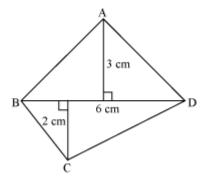
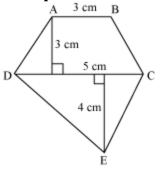

• Area and perimeter of various shapes:

Shape	Area	Perimeter
Rectangle with adjacent sides <i>a</i> and <i>b</i>	a × b	2(a + b)
Square with side <i>a</i>	a^2 πr^2	4a 2πr
Circle with radius r	$\frac{1}{2} \times b \times h$	Sum of the three sides
Triangle with base <i>b</i> and its corresponding height <i>h</i>	b × h	Sum of the four sides
Parallelogram with base <i>b</i> and its corresponding height <i>h</i>		


Area of trapezium = $\frac{1}{2}$ (Sum of the lengths of the parallel sides) × (Perpendicular distance between them)

• Area of quadrilateral ABCD = Area of \triangle ABC + Area of \triangle ACD

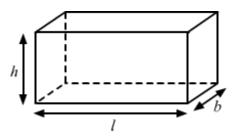
 $= 12 \times d \times h1 + 12 \times d \times h2 = 12 \times d \times h1 + h2$


Example: Find the area of the quadrilateral ABCD.

Solution: Area of the quadrilateral ABCD = Area of $\triangle ABD$ + Area of $\triangle BCD$ Area of triangle =12 × base × corresponding height Area of $\triangle ABD = \frac{1}{2} \times 6 \text{cm} \times 3 \text{cm} = 9 \text{cm}^2$ Area of $\triangle BCD = \frac{1}{2} \times 6 \text{cm} \times 2 \text{cm} = 6 \text{cm}^2$ \therefore Area of quadrilateral ABCD = 9 cm² + 6 cm² = 15 cm²

- Area of rhombus $=\frac{1}{2}$ (Product of its diagonals)
- Area of a polygon can be calculated by breaking the polygon into triangles or any types of a quadrilateral.

Example: Find the area of the given polygon, where ABCD is a trapezium.

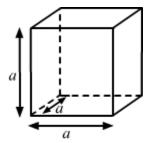

Solution: Area of ABCED = Area of trapezium ABCD + Area of \triangle CDE

=12×3+5×3 + 12×5×4

= 12 + 10

 $= 22 \text{ cm}^2$

• Surface areas of cuboid:

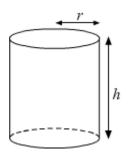

Lateral surface area of the cuboid = 2h (l + b)Total surface area of the cuboid = 2 (lb + bh + hl)

Note: Length of the diagonal of a cuboid = $\sqrt{l^2 + b^2 + h^2}$

Example: Find the edge of a cube whose surface area is 294 m².

Solution: Let the edge of the given cube be *a*. \therefore Surface area of the cube = $6a^2$ Given, $6a^2 = 294$ $\Rightarrow a^2 = 49 \text{ m}^2$ $\therefore a = \sqrt{49} \text{ m} = 7 \text{ m}$

• Surface areas of cube:

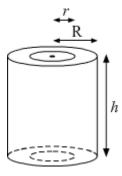

Lateral surface area of the cube = $4a^2$ Total surface area of the cube = $6a^2$

Note: Length of the diagonal of a cube = $\sqrt{a^2 + a^2 + a^2} = \sqrt{3a^2} = \sqrt{3}a$

• Surface areas of solid cylinder

• Curved surface area = $2\pi rh$, where *r* and *h* are the radius and height

• Total surface area = $2\pi r (r + h)$, where *r* and *h* are the radius and height

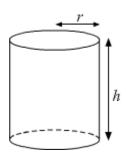


Example : What is the curved surface area of a cylinder of radius 2 cm and height 14 cm?

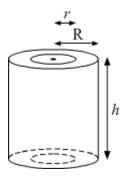
Solution: Curved surface area of cylinder = $2\pi rh$ = $2 \times \frac{22}{7} \times 2 \times 14$ cm² = 176 cm²

- Surface areas of hollow cylinder
- Curved surface area = $2\pi h (r + R)$, where *r*, *R* and h are the inner radius, outer radius and height
- Total surface area = CSA of outer cylinder + CSA of inner cylinder + 2 × Area of base

= $2\pi (r + R) (h + R - r)$, where r, R and h are the inner radius, outer radius and height


- Volume of cube and cuboid
- Volume of cube = a^3 , where *a* is the side of the cube
- Volume of cuboid = *l* × *b* × *h*, where *l*, *b* and *h* are respectively the length, breadth and height of the cuboid.

Example: What is the side of a cube of volume 512 cm³?


Solution: Volume of cube = 512 cm³

$$\Rightarrow a^{3} = 512 \text{ cm}^{3}$$
$$\Rightarrow a = \sqrt[3]{512} \text{ cm}^{3}$$
$$\Rightarrow a = 8 \text{ cm}$$

- Volume of the solid cylinder and hollow cylinder
- Volume of solid cylinder = $\pi r^2 h$, where *r* and *h* are the radius and height of the solid cylinder

• Volume of the hollow cylinder = $\pi (R^2 - r^2) h$, where r, R and h are the inner radius, outer radius and height of hollow cylinder

Example: Find the volume of the pillar of radius 70 cm and height 10 m.

Solution: Radius of the pillar (*r*) = 70 cm = $\frac{70 \text{ m}}{100}$ = 0.7 m

Height of the pillar (h) = 10 m

Volume of the pillar
$$=\pi r^2 h$$

 $=\frac{22}{7} \times (0.7)^2 \times 10 \text{ m}^3$
 $= 15.4 \text{ m}^3$