Progressions and Series

Tip 1

- Progressions and Series is one of the important topics for CAT and significant number of questions appear in the examination from this section every year.
- Some of the questions from this section can be very tough and time consuming while the others can be very easy.
- The trick to ace this section is to quickly figure out whether a question is solvable or not and not waste time on very difficult questions.

- Some of the questions in this section can be answered by ruling out wrong choices among the options available. This method will both save time and improve accuracy.
- There are many shortcuts which will be of vital importance in answering this section.
- This formula sheet contains an exhaustive list of various formulas and shortcuts.

There are 3 standard types of progressions

- Arithmetic Progression
- Geometric Progression
- Harmonic Progression

Arithmetic progression (A.P)

- If the sum or difference between any two consecutive terms is constant then the terms are said to be in A.P (Example: 2,5,8,11 or a, a+d, a+2d, a+3d...)
- If 'a' is the first term and 'd' is the common difference then the general 'n' term is $T_n = a + (n-1)d$

• Sum of first 'n' terms in A.P =
$$\frac{n}{2}$$
 [2a+(n-1)d]

• Number of terms in A.P =
$$\frac{\text{Last term} - \text{First term}}{\text{Common difference}} + 1$$

• Sum of all terms of an
$$A.P = \frac{n}{2}[First term + Last term]$$

Properties of A.P

If a, b, c, d,.... are in A.P and 'k' is a constant then

- a-k, b-k, c-k,... will also be in A.P
- ak, bk, ck,...will also be in A.P
- a/k, b/k, c/k will also be in A.P

Geometric Progression

- If in a succession of numbers the ratio of any term and the previous term is constant then that numbers are said to be in Geometric Progression.
- Ex :1, 3, 9, 27 or a, ar, ar², ar³
- The general expression of an G.P, T_n = arⁿ⁻¹(where a is the first terms and 'r' is the common ratio)

• Sum of 'n' terms in G.P, Sn =
$$\frac{a(1-r^n)}{1-r}$$
 (If r<1) or $\frac{a(r^n-1)}{r-1}$ (If r>1)

Properties of G.P

If a, b, c, d,.... are in G.P and 'k' is a constant then

- 1. ak, bk, ck,...will also be in G.P
- 2. a/k, b/k, c/k will also be in G.P

Sum of term of infinite series in G.P, $S_{\infty} = \frac{a}{1-r}$ (-1 < r <1)

Harmonic Progression

- If a, b, c, d,.....are unequal numbers then they are said to be in H.P if 1/a, 1/b, 1/c,....are in A.P
- The 'n' term in H.P is 1/(nth term in A.P)

Properties of H.P :

If a, b, c, d,...are in H.P, then

a+d > b+c

Arithmetic Geometric Series

- A series will be in arithmetic geometricseries if each of its term is formed by product of the corresponding terms of an A.P and G.P.
- The general form of A.G.P series is a, (a+d)r, (a+2d)r²,
- Sum of 'n' terms of A.G.P series

$$S_n = \frac{a - [a + (n-1)d]r^n}{1 - r} + \frac{dr(1 - r^{n-1})}{(1 - r)^2} (r \neq 1)$$

• Sum of infinite terms of A.G.P series

$$S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2} (|r| < 1)$$

Standard Series

- The sum of first 'n' natural numbers $=\frac{n(n+1)}{2}$
- The sum of squares of first 'n' natural numbers = $\frac{n(n+1)(2n+1)}{6}$
- The sum of cubes of first 'n' natural numbers = $\left\{\frac{n(n+1)}{2}\right\}^2$
- The sum of first 'n' odd natural numbers $= n^2$
- The sum of first 'n' even natural numbers = n(n+1)
- In any series, if the sum of first n terms is given by S_n , then the n^{th} term $T_n = S_n - S_{n-1}$

Arithmetic mean

- The arithmetic mean = $\frac{\text{Sum of all the terms}}{\text{Number of Terms}}$
- If two number A and B are in A.P then arithmetic mean = $\frac{a+b}{2}$

Arithmetic mean

- Inserting 'n' means between two numbers a and b
- The total terms will become n+2, a is the first term and b is the last term
- Then the common difference $d = \frac{b-a}{n+1}$
- The last term b = a+(n+1)d
- The final series is a, a+d, a+2d,....

Geometric Mean

- If a, b, c,... n terms are in G.P then G.M = $\sqrt[n]{a \times b \times c \times \cdots n}$ terms
- If two numbers a, b are in G.P then their $G.M = \sqrt{a \times b}$

Geometric Mean

- Inserting 'n' means between two quantities a and b with common ration 'r'
- Then the number of terms are n+2 and a, b are the first and last terms

•
$$r^{n+1} = \frac{b}{a}$$
 or $r = \frac{n+1\sqrt{b}}{a}$

• The final series is a, ar, ar²,...

Harmonic Mean

- If a, b, c, d,.. are the given numbers in H.P then the Harmonic mean of 'n' terms = $\frac{\text{Number of terms}}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \cdots}$
- If two numbers a and b are in H.P then the Harmonic mean = $\frac{2ab}{a+b}$

Relationship between AM, GM and HM for two numbers a and b,

$$AM = \frac{a+b}{2}$$
$$G.M = \sqrt{a \times b}$$
$$H.M = \frac{2ab}{a+b}$$

- G.M = $\sqrt{AM \times HM}$
- $A.M \ge G.M \ge H.M$