Type 2: Signal Flow Graph and Block Diagram Algebra

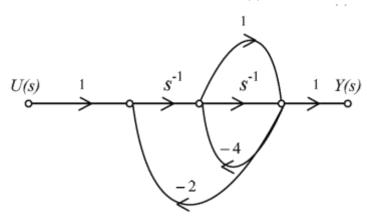
For Concept, refer to Control Systems K-Notes, Signal Flow Graphs

Common Mistakes:

If two touching loops have been counted individually then they must not be counted as part of a single loop again.

The input to a signal flow graph cannot be connected to any loops it should have only one outgoing branch. If no such input is given we have to assume a hypothetical input. (Refer Q.5)

Sample Problem 2:


The signal flow graph for a system is given below. The transfer function $\frac{Y(s)}{U(s)}$ for this system is

(A)
$$\frac{s+1}{5s^2+6s+2}$$

(B)
$$\frac{s+1}{s^2+6s+2}$$

(C)
$$\frac{s+1}{s^2+4s+2}$$

(D)
$$\frac{1}{5s^2+6s+2}$$

Solution: (A) is correct option

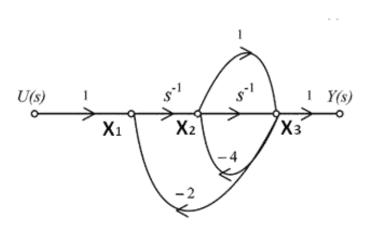
Forward paths

$$P_1=U-X_1-X_2-X_3-Y=S^{-2}$$

$$P_2=U-X_1-X_2-X_3-Y=S^{-1}$$

Loops:

$$L_1=X_1-X_2-X_3-X_1=-2S^{-2}$$


$$L_2=X_1-X_2-X_3-X_1=-2S^{-1}$$

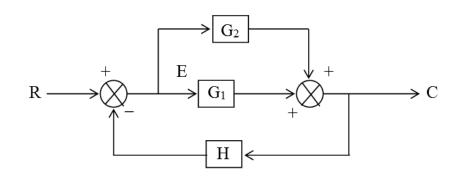
$$L_3 = X_2 - X_3 - X_2 = -4S^{-2}$$

$$L_4 = X_2 - X_3 - X_2 = -4$$

$$\Delta_1$$
=1, Δ_2 =1

T.F. =
$$\frac{s^{-2} + s^{-1}}{1 - (-2s^{-2} - 2s^{-1} - 4s^{-1} - 4)}$$
$$= \frac{s + 1}{5s^2 + 6s + 2}$$

Unsolved Problems:

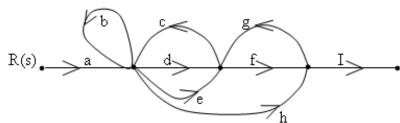

Q.1 The transfer function relating E and R for the block diagram given below is

(A)
$$\frac{1}{1+(G_1+G_2)H}$$

(B)
$$\frac{1}{1+G_1G_2H}$$

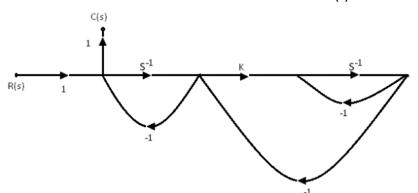
(C)
$$\frac{G_1G_2}{1+(G_1+G_2)}$$

(D)
$$\frac{G_1G_2}{1+G_1G_2H}$$



Q.2 The number of forward paths and the number of non-touching loop pairs for the signal flow graph given in the figure are, respectively,

(D) 2, 4


Q.3 Fig shows the signal flow graph of the system. Find the transfer function $\frac{C(s)}{R(s)} = ?$

(A)
$$\frac{K+1}{s^2+(K+1)s+1}$$

(B)
$$\frac{s(K+1)}{s^2+(K+2)s+1}$$

(C)
$$\frac{s}{s^2 + (K+1)s + 1}$$

(D)
$$\frac{s(K+1)}{s^2+2s+1}$$

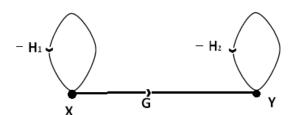
Q.4 Three blocks G_1 , G_2 & G_3 are connected in some fashion such that overall transfer function is $\frac{G_1+G_3(1+G_1G_2)}{1+G_1G_2}$. The blocks are connected in the following manner

(A) G_1 , G_2 with negative feedback and combination in parallel with G_3

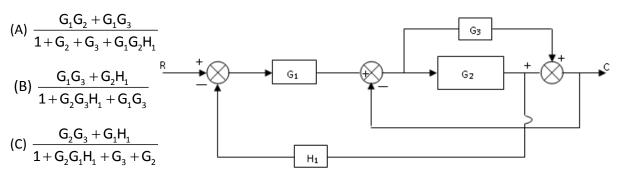
(B) G_1 , G_3 with negative feedback and G_2 in parallel

(C) G_1 , G_2 in cascade & combination in parallel with G_3

(D) $G_1,\,G_3$ in cascade & combination in parallel with G_2


Q.5 find Y/X

(A)
$$\frac{G}{1 + H_1}$$


(B)
$$\frac{GH_2}{1+H_1}$$

(C)
$$\frac{\mathsf{G}}{1+\mathsf{H}_2}$$

(D)
$$\frac{GH_{1}}{1+H_{2}}$$

Q.6 The overall transfer function relating C and R for the system whose block diagram as shown in figure is

$$\text{(D)} \ \frac{\mathsf{G_1}\mathsf{G_3} + \mathsf{G_3}\mathsf{H_1}}{1 + \mathsf{G_2}\mathsf{G_1}\mathsf{H_1} + \mathsf{G_3} + \mathsf{G_2}}$$