BINOMIAL THEOREM & MATHEMATICAL INDUCTION

BINOMIAL THEOREM

If $a, b \in R$ and $n \in N$, then

$$(a+b)^n = {}^{n}C_0 a^n b^0 + {}^{n}C_1 a^{n-1} b^1 + {}^{n}C_2 a^{n-2} b^2 + ... + {}^{n}C_n a^0 b^n$$

REMARKS:

- 1. If the index of the binomial is n then the expansion contains n + 1 terms.
- 2. In each term, the sum of indices of a and b is always n.
- 3. Coefficients of the terms in binomial expansion equidistant from both the ends are equal.
- 4. $(a-b)^n = {}^nC_0a^nb^0 {}^nC_1a^{n-1}b^1 + {}^nC_2a^{n-2}b^{2-} \dots + (-1)^n$ ${}^nC_0a^0b^n$.

GENERAL TERM AND MIDDLE TERMS IN EXPANSION OF $(A + B)^N$

$$t_{r+1} = {}^{n}C_{r} a^{n-r} b^{r}$$

 t_{r+1} is called a general term for all $r \in N$ and $0 \le r \le n$. Using this formula we can find any term of the expansion.

MIDDLE TERM (S):

1. In $(a + b)^n$ if n is even then the number of terms in the expansion is odd. Therefore there is only one

middle term and it is
$$\left(\frac{n+2}{2}\right)^{th}$$
 term.

2. In (a + b)ⁿ, if n is odd then the number of terms in the expansion is even. Therefore there are two middle terms and those are

$$\left(\frac{n+1}{2}\right)^{th}$$
 and $\left(\frac{n+3}{2}\right)^{th}$ terms.

BINOMIAL THEOREM FOR ANY INDEX

If n is negative integer then n! is not defined. We state binomial theorem in another form.

$$(a+b)^n = a^n + \frac{n}{1!} a^{n-1} b + \frac{n(n-1)}{2!} a^{n-2} b^2$$

$$+\frac{n(n-1)(n-2)}{3!}a^{n-3}b^3+...\frac{+n(n-1)...(n-r+1)}{r!} \ a^{n-r}b^r+.....$$

Here
$$t_{r+1} = \frac{(n-1)(n-2)...(n-r+1)}{r!}a^{n-r}b$$

THEOREM:

If n is any real number, a = 1, b = x and |x| < 1 then

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots$$

Here there are infinite number of terms in the expansion, The general term is given by

$$t_{r+1} = \frac{n(n-1)(n-2)...(n-r+1)x}{r!}, r \ge 0$$

- (i) Expansion is valid only when $-1 \le x \le 1$
- (ii) nC_r can not be used because it is defined only for natural number, so nC_r will be written $as \frac{n(n-1).....(n-r+1)}{r!}$
- (iii) As the series never terminates, the number of terms in the series is infinite.
- (iv) General term of the series $(1+x)^{-n} = T_{r+1} \rightarrow (-1)^r$ $\frac{1 + x}{1 x} \text{ if } |x| < |$
- (v) General term of the series $(1 x)^{-n} \to T_{r+1}$ = $\frac{(+1)(+2)...(+-1)}{r!}x$
- (vi) If first term is not 1, then make it unity in the following way. $(a + x)^n = a^n (1 + x/a)^n$ if $\left| \frac{x}{a} \right| < 1$

REMARKS:

1. If |x| < 1 and n is any real number, then n(n-1) = n(n-1)(n-2)

$$(1-x)^n = 1-nx + \frac{n(n-1)}{2!}x^2 - \frac{n(n-1)(n-2)}{3!}x^3 + ...$$

The general term is given by

$$t_{r+1} = \frac{(-1)^r n(n-1)(n-2)...(n-r+1)}{r!} x^r$$

2. If n is any real number and |b| < |a|, then

$$=(a+b)^n=\left[a\left(1+\frac{b}{a}\right)\right]^n$$

$$=a^n\left(1+\frac{b}{a}\right)^n$$

While expanding $(a + b)^n$ where n is a negative integer or a fraction, reduce the binomial to the form in which the first term is unity and the second term is numerically less than unity.

Particular expansion of the binomials for negative index, $|x| \le 1$

1.
$$\frac{1}{1+x} = (1+x)^{-1}$$

$$= 1 - x + x^2 - x^3 + x^4 - x^5 + \dots$$

2.
$$\frac{1}{1-x} = (1+x)^{-1}$$

$$= 1 + x + x^2 + x^3 + x^4 + x^5 + \dots$$

3.
$$\frac{1}{(1+x)^2} = (1+x)^{-2}$$

$$=1-2x+3x^2-4x^3+...$$

4.
$$\frac{1}{(1-x)^2} = (1-x)^{-2}$$

$$= 1 + 2x + 3x^2 + 4x^3 + \dots$$

BINOMIAL COEFFICIENTS

The coefficients ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$,..., ${}^{n}C_{n}$ in the expansion of $(a+b)^{n}$ are called the binomial coefficients and denoted by C_{0} , C_{1} , C_{2} ,, C_{n} respectively

Now

$$(1+x)^n = {}^nC_0x^0 + {}^nC_1x^1 + {}^nC_2x^2 + ... + {}^nC_nx^n$$
 (i)

Put x = 1

$$(1+1)^n = {^nC_0} + {^nC_1} + {^nC_2} + \dots + {^nC_n}$$

$$\therefore$$
 $2^{n} = {^{n}C_{0}} + {^{n}C_{1}} + {^{n}C_{2}} + ... + {^{n}C_{n}}$

$$\therefore {}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + ... + {}^{n}C_{n} = 2^{n}$$

$$C_0 + C_1 + C_2 + ... + C_n = 2^n$$

:. The sum of all binomial coefficients is 2ⁿ.

Put x = -1, in equation (i),

$$(1-1)^n = {^nC_0} - {^nC_1} + {^nC_2} - \dots + (-1)^{n \, n} C_n$$

$$\therefore 0 = {^{n}C_{0}} - {^{n}C_{1}} + {^{n}C_{2}} - \dots + (-1)^{n} {^{n}C_{n}}$$

$$\therefore {}^{n}C_{0} - {}^{n}C_{1} + {}^{n}C_{2} - {}^{n}C_{3} + \dots + (-1)^{n} {}^{n}C_{n} = 0$$

$$\therefore \quad {}^{n}C_{0} + {}^{n}C_{2} + {}^{n}C_{4} + \dots = {}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + \dots$$

$$C_0 + C_2 + C_4 + ... = C_1 + C_3 + C_5 + ...$$

 C_0, C_2, C_4, \dots are called as even coefficients

 C_1, C_2, C_5 ... are called as odd coefficients

Let
$$C_0 + C_2 + C_4 + ... = C_1 + C_3 + C_5 + ... = k$$

Now
$$C_0 + C_1 + C_2 + C_3 + ... + C_n = 2^n$$

$$\therefore (C_0 + C_2 + C_4 + ...) + (C_1 + C_3 + C_5 ...) = 2^n$$

$$\therefore$$
 $k+k=2^n$

$$2k=2^n$$

$$\therefore k = \frac{2^{1}}{2}$$

$$\therefore k = 2^{n-1}$$

$$\therefore C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$$

:. The sum of even coefficients = The sum of odd coefficients = 2^{n-1}

Properties of Binomial Coefficient

For the sake of convenience the coefficients

 nC_0 , nC_1 ,, nC_r ,....... nC_n are usually denoted by C_0 , C_1 ,...., C_r ,, C_n respectively.

(i)
$$C_0 + C_1 + C_2 + \dots + C_n = 2^n$$

(ii)
$$C_0 - C_1 + C_2 - \dots + (-1)^n C_n = 0$$

(iii)
$$C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$$
.

(iv)
$${}^{n}C_{r_{1}} = {}^{n}C_{r_{2}} \Rightarrow r_{1} = r_{2} \text{ or } r_{1} + r_{2} = n$$

(v)
$${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$$

(vi)
$$r^n C_r = n^{n-1} C_{r-1}$$

BINOMIAL THEOREM & MATHEMATICAL INDUCTION

Some Important Results

(i)
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$
,
Putting $x = 1$ and -1 , we get
$$C_0 + C_1 + C_2 + \dots + C_n = 2^n \text{ and}$$

$$C_0 - C_1 + C_2 - C_3 + \dots - (-1)^n C_n = 0$$

(ii) Differentiating
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$
, on both sides we have, $n(1+x)^{n-1}$

$$= C_1 + 2C_2 x + 3C_3 x^2 + \dots + nC_n x^{n-1} \qquad \dots (1)$$

$$x = 1$$

$$\Rightarrow n2^{n-1} = C_1 + 2C_2 + 3C_3 + \dots + nC_n$$

$$x = -1$$

$$\Rightarrow 0 = C_1 - 2C_2 + \dots + (-1)^{n-1} nC_n$$

Differentiating (1) again and again we will have different results.

(iii) Integrating $(1 + x)^n$, we have,

$$\frac{(1+x)^{n+1}}{n+1} + C = C_0 x + \frac{C_1 x^2}{2} + \frac{C_2 x^3}{3} + \dots + \frac{C_n x^{n+1}}{n+1}$$
(where C is a constant)

Put x = 0, we get
$$C = -\frac{1}{(n+1)}$$

Therefore

$$\frac{(1+x)^{n+1}-1}{n+1} = C_0 x + \frac{C_1 x^2}{2} + \frac{C_2 x^3}{3} + \dots + \frac{C_n x^{n+1}}{n+1} \quad \dots (2)$$

Put x = 1 in (2) we get

$$\frac{2^{n+1}-1}{n+1} = C_0 + \frac{C_1}{2} + \dots + \frac{C_n}{n+1}$$

Put x = -1 in (2) we get,

$$\frac{1}{n+1} = C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \dots$$

Illustration

Find the coefficient of x^4 in the expansion of

$$\frac{1+x}{1-x} if \mid x \mid < 1$$

Sol.
$$\frac{1+x}{1-x} = (1+x)(1-x)^{-1}$$
$$= (1+x)\left[1 + \frac{(-1)}{1!}(-x) \frac{(-1)(-1-1)}{2!}(-x)^2 + \frac{(-1)(-1-1)(-1-2)}{3!}(-x)^3 \dots to \infty\right]$$

$$= (1+x)(1+x+x^2+x^3+x^4+.....to \infty)$$

$$= [1+x+x^2+x^3+x^4+......to \infty] + [x+x^2+x^3+x^4+......to \infty]$$

$$= 1+2x+2x^2+2x^3+2x^4+2x^5+.....to \infty$$
Hence coefficient of $x^4=2$

Illustration

Find the square root of 99 correct to 4 places of deicmal.

Sol.
$$(99)^{1/2} = (100 - 1)^{1/2} \left[100 \left(1 - \frac{1}{100} \right) \right]^{\frac{1}{2}}$$

$$= \left[100 \left(1 - \frac{1}{100} \right) \right]^{\frac{1}{2}}$$

$$= (100)^{1/2} [1 - 0]^{1/2} = 10 (1 - 01)^{1/2}$$

$$10 \left[1 + \frac{\frac{1}{2}}{1!} (-01) + \frac{\frac{1}{2} \left(\frac{1}{2} - 1 \right)}{2!} (-01)^2 + \dots to \infty \right]$$

$$= 10 [1 - 0.005 - 0.0000125 + \dots to \infty]$$

$$= 10 (.9949875) = 9.94987 = 9.9499$$

Multinomial Expansion

In the expansion of $(x_1 + x_2 + \dots + x_n)^m$ where $m, n \in N$ and x_1, x_2, \dots, x_n are independent variables, we have

- (i) Total number of terms = ${}^{m+n-1}C_{n-1}$
- (ii) Coefficient of $x_1^{r_1} x_2^{r_2} x_3^{r_3} \dots x_n^{r_n}$ (where $r_1 + r_2 + \dots + r_n = m, r_i \in \mathbb{N} \cup \{0\}$ is $\frac{m!}{r_1! r_2! \dots r_n!}$
- (iii) Sum of all the coefficients is obtained by putting all the variables x_1 equal to 1.

Illustration

Find the total number of terms in the expansion of $(1 + a + b)^{10}$ and coefficient of a^2b^3 .

Sol. Total number of terms =
$${}^{10+3-1}C_{3-1} = {}^{12}C_2 = 66$$

Coefficient of $a^2b^3 = \frac{10!}{2! \times 3! \times 5!} = 2520$