CBSE Test Paper 01

CH-09 Sequences and Series

- 1. the ratio of first to the last of n A.m.'s between 5 and 35 is 1:4. The value of n is
 - a. 9
 - b. 11
 - c. 10
 - d. 19
- 2. All the terms in A.P., whose first term is a and common difference d are squared. A different series is thus formed. This series is a
 - a. H.P.
 - b. G.P.
 - c. A.P.
 - d. none of these
- 3. If A, G, H denote respectively the A.M., G.M. and H.M. between two unequal positive numbers, then
 - a. A = GH
 - b. $A^2=GH$
 - c. $A=G^2H$
 - ${\rm d.} \ \ G^2=HA$
- 4. The next term of the sequence 1, 1, 2, 4, 7, 13,.... Is
 - a. 21
 - b. 24

- c. none of these
- d. 19
- 5. The sum of all non-reducible fractions with the denominator 3 lying between the numbers 5 and 8 is
 - a. 31
 - b. 52
 - c. 41
 - d. 39
- 6. Fill in the blanks:

The general term or n^{th} term of G.P. is given by $a_n = \underline{\hspace{1cm}}$.

7. Fill in the blanks:

The third term of a G.P. is 4, the product of the first five terms is _____.

- 8. Find the sum of first n terms and the sum of first 5 terms of the geometric series $1+rac{2}{3}+rac{4}{9}+---$
- 9. Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
- 10. Find the sum of 20 terms of an AP, whose first term is 3 and last term is 57.
- 11. Find the sum to n terms of the sequence: $\log a$, $\log ar$, $\log ar^2$, ...
- 12. The n^{th} term of an AP is 4n + 1. Write down the first four terms and the 18^{th} term of an AP.
- 13. Find the sum to n terms in each of the series $\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots$
- 14. Find the sum to n terms in each of the series $5^2 + 6^2 + 7^2 + \dots + 20^2$
- 15. If a and b are the roots x^2 3x + p = 0 and c, d are roots of x^2 12x + q = 0 where a, b, c, d form a G.P. Prove that (q + p):(q p) = 17:15.

CBSE Test Paper 01

CH-09 Sequences and Series

Solution

1. (a) 9

Explanation:

the sequence is $5, A_1, A_2, \ldots, A_n, 35$

here a=5 and b=35

we know that,
$$d = \frac{b-a}{n+1} = \frac{35-5}{n+1} = \frac{30}{n+1}$$

According to question,

$$egin{align} rac{A_1}{A_n} &= rac{1}{4} \ \Rightarrow rac{a+d}{a+nd} &= rac{1}{4} \ \Rightarrow 4a+4d=a+nd \ \Rightarrow 3a &= d(n-4) \ \Rightarrow 3 imes 5 &= \left(rac{30}{n+1}
ight)(n-4) \ \Rightarrow (n+1) &= 2(n-4) \ \Rightarrow n+1 &= 2n-8 \ \Rightarrow n=9 \ \end{aligned}$$

2. (d) none of these

Explanation: the series obtained will not follow rules of AP, GP and HP

3. (d)
$$G^2 = HA$$

Explanation:

Given the numbers are a and b, then we have

$$A\cdot M=A=rac{a+b}{2},G\cdot M=G=\sqrt{ab}\ ext{ and } H\cdot M=H=rac{2ab}{a+b}$$
 Now $AH=\left(rac{a+b}{2}
ight)\left(rac{2ab}{a+b}
ight)=ab=(\sqrt{ab})^2=G^2$

4. (b) 24

Explanation:

The given sequence can be expressed as $T_1=T_2=1\,$

$$T_n = T_{n-1} + T_{n-2} + T_{n-3}, n \geq 3$$
: $T_7 = T_6 + T_5 + T_4 = 13 + 7 + 4 = 24$

5. (d) 39

Explanation:

We have
$$5 = \frac{15}{3}$$
 and $8 = \frac{24}{3}$

Hence the fractions between5 and 8 with 3 as denominator will be

$$\frac{16}{3},\frac{17}{3},\frac{18}{3},\frac{19}{3},\frac{20}{3},\frac{21}{3},\frac{22}{3} \text{ and } \frac{23}{3} \text{ in this only } 6=\frac{18}{3} \text{ and } 7=\frac{21}{3} \text{ are reducible Now } \frac{16}{3},\frac{17}{3},\frac{18}{3},\frac{19}{3},\frac{20}{3},\frac{21}{3},\frac{22}{3} \text{ and } \frac{23}{3} \text{ is an A.P with first term a} = \frac{16}{3} \text{ and } d=\frac{1}{3}$$
 Hence Sum = $\frac{n}{2}(a+l)=\frac{8}{2}\Big(\frac{16}{3}+\frac{23}{3}\Big)=4(13)=52$

Hence the sum of non redubile fractions = 52-(6+7)=52-13=39

8.
$$a = 1, r = \frac{2}{3}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$= \frac{1\left[1-\left(\frac{2}{3}\right)^n\right]}{1-\frac{2}{3}}$$

$$= 3\left[1-\left(\frac{2}{3}\right)^n\right]$$

$$S_5 = 3\left[1-\left(\frac{2}{3}\right)^5\right] = \frac{211}{81}$$

9. Let a be the first term of given G.P. Here r = 2 and $a_8 = 192$

10. We have, a = 3, l = 57 and n = 20

:
$$S_n = \frac{n}{2} [a + 1]$$

: $S_{20} = \frac{20}{2} [3 + 57]$

$$= 10 \times 60$$

11. We have sequence $\log a$, $\log ar$, $\log ar^2$, ...

Above sequence can be expressed as log a, (log a + log r), (log a + 2 log r), ...

[: $\log mn = \log m + \log n$ and $\log n^r = r \log n$]

which is clearly an AP with, a = log a and d = log r

We know that, sum of n terms,

$$S_n = \frac{n}{2} [2a + (n - 1)d]$$

:.
$$S_n = \frac{n}{2} [2 \log a + (n - 1) \log r]$$

$$= \frac{n}{2} [\log a^2 + \log r^{n-1}] [\because x \log a = \log a^x]$$

$$= \frac{n}{2} \left[\log a^2 r^{n-1} \right] \left[\because \log a + \log b = \log ab \right]$$

12. Here,
$$T_n = 4n + 1 ...(i)$$

On putting n = 1, 2, 3, 4 in Eq. (i), we get

$$T_1 = 4(1) + 1 = 4 + 1 = 5$$

$$T_2 = 4(2) + 1 = 8 + 1 = 9$$

$$T_3 = 4(3) + 1 = 12 + 1 = 13$$

and
$$T_4 = 4(4) + 1 = 16 + 1 = 17$$

On putting n = 18 in Eq. (i), we get

$$T_{18} = 4(18) + 1 = 72 + 1 = 73$$

Hence, the first four terms of an AP are 5, 9, 13, 17 and 18th term is 73.

13. Given: $\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots$ to n terms

$$\therefore a_n = rac{1}{(n^{th} \, term \, of \, 1, 2, 3,)(n^{th} term \, of \, 2, 3, 4,)}$$

$$= \frac{1}{[1+(n-1)\times 1][2+(n-1)\times 1]}$$

Let
$$\frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1}$$
 [By partial fraction]

Then 1=A(n+1) + Bn

Put n=0 then A=1

Put n=-1 then B=-1

$$\therefore \frac{1}{n(n+1)} = \frac{1}{n} + \frac{-1}{n+1}$$

$$\therefore a_1 = \frac{1}{1} - \frac{1}{2}a_2 = \frac{1}{2} - \frac{1}{3}a_3 = \frac{1}{3} - \frac{1}{4} \dots$$

And
$$S_n = a_1 + a_2 + a_3 + \dots + a_n$$

$$=\frac{1}{1}-\frac{1}{n+1}=\frac{n}{n+1}$$

14. Given:
$$5^2 + 6^2 + 7^2 + \dots + 20^2$$

$$= (1^2 + 2^2 + 3^2 + \dots + 20^2) - (1^2 + 2^2 + 3^2 + 4^2)$$

$$\sum_{n=1}^{20} n^2 - \sum_{n=1}^{4} n^2$$

$$= \frac{20(20+1)(40+1)}{6} - \frac{4(4+1)(8+1)}{6}$$

$$= \frac{20 \times 21 \times 41}{6} - \frac{20 \times 9}{6}$$

$$= \frac{20}{6}(861 - 9) = 2840$$

15. Let
$$\frac{b}{a} = \frac{c}{b} = \frac{d}{c} = k$$

$$\therefore \frac{b}{a} = k$$

$$\Rightarrow$$
 b = ak And $rac{c}{b}=k$

$$\Rightarrow$$
 c = bk = (ak)k = ak²

Also
$$\frac{d}{c} = k$$

$$\Rightarrow$$
 d = ck = (ak²)k = ak³

:
$$aa$$
 and bb are the roots $x^2 - 3x + p = 0$

$$\therefore a + b = \frac{-(-3)}{1} = 3$$

$$\Rightarrow$$
 a + ak = 3

$$\Rightarrow$$
 a(1 + k) = 3(i)

And
$$ab=rac{p}{1}$$

$$\Rightarrow$$
 a(ak) = p

$$\Rightarrow$$
 $a^2k = p(ii)$

Also c, d are roots of x^2 - 12x + q = 0

$$\therefore \quad c+d=\tfrac{-(-12)}{1}=12$$

$$\Rightarrow$$
 ak² + ak³ = 12

$$\Rightarrow$$
 ak²(1 + k) = 12(iii)

And
$$cd=rac{q}{1}$$

$$\Rightarrow$$
 ak²(ak³) = q

$$\Rightarrow$$
 a²k⁵ = q(iv)

Dividing eq. (iii) by eq. (i), $\frac{ak^2(1+k)}{a(1+k)}=\frac{12}{3}$

$$\Rightarrow$$
 k² = 4

$$\Rightarrow k=\pm 2$$

Now
$$\frac{q+p}{q-p}=rac{a^2k^5+a^2k}{a^2k^5-a^2k}=rac{a^2k(k^4+1)}{a^2k(k^4-1)}$$

$$= \frac{(\pm 2)^4 + 1}{(\pm 2)^4 - 1} = \frac{16 + 1}{16 - 1} = \frac{17}{15}$$

Therefore, (q + p):(q - p) = 17:15