV cars in 2020; dealer B sold 100 Hatchback, 30 Sedan, 5 SUV cars in 2019 and 200 Hatchback, 50 Sedan, 6 SUV cars in 2020; dealer C sold 90 Hatchback, 40 Sedan, 2 SUV cars in 2019 and 100 Hatchback, 60 Sedan, 5 SUV cars in 2020.

$$\begin{array}{ccccc}
A & & & 120 & 50 & 10 \\
B & & 100 & 30 & 5 \\
C & & 90 & 40 & 2
\end{array}$$

In 2019, dealer A sold 120 Hatchbacks, 50 Sedans and 10 SUV; dealer B sold 100 Hatchbacks, 30 Sedans and 5 SUVs and dealer C sold 90 Hatchbacks, 40 Sedans and 2 SUVs.

∴ Required matrix, say P, is given by Hatchback Sedan SUV

$$P = B \\ C \begin{bmatrix} 120 & 50 & 10 \\ 100 & 30 & 5 \\ 90 & 40 & 2 \end{bmatrix}$$

In 2020, dealer A sold 300 Hatchbacks, 150 Sedans, 20 SUVs dealer B sold 200 Hatchbacks, 50 sedans, 6 SUVs dealer C sold 100 Hatchbacks, 60 sedans, 5 SUVs.

∴ Required matrix, say Q, is given by Hatchback Sedan SUV

$$Q = B \\ C \begin{bmatrix} 300 & 150 & 20 \\ 200 & 50 & 6 \\ 100 & 60 & 5 \end{bmatrix}$$

(ii) Hatchback Sedan SUV

In 2020, dealer A sold 300 Hatchback, 150 Sedan, 20 SUV dealer B sold 200 Hatchback, 50 sedan, 6 SUV dealer C sold 100 Hatchback, 60 sedan, 5 SUV.

∴ Required matrix, say Q, is given by Hatchback Sedan SUV

$$Q = \begin{bmatrix} A & 300 & 150 & 20 \\ 200 & 50 & 6 \\ 100 & 60 & 5 \end{bmatrix}$$

(iii)Total number of cars sold in two given years, by each dealer, is given by Hatchback Sedan SUV

$$P + Q = \begin{bmatrix} A & 120 + 300 & 50 + 150 & 10 + 20 \\ 100 + 200 & 30 + 50 & 5 + 6 \\ C & 90 + 100 & 40 + 60 & 2 + 5 \end{bmatrix}$$

Hatchback Sedan SUV

$$\begin{bmatrix} A \\ = B \\ C \end{bmatrix} \begin{bmatrix} 420 & 200 & 30 \\ 300 & 80 & 11 \\ 190 & 100 & 7 \end{bmatrix}$$

OR

The amount of profit in 2020 received by each dealer is given by the matrix Hatchback Sedan SUV

$$A = B \begin{bmatrix} 15000000 + 15000000 + 4000000 \\ 10000000 + 5000000 + 1200000 \\ 5000000 + 6000000 + 1000000 \end{bmatrix}$$

$$\begin{array}{c}
A \\
= B \\
C \\
\end{array} \begin{bmatrix}
34000000 \\
16200000 \\
12000000
\end{array}$$

38. Read the text carefully and answer the questions:

To teach the application of probability a maths teacher arranged a surprise game for 5 of his students namely Govind, Girish, Vinod, Abhishek and Ankit. He took a bowl containing tickets numbered 1 to 50 and told the students go one by one and draw two tickets simultaneously from the bowl and replace it after noting the numbers.

(i) Required probability = P(one ticket with prime number and other ticket with a multiple of 4)

$$=2\left(\frac{15}{50}\times\frac{12}{49}\right)=\frac{36}{245}$$

(ii) P(First ticket shows an even number and second ticket shows an odd number)

$$=\frac{25}{50}\times\frac{25}{49}=\frac{25}{98}$$