Que 1. In Fig. 7.58, $\triangle FEC \cong \triangle GDB$ and $\angle 1 = \angle 2$. Prove that $\triangle ADE \sim \triangle ABC$.

Fig 7.58 **Sol.** Since $\Delta FEC \cong \Delta GDB$ EC = BD⇒(i) It is given that $\angle 1 = \angle 2$ AE = AD[Sides opposite to equal \Rightarrow angles are equal](ii) From (i) and (ii), we have $\frac{AE}{EC} = \frac{AD}{BD}$ DE||BC [By the converse of basic proportionality theorem] \Rightarrow $\angle 1 = \angle 3$ and $\angle 2 = \angle 4$ [Corresponding angles] ⇒ Thus, in Δ' *s ADE and ABC*, we have $\angle A = \angle A$ [Common] $\angle 1 = \angle 3$ $\angle 2 = \angle 4$ [Proved above] So, by AAA criterion of similarity, we have

 $\Delta ADE \sim \Delta ABC$

Que 2. Sides AB and AC and median AD of a triangle ABC are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that $\triangle ABC \sim \triangle PQR$.

Sol. Given: In $\triangle ABC$ and $\triangle PQR$, AD and PM are their medians respectively

Such that
$$\frac{AB}{PQ} = \frac{AD}{PM} = \frac{AC}{PR}$$
 ...(i)

To prove: $\triangle ABC \sim \triangle PQR$

Construction: Produce AD to E such that AD = DE and produce PM to N such that PM = MN.

Join BE, CE, QN, RN.

Proof: Quadrilateral ABEC and PQNR are ||^{gm} because their diagonals bisect each other

Que 3. In Fig. 7.60, P is the mid-point of BC and Q is the mid-point of AP. If BQ when produced meets AC at R, prove that RA = $\frac{1}{3}CA$.

Sol. Given: In $\triangle ABC$, P is the mid-point of BC, Q is the mid-point of AP such that BQ produced meets AC at R.

To prove: RA = $\frac{1}{3}CA$.

Construction: Draw PS||BR, meeting AC at S. **Proof:** In $\triangle BCR$, *P* is the mid-point of BC and PS||BR. S is the mid-point of CR. ... CS = SR⇒(i) In $\triangle APS$, Q is the mid-point of AP and QR||PS. R is the mid-point of AS. ... AR = RS⇒(ii) From (i) and (ii), we get AR = RS = SC $AC = AR + RS + SC = 3 AR \implies AR = \frac{1}{3}AC = \frac{1}{3}CA$ ⇒

Que 4. In Fig. 7.61, ABC and DBC are two triangles on the same base BC. If AD intersects BC at O, show that $\frac{ar(\Delta ABC)}{ar(\Delta DBC)} = \frac{AO}{DO}$.

Fig. 7.61

Sol. Given: Two triangles $\triangle ABC$ and $\triangle DBC$ which stand on the same base but on opposite sides of BC.

To Prove: $\frac{ar(\Delta ABC)}{ar(\Delta DBC)} = \frac{AO}{DO}$

Construction: We draw AE \perp BC and DF \perp BC. **Proof:** In $\triangle AOE$ and $\triangle DOF$, we have

Que 5. Two poles of height a metres and b metres are p metres apart. Prove that the height of the point of intersection of the lines joining the top of each pole to the foot of the opposite pole is given by $\frac{ab}{a+b}$ metres.

Sol. Let AB and CD be two poles of height a and b metres respectively such that the poles are p metres apart i.e., AC = p metres. Suppose the lines AD and BC meet at O such that

OL = h metres. Let CL = x and LA = y. Then, x + y = p. In $\triangle ABC$ and $\triangle LOC$, we have $\angle CAB = \angle CLO$ [Each equal to 90°]

. .	$\angle C = \angle C$ $\Delta ABC \sim \Delta LOC$	[Common] [By AA criterion of similarity]
\Rightarrow	$\frac{CA}{CL} = \frac{AB}{LO} \qquad \Rightarrow \qquad$	$\frac{P}{x} = \frac{a}{h}$
⇒	$x = \frac{ph}{a}$	(i)
In ΔALO and ΔACD , we have		
	$\angle ALO = \angle ACD$	[Each equal to 90°]
	$\angle A = \angle A$	[Common]
	$\Delta ALO \sim \Delta ACD$	[By AA criterion of similarity]
⇒	$\frac{AL}{AC} = \frac{OL}{DC}$	$\Rightarrow \qquad \frac{y}{p} = \frac{h}{b}$
⇒	$y = \frac{ph}{b}$	(ii)
From (i) and (ii), we have		

 $\begin{aligned} x+y &= \frac{ph}{a} + \frac{ph}{b} \implies p = ph\left(\frac{1}{a} + \frac{1}{b}\right) \quad [\because x+y = p] \\ \Rightarrow & 1 = h\left(\frac{a+b}{ab}\right) \implies h = \frac{ab}{a+b} \text{ metres.} \end{aligned}$

Hence, the height of the intersection of the lines joining the top of each pole to the foot of the opposite pole is $\frac{ab}{a+b}$ metres.