RATIONAL EXPRESSIONS

IMPORTANT FACTS AT A GLANCE

1. An expression of the form $\frac{p(x)}{q(x)}$, where p (x) and q (x) are polynomials and q (x) $\neq 0$, is called a *rational*

expression.

- 2. Every polynomial is a rational expression but a rational expression need not be a polynomial.
- **3.** If p (x) and q (x) are polynomials such that g.c.d. $\{p(x), q(x)\} = 1$, then $\frac{p(x)}{q(x)}$, is a *rational expression in its*

lowest terms.

4. Results on Rational expressions:

(A) Sum (or difference) of two rational expressions is a rational expression.

(B) Product of two rational expressions is a rational expression.

(C) Addition as well as multiplication on rational expressions satisfies the commutative and associative laws.

(D) 0 is the additive identity.

(E) Additive inverse of $\frac{p(x)}{q(x)}$ is $\frac{-p(x)}{q(x)}$.

112

EXERCISE

1.	The expression to be a	added to $(5x^2 - 7x + 2)$ to p	roduce (7x ² – 1) is :-	
	(A) $2x^2 + 7x + 3$		(C) $12x^2 - 7x + 1$	(D) 2x ² – 3
2.		$x = 1 - x + x^2 - 2x^3$ to produ		
3.		(B) $-1 + x + x^2 - 3x^3$	(C) $3x^3 - x^2 + x - 1$ and $3x^2 + 6x + 5$ to get 1?	(D) None of these
5.		(B) $3x - 9x - 7x^2$		(D) None of these
4.			2 so as to get $10x^3 - x^2 - 7$	
	(A) $-4x^3 - x^2 + 16x -$		(B) $4x^3 + x^2 - 16x + 8$	
	(C) $16x^3 - 3x^2 + 2x + $	12	(D) None of these	
5.	$\left(\frac{x+1}{x^2-1}-\frac{2}{x}\right)$ expresses	ed as a rational expression is	5 :-	
	(x + 2)	$x^2 - 2$	1	2(x+1)
	$(A) - \frac{(x+2)}{x(x-1)}$	(B) $\frac{x^2}{x(x^2-1)}$	(C) $\frac{1}{x(x+1)}$	(D) $\frac{2(x+1)}{(x^3-1)}$
			$\left(\cdot \cdot^{2} \cdot \cdot \cdot^{2} \right)$ $\left(\cdot \cdot^{2} \cdot \cdot^{2} \right)$. (1)
6.	The rational expression	n which should be subtracte	d from $\left(\frac{x^2+2}{x-1}\right)$ to get $\left(\frac{x^2+2}{x}\right)$	$\left(\frac{x^2 - 1}{x^2 - 1}\right)$ is :-
	$(A) x^{2} + x - 3$	(B) $\frac{x^2 - x - 6}{x + 1}$	$(x) x^{2} + x - 6$	(D) $\frac{x+3}{x-1}$
	$(A) = \frac{x+1}{x+1}$	(b) $\frac{1}{x+1}$	(C) $\frac{x-1}{x-1}$	(D) $\frac{1}{x-1}$
7.	The value of $\left(1 + \frac{1}{x+1}\right)$	$\left(1+\frac{1}{x+2}\right)\left(1+\frac{1}{x+3}\right)\left(1+$	$1 + \frac{1}{x+4}$ is :-	
	(A) $1 + \frac{1}{x+5}$	(B) $\frac{1}{x+5}$	(C) $\frac{x+1}{x+5}$	(D) $\frac{x+5}{x+1}$
	XIU	-	X+0	X + 1
8.	$\left(\frac{x^2+8x+12}{x^2+4x-12}\right) \text{ in low }$	est terms is :-		
	(x) x+2	(T) x+6	x+2	(D) x+6
	(A) $\frac{x+2}{x-2}$	(B) $\frac{x+6}{x-2}$	(C) $\frac{x+2}{x+6}$	(D) $\frac{x+6}{x-2}$
0	. (x – 1)	$\frac{(x-2)(x^2-9x+14)}{(x^2-3x+2)}$ simplified		
9.	The expression (x	$(x^2 - 3x + 2)$ simplified	2S IO :-	
	(A) (1)		(C) (x – 7)	(D) $\frac{1}{(x-7)}$
	(A) (x – 1)	(B) (x – 2)	(C) $(x - 7)$	(D) $(x-7)$
10	TTI · 1·(· 1 ((the rational expression $\left(\frac{1}{x^2}\right)$	$\frac{x^2}{x^2}$ -1) $\left(\frac{x-y}{x+2}\right)$.	
10.	The simplified form of	the rational expression $\begin{pmatrix} x^2 \end{pmatrix}$	$(2 - y^2) (y + 2)$ is ::-	
	(A) $\frac{x}{(x+y)}$	(B) $\frac{y}{(x+y)}$	(C) $\frac{y}{(x-y)}$	(D) $\frac{x}{(x-y)}$
	(x + y)	(D) (x + y)	(C)'(x-y)	(D)'(x-y)
11.	The simplified form of	$\frac{(x^2-y^2)}{(x^2+2xy+y^2)} \times \frac{(xy+y^2)}{(x^2-xy)}$	is :-	
	V	x	х	V
	(A) $\frac{y}{x}$	(B) $\frac{x}{y}$	(C) $\frac{x}{x+y}$	(D) $\frac{y}{x-y}$

12. If
$$a = \frac{1+x}{2-x}$$
 then $\frac{1}{a+1} + \frac{2a+1}{a^2-1}$ is equal to :-
(A) $\frac{(1+x)(2+x)}{(2x-1)}$ (B) $\frac{(1-x)(2-x)}{(x-2)}$ (C) $\frac{(1+x)(2-x)}{2x-1}$ (D) $\frac{(1-x)(2-x)}{2x+1}$
13. If $x = \frac{2T}{(1+T^2)}$ and $y = \frac{1-T^2}{1+T^2}$, then $(x^2 + y^2)$ is :-
(A) 0 (B) 1 (C) T² (D) T⁴
14. $\left(\frac{x^2-5x+6}{x^2-9x+20} \times \frac{x^2-5x+4}{x^2-3x+2}\right)$ in simplified form is :
(A) $\frac{x-2}{x-3}$ (B) $\frac{x-3}{x-5}$ (C) $\frac{x-2}{x-5}$ (D) $\frac{x-5}{x-2}$
15. Which of the following statements are correct ?
1. Every polynomial is a rational expression.
2. Every rational expression is a polynomial
3. Degree of $(x^5 - 7x^2 + 3)$ is 5.

Of these statement the correct ones are :

- 16. Which of the following statements is correct ?
 - (A) The sum of two rational expressions is a rational expression.
 - (B) The product of two rational expressions is not always a rational expression.
 - (C) The difference of two rational expressions is not always a rational expression.
 - (D) The division of a rational expression by a non-zero rational expression need not be rational expression.

21. The value of
$$\left(\frac{\frac{x}{y}-1}{1-\frac{x}{y}}\right)$$
 is :

(A) 0 (B) 1 (C)
$$-1$$
 (D) $\frac{x}{y}$

22. $\frac{(x+y)^2 - (x-y)^2}{x^2y - xy^2}$ is equal to :

(A)
$$\frac{1}{xy}$$
 (B) $\frac{1}{x-y}$ (C) $\frac{2}{x-y}$ (D) $\frac{4}{x-y}$

23. The value of $\left(\frac{x-3}{x^2-x-6} + \frac{2x-1}{2x^2+5x-3} - \frac{2x+5}{x^2+5x+6}\right)$ is :

(A) 1 (B) 0 (C)
$$-1$$
 (D) $\left(\frac{x-3}{x-2}\right)$

24. The value of $\left[\frac{x^2 - (y - z)^2}{(x + z)^2 - y^2} + \frac{y^2 - (x - z)^2}{(x + y)^2 - z^2} + \frac{z^2 - (x - y)^2}{(y + z)^2 - x^2}\right]$ is :

(B) 1

114

(C) – 1

(D) None of these

25. The simplified form of
$$\left(\frac{x^3 - 27}{x^2 + 3x + 9}\right)$$
 is :

(A) (x - 3) (B) $\frac{1}{(x - 3)}$ (C) $\frac{x - 3}{x + 3}$ (D) $\frac{1}{x + 3}$

ANSWER KEY															
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	В	С	В	А	А	Α	D	Α	В	С	А	С	В	В	D
Que.	16	17	18	19	20	21	22	23	24	25					
Ans.	А	С	Α	D	D	С	D	В	В	А					

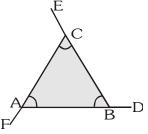
TRIANGLES

FUNDAMENTAL PROPERTIES OF TRIANGLES

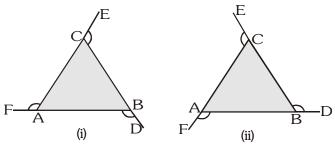
- 1. Sum of any two sides is always greater than the third side.
- 2. The difference of any two sides is always less than the third side.
- **3.** Greater angle has a greater side opposite to it and smaller angle has a smaller side opposite to it i.e., if two sides of a triangle are not congruent then the angle opposite to the greater side is greater.
- 4. Let a, b and c be the three sides of a $\triangle ABC$ and c is the largest side. Then

- (i) if $c^2 < a^2 + b^2$, the triangle is **acute angled triangle**.
- (ii) if $c^2 = a^2 + b^2$, the triangle is **right angled triangle**.
- (iii) If $c^2 > a^2 + b^2$, the triangle is obtuse angled triangle.
- **5.** Sine rule : In a $\triangle ABC$, if a, b, c be the three sides

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$


C a

R


6. Cosine rule : In a $\triangle ABC$, if a, b, c be the sides opposite to angle A, B and C respectively, then

$$\frac{b^2 + c^2 - a^2}{2bc}, \qquad \cos B = \frac{c^2 + a^2 - b^2}{2ca}, \qquad \cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

7. The sum of all the three interior angles is always 180° i.e., $\angle CAB + \angle ABC + \angle BCA = 180^{\circ}$

8. The sum of three (ordered) exterior angles of a triangle is 360°

In fig. (i) : $(\angle FAC + \angle ECB + \angle DBA) = 360^{\circ}$ In fig. (ii) : $(\angle FAB + \angle DBC + \angle ECA) = 360^{\circ}$

- 9. The sum of an interior angle and its adjacent exterior angle is 180°.
- 10. A triangle must has at least two acute angles.
- 11. In a triangle, the measure of an exterior angle equals the sum of the measures of the interior opposite angles.
- **12.** The measure of an exterior angle of a triangle is greater than the measure of each of the opposite interior angles.

SOME IMPORTANT DEFINITIONS :

Nomenclature	Property/Definition	Diagram
Altitude (or height)	The perpendicular drawn from the opposite vertex of a side in a triangle is called an altitude of the triangle. \Rightarrow There are three altitudes in a triangle.	AF, CD and BF are the altitudes
Median	The line segment joining the mid-point of a side to the vertex opposite to the side is called a median. \Rightarrow There are three medians in a triangle. \Rightarrow A median bisects the area of the triangle i.e., ar(ABE) = ar(AEQ) = $\frac{1}{2}$ ar(\triangle ABC) etc.	A B E E C AE, CD and BF are the medians (BE=CE, AD=BD, AF=CF)
Angle bisector	A line segment which originates from a vertex and bisects the same angle is called an angle bisector. $\left(\angle BAE = \angle CAE = \frac{1}{2} \angle BAC\right) \text{ etc.}$	A B E C $AE, CD and BF are the angle bisectors.$
Perpendicular bisector	A line segment which bisects a side perpendicularly (i.e., at right angle) is called a perpendicular bisector of a side of triangle. ⇒ All points on the perpendicular bisector of a line are equidistant from the ends of the line.	B E C $DO, EO and FO are the perpendicular bisectors.$
Orthocentre	The point of intersection of the three altitudes of the triangle is called as the orthocentre. $\angle BOC = 180^\circ - \angle A$, $\angle COA = 180^\circ - \angle B$ $\angle AOB = 180^\circ - \angle C$	B E $C'O is the orthocentre$

Types of Triangles	Property/Definition	Diagram
Centroid	The point of intersection of the three medians of a triangle is called the centroid. A centroid divides each median in the ratio 2 : 1 (vertex : base) $\frac{AO}{OE} = \frac{CO}{OD} = \frac{BO}{OF} = \frac{2}{1}$	B E C O is centroid.
Incentre	The point of intersection of the angle bisectors of a triangle is called the incentre. Incentre O is always equidistant from all three sides i.e., the perpendicular distance between the sides and incentre is always same for all the three sides.	B E C C O is the incentre.
Greumentre	The point of intersection of the perpendicular bisectors of the sides of a triangle is called the circumcentre. OA = OB = OC = (circum radius). Gircumcentre O is always equidistant from all the three vertices A, B and C	B E $C'O is the circumcentre.$

IMPORTANT THEOREMS ON TRIANGLES

Theorem	Statement/Explanation	Diagram
Pythagoras Theorem	The square of the hypotenuse of a right angled triangle is equal to the sum of the squares of the other two sides. i.e., $(AO^2 = (AB)^2 + (BO^2)^2$ \Rightarrow The converse of this theorem is also true. \Rightarrow The numbers which satisfy this relations, are called Pythagorean triplets. e.g., (3, 4, 5) (5, 12, 13), (7, 24, 25), (8, 15, 17), (9, 40, 41), (11, 60, 61), (12, 35, 37), (16, 63, 65), (20, 21, 29), (28, 45, 53), (33, 56, 65) Note : All the multiples (or submultiples) of Pythagorean triplets also satisfy the relation. e.g., (6, 8, 10), (15, 36, 39), (1.5, 2, 2.5) etc.	$A = 90^{\circ}$ $A = 0^{\circ}$ $A =$
45° – 45° – 90° Triangle Theorem	If the angles of a triangle are 45°, 45° and 90°, then the hypotenuse (i.e., longest side) is $\sqrt{2}$ times of any smaller side. \Rightarrow Excluding hypotenuse rest two sides are equal. i.e., $AB = BC$ and $AC = \sqrt{2}AB = \sqrt{2}BC$.	

BSE : CLASS-2	X	
30° – 60° – 90° Triangle Theorem	If the angles of a triangle are 30°, 60° and 90°, then the sides opposite to 30° angle is half of the hypotenuse and the side opposite to 60° is $\frac{\sqrt{3}}{2}$ times the hypotenuse. e.g., $AB = \frac{AC}{2}$ and $BC = \frac{\sqrt{3}}{2}AC$. $\therefore AB : BC : AC = 1 : \sqrt{3} : 2$	A 60° 90° 30° C
Basic proportionality theorem (BPT) or Thales theorem	Any line parallel to one side of a triangle divides the other two sides proportionally. So if DE is drawn parallel to BC, it would divide sides AB and AC proportionally i.e., $\frac{AD}{DB} = \frac{AE}{EC} \text{ or } \frac{AD}{AB} = \frac{AE}{AC}$ $\frac{AD}{DE} = \frac{AB}{BC} = \frac{AE}{DE} = \frac{AC}{BC}$	A B C
Mid-point theorem	If the mid-points of two adjacent sides of a triangle are joined by a line segment, then this segment is parallel to the third side. i.e., if $AD = BD$ and $AE = CE$ then DE BC	A B C
Apollonius theorem	In a triangle, sum of the squares of any two sides of a triangle is equal to twice the sum of the square of the median to the third side and square of half the third sides. i.e., $AB^2 + AC^2 = 2 (AD^2 + BD^2)$	A B D C $BD = CD$ $AD is the median$
Interior angle bisector theorem	In a triangle the angle bisector of an angle divides the opposite side to the angle in the ratio of the remaining two sides. i.e., $\frac{BD}{CD} = \frac{AB}{AC}$ and $BD \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	A B D C
Exterior angle bisector theorem	In a triangle the angle bisector of any exterior angle of a triangle divides the side opposite to the external angle in the ratio of the remaining two sides i.e., $\frac{BE}{AE} = \frac{BC}{AC}$	A B C D

EXERCISE

1.	In a triangle ABC, if AB, BC and AC are the three sides of the triangle, then which of the statements is necessarily true?							
	(A) $AB + BC < AC$	(B) AB + BC > AC	(C) $AB + BC = AC$	(D) $AB^2 + BC^2 = AC^2$.				
2.	The sides of a triangle a	re 12 cm, 8 cm and 6 cm	respectively, the triangle is	s :				
	(A) acute	(B) obtuse	(C) right	(D) can't be determined				
3.	If the sides of a triangle ar	e produced then the sum c	of the exterior angles i.e, $\angle D$	$OAB + \angle EBC + \angle FCA$ is equal to :				
	(A) 180°		F					
	(B) 270°							
	(C) 360°		A B E					
	(D) 240°		Ď					
4.	In the given figure BC is	produced to D and ∠BAC	$C = 40^{\circ} \text{ and } \angle ABC = 70^{\circ}.$	Find the value of∠ACD:				
	(A) 30°		Â					
	(B) 40°							
	(C) 70°	$\Delta = \Delta$						
	(D) 110°		в с в					
5.	In a $\triangle ABC$, $\angle BAC > 90$	°, then $\angle ABC$ and $\angle ACB$	must be :					
	(A) acute		A					
	(B) obtuse		\wedge					
	(C) one acute and one of	otuse						
	(D) can't be determined		BC					
6.			then the value of the large					
	(A) 135°	(B) 84°	(C) 105°	(D) None of these				
7.	In the adjoining figure $\angle l$ the value of $\angle BOC$:	$B = 70^\circ$ and $\angle C = 30^\circ$. B	O and CO are the angle bis	ectors of ∠ABC and ∠ACB. Find				
	(A) 30°		Â					
	(B) 40°		POR					
	(C) 120°							
	(D) 130°		БС					
8.	In the given diagram of A respectively. Find the val		80°. BF and CF are the ang	gle bisectors of $\angle CBD$ and $\angle BCE$				
	(A) 110°		Å					
	(B) 50°		B					
	(C) 125°			2				
	(D) 55°		D F	_				
9.	In an equilateral triangle	, the incentre, circumcent	re, orthocentre and centro	id are:				

(A) concylic	(B) coincident	(C) collinear	(D) none of these
--------------	----------------	---------------	-------------------

CBSE : CLASS-X In the adjoining figure D is the midpoint of BC of a $\triangle ABC$. DM and DN are the perpendiculars on AB and AC 10. respectively and DM = DN, then the $\triangle ABC$ is : (A) right angled (B) isosceles (C) equilateral (D) scalene **11.** In the adjoining figure of $\triangle ABC$, AD is the perpendicular bisector of side BC. The triangle ABC is : (A) right angled (B) isosceles (C) scalene (D) equilateral 12. Triangle ABC is such that AB = 9 cm, BC = 6 cm, AC = 7.5 cm. Triangle DEF is similar to $\triangle ABC$, If EF = 12 cm then DE is : (A) 6 cm (B) 16 cm (C) 18 cm (D) 15 cm **13.** In $\triangle ABC$, AB = 5 cm, AC = 7 cm. If AD is the angle bisector of $\angle A$. Then BD : CD is: (A) 25 : 49 (B) 49 : 25 (C) 6 : 1(D) 5 : 7 14. In a ABC, D is the mid-point of BC and E is mid-point of AD, BF passes through E. What is the ratio of AF : FC? (A) 1 : 1 (B) 1 : 2 (C) 1 : 3

15. In a $\triangle ABC$, AB = AC and $AD \perp BC$, then :

(A) AB < AD

- 16. The difference between altitude and base of a right angled triangle is 17 cm and its hypotenuse is 25 cm. What is the sum of the base and altitude of the triangle is ?
 - (A) 24 cm

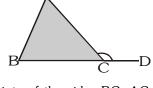
(D) 2 : 3

(C) 34 cm

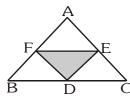
(C) AB = AD

(D) can't be determined

(D) $AB \le AD$


17. If AB, BC and AC be the three sides of a triangle ABC, which one of the following is true? (D) $AB^2 - BC^2 = AC^2$

(B) AB > AD


(B) 31 cm

$$(A) AB - BC = AC \qquad (B) (AB - BC) > AC$$

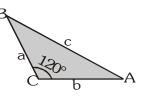
- **18.** In the triangle ABC, side BC is produced to D. $\angle ACD = 100^{\circ}$ if BC = AC, then $\angle ABC$ is :
 - (A) 40°
 - (B) 50°
 - (C) 80°
 - (D) can't be determined
- **19.** In the adjoining figure D, E and F are the mid-points of the sides BC, AC and AB respectively. ΔDEF is congruent to triangle :
 - (A) ABC
 - (B) AEF
 - (C) CDE, BFD
 - (D) AFE, BFD and CDE

(C)(AB - BA) < AC

20. In the adjoining figure $\angle BAC = 60^{\circ}$ and BC = a, AC = b and AB = c, then :

(A) $a^2 = b^2 + c^2$ (B) $a^2 = b^2 + c^2 - bc$ (C) $a^2 = b^2 + c^2 + bc$

(D) $a^2 = b^2 + 2bc$


D)
$$a^2 = b^2 + 2bc$$

21. In the adjoining figure of $\triangle ABC$, $\angle BCA = 120^{\circ}$ and AB = c, BC = a, AC = b then

(A)
$$c^2 = a^2 + b^2 + ba$$

(B) $c^2 = a^2 + b^2 - ba$
(C) $c^2 = a^2 + b^2 - 2ba$

(D) $c^2 = a^2 + b^2 + 2ab$

22. In a right angled $\triangle ABC$, $\angle C = 90^{\circ}$ and CD is the perpendicular on the hypotenuse AB, AB = c, BC = a, AC = b and CD = p, then:

(A)
$$\frac{p}{a} = \frac{p}{b}$$

(B) $\frac{1}{p^2} + \frac{1}{b^2} = \frac{1}{a^2}$
(C) $p^2 = b^2 + c^2$

(D)
$$\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$$

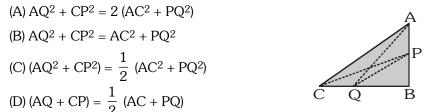
23. If the medians of a triangle are equal, then the triangle is:

	(A) right angled	(B) isosceles	(C) equilateral	(D) scalene		
24. The incentre of a triangle is determined by the:						
	(A) medians		(B) angle bisectors			
	(C) perpendicular bisector	S	(D) altitudes			
25.	The circumcentre of a tria	angle is determined by the:				
	(A) altitudes	(B) median	(C) perpendicular bisectors	(D) angle bisectors		
26.	The point of intersection	of the angle bisectors of a f	riangle is :			
	(A) orthocentre	(B) centroid	(C) incentre	(D) circumcentre		
27.	A triangle PQR is formed by joining the mid-points of the sides of a triangle ABC. 'O' is the circumcentre ΔABC , then for ΔPQR , the point 'O' is :					
	(A) incentre	(B) circumcentre	(C) orthocentre	(D) centroid		
28.	If in a $\triangle ABC$, 'S' is the circumcentre then:					
	(A) S is equidistant from a	Il the vertices of a triangle				

- (B) S is equidistant from all the sides of a triangle
- (C) AS, BS and CS are the angular bisectors $% \left({{\left({C} \right)}_{K}} \right)$
- (D) AS, BS and CS produced are the altitudes on the opposite sides.
- **29.** If AD, BE, CF are the altitudes of \triangle ABC whose orthocentre is H, then C is the orthocentre of :

(A) $\triangle ABH$ (B) $\triangle BDH$ (C) $\triangle ABD$ (D) $\triangle BEA$

30.	In a right angled $\triangle ABC$, $\angle C = 90^{\circ}$ and CD is the perpendicular on hypotenuse AB. If BC = 15 cm and AC = 20 cm then CD is equal to :					
	(A) 18 cm		Ç			
	(B) 12 cm					
	(C) 17.5 cm					
	(D) can't be determined		$A \xrightarrow[D]{} B$			
31.	In an equilateral $\triangle ABC$, is opposite sides, then:	if a, b and c denote the len	gths of perpendiculars from	n A, B and C respectively on the		
	(A) a > b > c	(B) a > b < c	(C) $a = b = c$	(D) a = c ≠ b		
32.	What is the ratio of side	and height of an equilatera	al triangle?			
	(A) 2 : 1	(B) 1 : 1	(C) 2 : √3	(D) √3 : 2		
33.	The triangle is formed by 6 cm^2 , then the area of 4	, , ,	he sides AB, BC and CA o	f ΔABC and the area of ΔPQR is		
	(A) 36 cm ²	(B) 12 cm ²	(C) 18 cm ²	(D) 24 cm ²		
34.	One side other than the h the hypotenuse from the		sosceles triangle is 6 cm. Th	ne length of the perpendicular on		
	(A) 6 cm	(B) $6\sqrt{2}$ cm	(C) 4 cm	(D) $3\sqrt{2}$ cm		
35.	Any two of the four trian	gles formed by joining the	midpoints of the sides of a	given triangle are:		
	(A) congruent		(B) equal in area but not	congruent		
	(C) unequal in area and r	not congruent	(D) none of these			
36.	The internal bisectors of	$\angle B$ and $\angle C$ of $\triangle ABC$ mee	t at O. If $\angle A = 80^{\circ}$ then \angle	BOC is :		
	(A) 50°	(B) 160°	(C) 100°	(D) 130°		
37.	The point in the plane of	f a triangle which is at equa	al perpendicular distance f	rom the sides of the triangle is :		
	(A) centroid	(B) incentre	(C) circumcentre	(D) orthocentre		
38.	Incentre of a triangle lies	in the interior of :				
	(A) an isosceles triangle c	only	(B) a right angled triangle	angled triangle only		
	(C) any equilateral triang	le only	(D) any triangle			
39.	In a triangle PQR, PQ =	20 cm and PR = 6 cm, the PR = 6	e side QR is :			
	(A) equal to 14 cm	(B) less than 14 cm	(C) greater than 14 cm	(D) none of these		
40.	The four triangles formed given triangle is :	d by joining the pairs of mi	d∙ points of the sides of a g	iven triangle are congruent if the		
	(A) an isosceles triangle	(B) an equilateral triangle	e (C) a right angled triangl	e (D) of any shape		
41.	O is orthocentre of a tria	ngle PQR, which is formed	l by joining the mid points	of the sides of a $\triangle ABC$, O is :		
	(A) orthocentre	(B) incentre	(C) circumcentre	(D) centroid		
42.	In a $\triangle ABC$, a line PQ pa following relations is always		and AC at Q. If BQ bisect	s \angle PQC, then which one of the		
	(A) $BC = CQ$	(B) $BC = BQ$	(C) BC ≠ CQ	(D) BC \neq BQ		
43.	Which of the following is $\triangle ABC?$	true, in the given figure, w	where AD is the altitude to	the hypotenuse of a right angled		
	(i) ΔCAD and ΔABD are	similar (ii) ΔCDA and Δ	∆ADB are congruent	(iii) $\triangle ADB$ and $\triangle CAB$ are similar		
	Select the correct answe	r using the codes given bel	ow:			
	(A) 1 and 2	(B) 2 and 3	(C) 1 and 3	(D) 1, 2 and 3		


44. If D is such a point on the side, BC of $\triangle ABC$ that $\frac{AB}{AC} = \frac{BD}{CD}$, then AD must be a/an:

(A) altitude of $\triangle ABC$

(C) angle bisector of $\triangle ABC$

(B) median of $\triangle ABC$

- (D) perpendicular bisector of $\triangle ABC$
- **45.** In right angled $\triangle ABC$, $\angle ABC = 90^{\circ}$, if P and Q are points on the sides AB and BC respectively, then:

46. If ABC is a right angled triangle at B and M, N are the mid-points of AB and BC, then 4 (AN² + CM²) is equal to –

(A) $4AC^2$ (B) $6AC^2$ (C) $5AC^2$ (D) $\frac{5}{4}AC^2$

47. If $\triangle ABC$ and $\triangle DEF$ are so related that $\frac{AB}{FD} = \frac{BC}{DE} = \frac{CA}{EF}$, then which of the following is true?

(A)
$$\angle A = \angle F$$
 and $\angle B = \angle D$
(B) $\angle C = \angle F$ and $\angle A = \angle D$
(C) $\angle B = \angle F$ and $\angle C = \angle D$
(D) $\angle A = \angle E$ and $\angle B = \angle D$

- **48.** ABC is a right angle triangle at A and AD is perpendicular to the hypotenuse. Then $\frac{BD}{CD}$ is equal to :
 - $(A) \left(\frac{AB}{AC}\right)^{2} \qquad (B) \left(\frac{AB}{AD}\right)^{2} \qquad (C) \frac{AB}{AC} \qquad (D) \frac{AB}{AD}$

49. Let ABC be an equilateral triangle. Let $BE \perp CA$ meeting CA at E, then $(AB^2 + BC^2 + CA^2)$ is equal to : (A) $2BE^2$ (B) $3BE^2$ (C) $4BE^2$ (D) $6BE^2$

50. If D, E and F are respectively the mid-points of sides of BC, CA and AB of a \triangle ABC. If EF = 3 cm, FD = 4 cm, and AB = 10 cm, then DE, BC and CA respectively will be equal to :

(A) 6, 8 and 20 cm (B) 4, 6 and 8 cm (C) 5, 6 and 8 cm (D) $\frac{10}{3}$, 9 and 12 cm

51. In the right angle triangle $\angle C = 90^{\circ}$. AE and BD are two medians of a triangle ABC meeting at F. The ratio of the area of $\triangle ABF$ and the quadrilateral FDCE is :

(A) 1:1 (B) 1:2 (C) 2:1 (D) 2:3

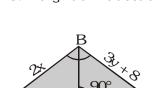
52. ABC is a triangle and DE is drawn parallel to BC cutting the other sides at D and E. If AB = 3.6 cm, AC = 2.4 cm and AD = 2.1 cm, then AE is equal to :

(A) 1.4 cm (B) 1.8 cm (C) 1.2 cm (D) 1.05 m

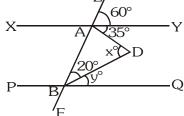
53. Consider the following statements:

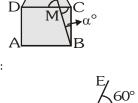
(1) If three sides of a triangle are equal to three sides of another triangle, then the triangles are congruent.

(2) If three angles of a triangle are equal to three angles of another triangle respectively, then the two triangles are congruent. Of these statements:

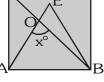

- (A) 1 is correct and 2 is false (B) both 1 and 2 are false
- (C) both 1 and 2 are correct (D) 1 is false and 2 is correct

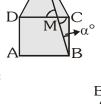
- **54.** In the figure $\triangle ABE$ is an equilateral triangle in a square ABCD. Find the value of angle x in degrees :
 - (A) 60°
 - (B) 45°
 - (C) 75°
 - (D) 90°
- **55.** In the given diagram MN || PR and m \angle LBN = 70°, AB = BC. Find m \angle ABC :
 - (A) 40°
 - (B) 30°
 - (C) 35°
 - (D) 55°
- 56. In the given diagram, equilateral triangle EDC surmounts square ABCD. Find the m \angle BED represented by x, where m $\angle EBC = \alpha^{\circ}$
 - (A) 45°
 - (B) 60°
 - (C) 30°
 - (D) None of these
- In the given diagram XY||PQ. Find $m \angle x^{\circ}$ and $m \angle y^{\circ}$: 57.
 - (A) 75° and 40°
 - (B) 45°, 60°
 - (C) 75°, 45°
 - (D) 60° and 45°
- **58.** In the adjoining figure m $\angle CAB = 62^\circ$, m $\angle CBA = 76^\circ$, m $\angle ADE = 58^\circ$ and $\angle DFG = 66^\circ$, find m $\angle FGE$:
 - (A) 44°
 - (B) 34°
 - (C) 36°
 - (D) none of these

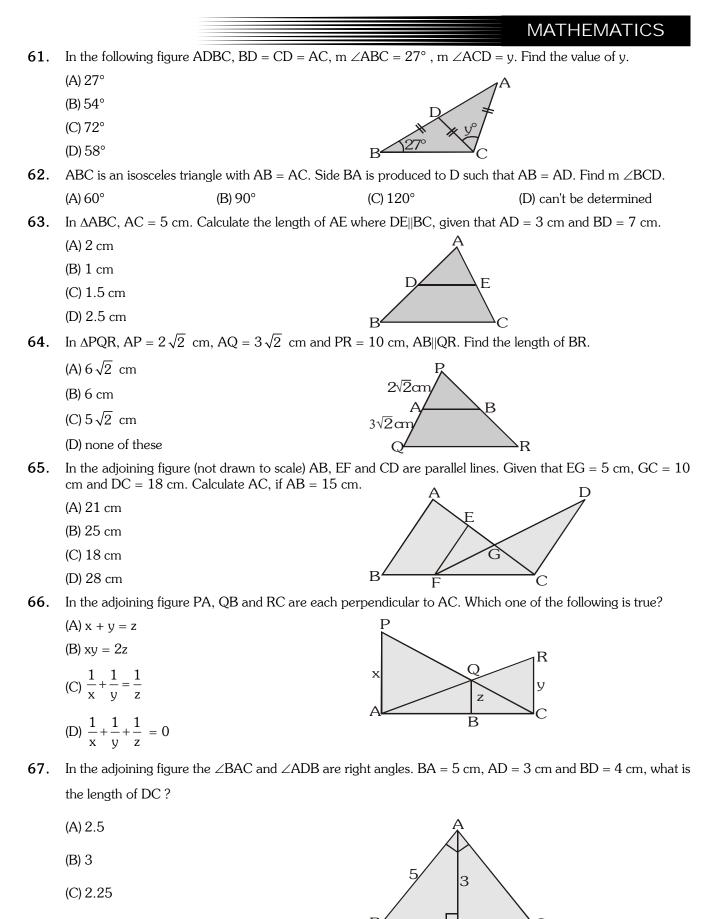

59. In the given figure $CE \perp AB$, m $\angle ACE = 20^{\circ}$ and m $\angle ABD = 50^{\circ}$. Find m $\angle BDA$:


- (A) 50°
- (B) 60°
- (C) 70°
- (D) 80°
- **60.** In the $\triangle ABC$, BD bisects $\angle B$, and is perpendicular to AC. If lengths of the sides of the triangle are expressed in terms of x and y as shown, find the value of x and y:
 - (A) 6, 12
 - (B) 10, 12
 - (C) 16, 8
 - (D) 8, 15

124




D



Δ

- (D) 2
- 68. The areas of the similar triangles are in the ratio of 25 : 36. What is the ratio of their respective heights?

4

D

- 69. In the given diagram AB||CD, then which one of the following is true?
 - (A) $\frac{AB}{CD} = \frac{AO}{OC}$
 - (B) $\frac{AB}{CD} = \frac{BO}{OD}$
 - (C) $\triangle AOB \sim \triangle COD$
 - (D) all of these
- 70. The bisector of the exterior $\angle A$ of $\triangle ABC$ intersects the side BC produced to D. Here CF is parallel to AD.
 - (A) $\frac{AB}{AC} = \frac{BD}{CD}$ (B) $\frac{AB}{AC} = \frac{CD}{BD}$
 - (C) $\frac{AB}{AC} = \frac{BC}{CD}$

 - (D) None of these
- 71. The diagonal BD of a quadrilateral ABCD bisects $\angle B$ and $\angle D$, then:
 - (A) $\frac{AB}{CD} = \frac{AD}{BC}$

 - (B) $\frac{AB}{BC} = \frac{AD}{CD}$
 - (C) $AB = AD \Psi BC$

(D) None of these

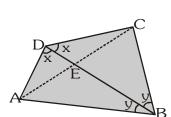
- 72. Two right triangles ABC and DBC are drawn on the same hypotenuse BC on the same side of BC. If AC and DB intersects at P, then
 - (A) $\frac{AP}{PC} = \frac{BP}{DP}$

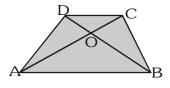
(B) $AP \Psi DP = PC \Psi BP$

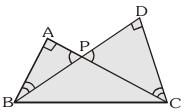
- $(C) AP \Psi PC = BP \Psi DP$
- (D) $AP \lor BP = PC \lor PD$

73. A man goes 150 m due east and then 200 m due north. How far is he from the starting point?

(A) 200 m (B) 350 m

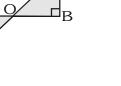

74. From a point O in the interior of a $\triangle ABC$ perpendiculars OD, OE and OF are drawn to the sides BC, CA and AB respectively, then which one of the following is true?


(C) 250 m


(B) $AB^2 + BC^2 = AC^2$

(A) $AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2$

- (C) $AF^2 + BD^2 + CE^2 = OA^2 + OB^2 + OC^2$
- 75. In an equilateral triangle ABC, the side BC is trisected at D. Find the value of AD²
 - (A) $\frac{9}{7}$ AB² (B) $\frac{7}{9}$ AB² (C) $\frac{3}{4}$ AB² (D) $\frac{4}{5}$ AB² F



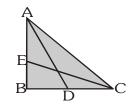
(D) $AF^2 + BD^2 + CE^2 = OD^2 + OE^2 + OF^2$

(D) 175 m

76.	ABC is a triangle ir ΔANC and ΔANB :		BC, AC = 12 cm and AB	= 5 cm. Find the ratio of the areas of
	(A) 125 : 44	(B) 25 : 144	(C) 144 : 25	(D) 12 : 5
77.		cm long casts it shadow 1 g. Find the height of the flag		l. At the same time a flag pole casts a
	(A) 40 cm	(B) 45 cm	(C) 90 cm	(D) None of these
78.	Vertical angles of tw ratio of their areas		ual. Then corresponding a	altitudes are in the ratio 4 : 9. Find the
	(A) 16 : 49	(B) 16 : 81	(C) 16 : 65	(D) None of these
79.	In the figure ∆ACB	$\sim \Delta APQ$. If BC = 8 cm, PC	Q = 4 cm, AP = 2.8 cm,	find CA :
	(A) 8 cm		D	
	(B) 6.5 cm		B	P
	(C) 5.6 cm		A	
	(D) None of these			AQ
80.	In the fig. BC AD.	Find the value of x :		
	(A) 9, 10		^	D
	(B) 7, 8			5 D
	(C) 10, 12		190	× 3
	(D) 8, 9		B	\sim C
81.	In an equilateral tria	angle of side 2a, calculate t	he length of its altitude :	
	(A) 2a √3	(B) a √3	(C) a $\frac{\sqrt{3}}{2}$	(D) None of these
82.	In fig. AD is the bis	ector of $\angle BAC$. If $BD = 2c$	cm, $CD = 3$ cm and $AB =$	= 5 cm. Find AC :
	(A) 6 cm		A	
	(B) 7.5 cm			
	(C) 10 cm			
	(D) 15 cm		B D	Ċ
83.	In the fig. AB $\ QR$.	Find the length of PB :		
	(A) 2 cm		$\bigwedge^{P} \mathbf{N}$	
	(B) 3 cm		A 3cm B	E
	(C) 2.5 cm			Ň,
	(D) 4 cm		Q <u>9</u> cm	Δ_{R}
84.	In the fig. QA and I	PB are perpendicular to AB	B. If AO = 10 cm, BO = 6	6 cm and PB = 9 cm. Find AQ :
	(A) 8 cm		/	P

- (B) 9 cm
- (C) 15 cm
- (D) 12 cm

A F


127

MATHEMATICS

85. In the given figure AB = 12 cm, AC = 15 cm and AD = 6 cm. BC||DE, find the length of AE:

(A) 6 cm

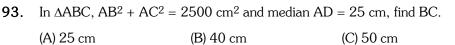
- (B) 7.5 cm
- (C) 9 cm
- (D) 10 cm
- **86.** In the figure, ABC is a triangle in which AB = AC. A circle through B touches AC at D and intersects AB at P. If D is the mid-point of AC, Find the value of AB.
 - (A) 2AP
 - (B) 3AP
 - (C) 4AP
 - (D) none of the above
- 87. In figure, ABC is a right triangle, right angled at B. AD and CE are the two medians drawn from A and C respectively. If AC = 5 cm and AD = $\frac{3\sqrt{5}}{2}$ cm, find the length of CE:
 - (A) $2\sqrt{5}$ cm
 - (B) 2.5 cm
 - (C) 5 cm
 - (D) $4\sqrt{2}$ cm

- **88.** In a $\triangle ABC$, AB = 10 cm, BC = 12 cm and AC = 14 cm. Find the length of median AD. If G is the centroid, find length of GA :
 - (A) $\frac{5}{3}\sqrt{7}, \frac{5}{9}\sqrt{7}$ (B) $5\sqrt{7}, 4\sqrt{7}$ (C) $\frac{10}{\sqrt{3}}, \frac{8}{3}\sqrt{7}$ (D) $4\sqrt{7}, \frac{8}{3}\sqrt{7}$
- **89.** \triangle ABC is a right angled triangle at A and AD is the altitude to BC. If AB = 7 cm and AC = 24 cm. Find the ratio of AD is to AM if M is the mid-point of BC.

		, 336	625
(A) 25 : 41	(B) 32 : 41	(C) $\frac{1}{625}$	(D) $\frac{1}{336}$

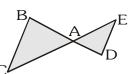
90. Area of $\triangle ABC = 30 \text{ cm}^2$. D and E are the mid-points of BC and AB respectively. Find ar ($\triangle BDE$).

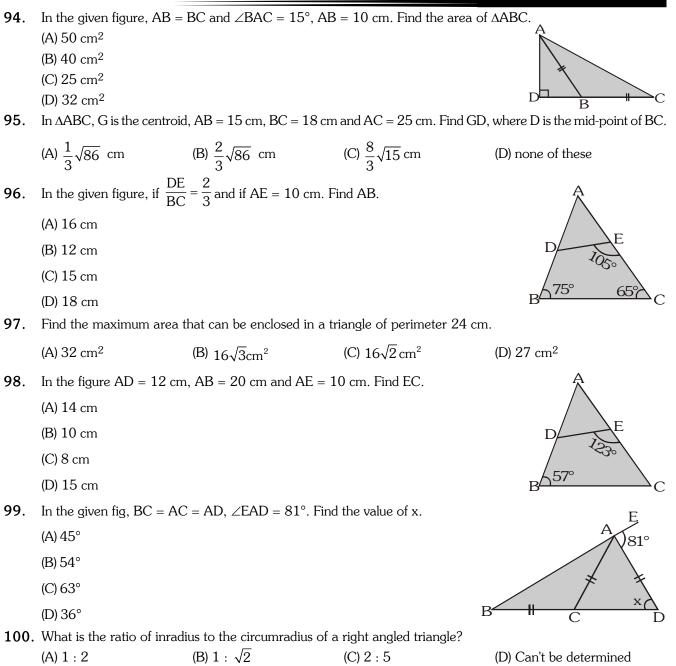
(A) 10 cm (B) 7.5 cm (C) 15 cm (D) none of these


91. The three sides of a triangles are given. Which one of the following is not a right triangle?

(A) 20, 21, 29 (B) 16, 63, 65

92. In the figure AD is the external bisector of $\angle EAC$, intersects BC produced to D. If AB = 12 cm, AC = 8 cm and BC = 4 cm, find CD.


(C) 56, 90, 106


- (A) 10 cm
- (B) 6 cm
- (C) 8 cm
- (D) 9 cm

(D) 36, 35, 74

	ANSWER KEY														
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	В	В	С	D	A	С	D	D	В	В	В	С	D	В	В
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	В	С	В	D	В	Α	D	С	В	С	С	С	Α	A	В
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	С	С	D	D	Α	D	В	D	С	D	С	Α	С	С	В
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	С	A	Α	С	С	Α	Α	Α	С	Α	Α	Α	В	В	С
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	С	В	С	В	В	С	С	Α	D	Α	В	С	С	A	В
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	С	С	В	С	D	В	В	Α	С	В	С	Α	D	С	В
Que.	91	92	93	94	95	96	97	98	99	100					
Ans.	D	С	С	С	В	С	В	Α	В	D					
			-		-	-		-		-					120

CIRCLES

SOME IMPORTANT THEOREMS :

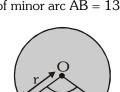
S.No.	Theorem	Diagram
1.	In a circle (or in congruent circles) equal chords are made by equal arcs. $\{OP = OQ\} = \{OR = OS\}$ and $\overrightarrow{PQ} = \overrightarrow{RS}$ \therefore $PQ = RS$	
2.	Equal arcs (or chords) subtend equal angles at the centre $\overrightarrow{PQ} = \overrightarrow{AB}$ (or $\overrightarrow{PQ} = \overrightarrow{AB}$) $\therefore \qquad \angle \overrightarrow{PQ} = \angle \overrightarrow{AOB}$	A B C C C C C C C C C C C C C C C C C C
3.	The perpendicular from the centre of a circle to a chord bisects the chord i.e., if $OD \perp AB$ $\therefore AB = 2AD = 2BD$	
4.	The line joining the centre of a circle to the mid-point of a chord is perpendicular to the chord. \therefore AD = DB \therefore OD \perp AB	
5.	Perpendicular bisector of a chord passes through the centre. i.e., if $OD \perp AB$ and $AD = DB$ \therefore O is the centre of the circle.	
6.	Equal chords of a circle (or of congruent circles) are equidistant from the centre. $\therefore AB = PQ$ $\therefore OD = OR$	A D B
7.	Chords which are equidistant from the centre in a circle (or in congruent, circles) are equal. $\therefore OD = OR$ $\therefore AB = PQ$	Q P B B
8.	The angle subtended by an arc (the degree measure of the arc) at the centre of a circle is twice the angle subtended by the arc at any point on the remaining part of the circle. $m \angle AOB = 2m \angle AOB$.	C 20 B
9.	Angle in a semicircle is a right angle.	A O B

10.	Angle in the same segment of a circle are equal i.e., $\angle ACB = \angle ADB$	A
11.	If a line segment joining two points subtends equal angle at two other points lying on the same side of the line containing the segment, then the four points lie on the same circle. $\angle AOB = \angle ADB$ \therefore Points A, C, D, B are concyclic i.e., lie on the circle	A
12.	The sum of pair of opposite angles of a cyclic quadrilateral is 180°. $\angle DAB + \angle BCD = 180^{\circ}$ and $\angle ABC + \angle CDA = 180^{\circ}$ (converse of this theorem is also true)	A B
13.	Equal chords (or equal arcs) of a circle (or congruent circles) subtend equal angles at the centre. $AB = CD (\text{or } AB = CD)$ $\therefore \qquad \angle AOB = \angle COD$ (converse of this theorem is also true)	C B C
14.	If a side of a cylic quadrilateral is produced, then the exterior angle is equal to the interior opposite angle. $m\angle CDE = m\angle ABC$	B A D E
15.	A tangent at any point of a circle is perpendicular to the radius through the point of contact. (converse of this theorem is also true)	A P B
16.	The lengths of two tangents drawn from an external point to a circle are equal. i.e., $AP = BP$	A O B B
17.	If two chords AB and CD of a circle, intersect inside a circle (outside the circle when produced at a point E) then AE 4 BE = CE 4 DE	$A \bigcirc O \bigcirc E & B & B & E \\ C & E & B & C & D & E \\ C & C & D & C & C & C & C & C & C & C &$
18.	If PB be a secant which intersects the circle at A and B and PT be a tangent at T then $PA \cdot PB = (PT)^2$	PA T T

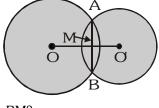
19.	From an external point from which the tangents are drawn to the circle with centre O, then (a) They subtend equal angles at the centre. (b) They are equally inclined to the line segment joining the centre of that point. ∠AOP = ∠BOP and ∠APO = ∠BPO	A OP B
20.	If P is an external point from which the tangents to the circle with centre O touch it at A and B then OP is the perpendicular bisector of AB. OP \perp AB and AC = BC	A C B
21.	Alternate Segment Theorem : If from the point of contact of a tangent, a chord is drawn then the angles which the chord makes with the tangent line are equal respectively to the angles formed in the corresponding alternate segments. In the adjoining diagram. $\angle BAT = \angle BCA$ and $\angle BAP = \angle BDA$	P A T
22.	The point of contact of two tangents lies on the straight line joining the two centres. (a) When two circles touch externally then the distance between their centres is equal to sum of their radii i.e. $AB = AC + BC$ (a) When two circles touch internally then the distance between their centres is equal to the difference between their radii i.e. $AB = AC - BC$	P C B Q P C B C P C C B C C B C C B C C B C C C B C

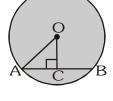
(D) none of these

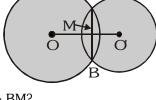
MATHEMATICS

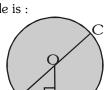

(D) can't be determined

EXERCISE

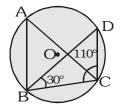

- 1. In the given figure, O is the centre of the circle. Radius of the circle is 17 cm. If OC = 8 cm, then the length of the chord AB is :
 - (A) 35 cm
 - (B) 30 cm
 - (C) 15 cm
 - (D) 18 cm
- 2. In the given figure OM \perp AB, radius of the circle is 5 cm and length of the chord AB = 8 cm. Find the measure of OM :
 - (A) 3 cm
 - (B) 2.5 cm
 - (C) 2 cm
 - (D) 6 cm
- 3. In the given figure, two circles with their respective centres intersect each other at A and B and AB intersects OO' at M, then m \angle OMA is :
 - (A) 60°
 - (B) 80°
 - (C) 90°
 - (D) Can't be determined
- 4. In the above question (no. 3) what is the ratio of AM : BM?
 - (A) 5 : 6 (B) 3 : 2
- In the given figure the two chords AC and BC are equal. The radius OC intersect AB at M, then AM : BM is : 5.

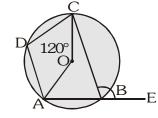

(C) 1 : 1

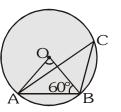

- (A) 1 : 1
- (B) $\sqrt{2}$: 3
- (C) $3:\sqrt{2}$
- (D) none of the above
- In the adjoining figure, O is the centre of circle and diameter AC = 26 cm. If chord AB = 10 cm, then the 6. distance between chord AB and centre O of the circle is :
 - (A) 24 cm
 - (B) 16 cm
 - (C) 12 cm
 - (D) none of the above
- In the adjoining circle C (O, r) the degree measure of minor arc $AB = 130^{\circ}$. Find the degree measure of major 7. arc :
 - (A) 230°
 - (B) 260°
 - (C) 310°
 - (D) none of the above
- 8. If the diagonals of a cyclic quadrilateral are equal, then the quadrilateral is
 - (A) rhombus (B) square



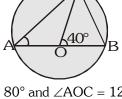
(C) rectangle

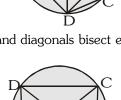


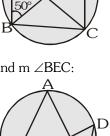


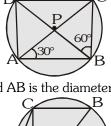

- In the given figure, AB is diameter of the circle. C and D lie on the semicircle. $\angle ABC = 65^{\circ}$ and $\angle CAD = 45^{\circ}$. 9. Find $m \angle DCA$. (A) 45° (B) 25° (C) 20° 65 (D) none of these **10.** In the given figure, chords AB and CD are equal. If $\angle OBA = 55^{\circ}$, then m $\angle COD$ is: (A) 65° (B) 55° (C) 70° (D) 50° 11. The quadrilateral formed by angle bisectors of a cyclic quadrilateral is a: (A) rectangle (B) square (C) parallelogram (D) cyclic quadrilateral 12. $\triangle ABC$ and $\triangle DBC$ have a common base and drawn towards one sides. $\angle BAC = \angle BDC = 60^{\circ}$. If AC and DB intersect at P, then : (A) $AP \Psi PC = BP \Psi PD$ D (B) $AP \ H \ BP = PC \ H \ PD$ 60 60 $(C) AP \Psi PD = PC \Psi BP$ (D) none of these P **13.** In the given figure, $\angle BAC$ and $\angle BDC$ are the angles of same segments. $\angle DBC = 30^{\circ}$ and $\angle BCD = 110^{\circ}$. Find $m \angle BAC$ is :
 - (A) 35°
 - (B) 40°
 - (C) 55°
 - (D) 60°

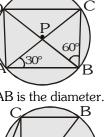
14. In the given figure, O is the centre of the circle. $\angle ABO = 60^{\circ}$. Find the value of $\angle ACB$:


- (A) 40°
- (B) 60°
- (C) 50°
- (D) 30°
- **15.** In the given figure, $\angle AOC = 120^{\circ}$. Find m $\angle CBE$, where O is the centre:
 - (A) 60°
 - (B) 100°
 - (C) 120°
 - (D) 150°

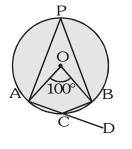





- 16. In the adjoining figure, O is the centre of the circle and $\angle OBD = 50^{\circ}$. Find the m $\angle BAD$:
 - (A) 60°
 - (B) 40°
 - (C) 80°
 - (D) 45°
- **17.** In the given figure, $\triangle ABC$ is an equilateral triangle. Find m $\angle BEC$:
 - (A) 120°
 - (B) 60°
 - (C) 80°
 - (D) none of the above
- **18.** In the given figure, AB is the diameter of the circle. Find the value of $\angle ACD$:
 - (A) 30°
 - (B) 60°
 - (C) 45°
 - (D) 25°
- **19.** In the given figure, ABCD is a cyclic quadrilateral and diagonals bisect each other at P. If $\angle DBC = 60^{\circ}$ and $\angle BAC = 30^{\circ}$, then $\angle BCD$ is :
 - (A) 90°
 - (B) 60°
 - (C) 80°
 - (D) none of the above
- **20.** In the given figure, ABCD is a cyclic quadrilateral and AB is the diameter. $\angle ADC = 140^{\circ}$, then find m $\angle BAC$:
 - (A) 45°
 - (B) 40°
 - (C) 50°
 - (D) none of the above
- **21.** In the given figure, $\angle COB = 40^\circ$, AB is the diameter of the circle. Find m $\angle CAB$:
 - (A) 40°
 - (B) 20°
 - (C) 30°
 - (D) None of these
- **22.** In the given figure, O is the centre of circle. $\angle AOB = 80^{\circ}$ and $\angle AOC = 120^{\circ}$. Find m $\angle BAC$:
 - (A) 120°
 - (B) 80°
 - (C) 100°
 - (D) None of the above

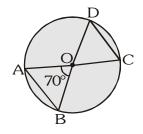


R


 \cap

- **23.** In the given figure, O is the centre of the circle and $\angle AOC = 100^{\circ}$. Find the ratio of m $\angle ADC : m \angle ABC :$
 - (A) 5 : 6
 - (B) 1 : 2
 - (C) 5 : 13
 - (D) None of the above
- **24.** In the given figure, O is the centre of the circle and, $\angle AOB = 100^{\circ}$. Find m $\angle BCD$:
 - (A) 80°
 - (B) 60°
 - (C) 50°
 - (D) 40°
- **25.** In the given figure, AB is the diameter of the circle. $\angle ADC = 120^{\circ}$, Find m $\angle CAB$.
 - (A) 20°
 - (B) 30°
 - (C) 40°
 - (D) Can't be determined.
- **26.** In the given figure, O is the centre of the circle. $\angle AOB = 70^{\circ}$, find m $\angle OCD$:
 - (A) 70°
 - (B) 55°
 - (C) 65°
 - (D) 110°
- **27.** In the given figure, $\angle CAB = 40^{\circ}$ and $\angle AKB = 105^{\circ}$. Find $\angle KCD$:
 - (A) 65°
 - (B) 35°
 - (C) 40°
 - (D) 72°
- **28.** In the given figure, ABC is an isosceles triangle in which AB = AC and $m \angle ABC = 50^{\circ}$, $m \angle BDC$:
 - (A) 80°

 (B) 60°


 (C) 65°

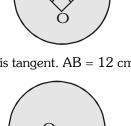
 (D) 100°

D

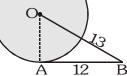
Β

Ò

В

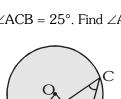

- **29.** In the given figure, AB is the diameter, m $\angle BAD = 70^{\circ}$ and m $\angle DBC = 30^{\circ}$. Find m $\angle BDC$:
 - (A) 25°
 - (B) 30°
 - (C) 40°
 - (D) 60°
- **30.** Find the value of $\angle DCE$:
 - (A) 100°
 - (B) 80°
 - (C) 90°
 - (D) 75°
- **31.** 'O' is the centre of the circle, line segment BOD is the angle bisector of $\angle AOC$, m $\angle COD = 50^{\circ}$. Find m $\angle ABC$:
 - (A) 25°
 - (B) 50°
 - (C) 100°
 - (D) 120°

32. In the given figure, O is the centre of the circle and $\angle ACB = 25^\circ$. Find $\angle AOB$:

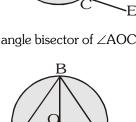

- (A) 25°
- (B) 50°
- (C) 75°
- (D) 60°

33. In the given figure, O is the centre of the circle. $\angle AOB = 90^{\circ}$. Find m $\angle APB$:

- (A) 130°
- (B) 150°
- (C) 135°
- (D) can't be determined
- **34.** In the given figure, O is the centre of the circle. AB is tangent. AB = 12 cm and OB = 13 cm. Find OA:
 - (A) 6.5 cm
 - (B) 6 cm
 - (C) 5 cm
 - (D) none of these



Β

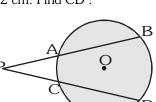


D

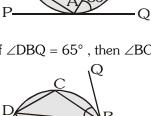
160

С D 30° 70° О

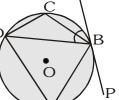
- **35.** In the given figure, PQ is the tangent of the circle. Line segment PR intersects the circle at Nand R. PQ = 15 cm, PR = 25 cm, find PN:
 - (A) 15 cm
 - (B) 10 cm
 - (C) 9 cm
 - (D) 6 cm
- **36.** In the given figure, there are two circles with the centres O and O' touching each other internally at P. Tangents TQ and TP are drawn to the larger circle and tangents TP and TR are drawn to the smaller circle. Find TQ : TR

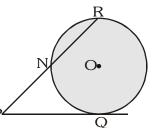

0•

C


- (A) 8 : 7
- (B) 7 : 8
- (C) 5 : 4
- (D) 1 : 1
- **37.** In the given figure, PAQ is the tangent. BC is the diameter of the circle. m $\angle BAQ = 60^{\circ}$, find m $\angle ABC$:
 - (A) 25°
 - (B) 30°
 - (C) 45°
 - (D) 60°
- **38.** ABCD is a cyclic quadrilateral PQ is a tangent at B. If $\angle DBQ = 65^\circ$, then $\angle BCD$ is :
 - (A) 35°
 - (B) 85°
 - (C) 115°
 - (D) 90°

39. In the given figure, AP = 2 cm, BP = 6 cm and CP = 3 cm. Find DP :


- (A) 6 cm
- (B) 4 cm
- (C) 2 cm
- (D) 3 cm
- **40.** In the given figure, AP = 3 cm, BA = 5 cm and CP = 2 cm. Find CD :
 - (A) 12 cm
 - (B) 10 cm
 - (C) 9 cm
 - (D) 6 cm



Β

В

41. In the given figure, tangent PT = 5 cm, PA = 4 cm, find AB:

- (A) $\frac{7}{4}$ cm
- (B) $\frac{11}{4}$ cm
- (C) $\frac{9}{4}$ cm
- (D) can't be determined
- $\label{eq:42.4} \textbf{Two circles of radii 13 cm and 5 cm touch internally each other. Find the distance between their centres:}$

(A) 18 cm (B) 12 cm (C) 9 cm (D) 8 cm

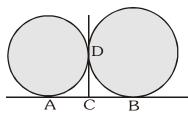
43. Three circles touch each other externally. The distance between their centre is 5 cm, 6 cm and 7 cm. Find the radii of the circles :

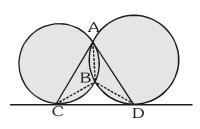
(A) 2 cm, 3 cm, 4 cm (B) 3 cm, 4 cm, 1 cm

(C) 1 cm, 2.5 cm, 3.5 cm (D) 1 cm, 2 cm, 4 cm

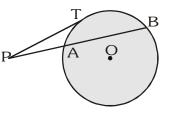
- 44. A circle touches a quadrilateral ABCD. Find the true statement:
 - (A) AB + BC = CD + AD

(B) AB + CD = BC + AD

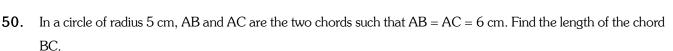

(C) BD = AC


(D) none of the above

- **45.** O and O' are the centres of two circles which touch each other externally at P. AB is a common tangent. Find $\angle APO$:
 - (A) 90° (B) 120° (C) 60° (D) data insufficient
- **46.** If AB is a chord of a circle, P and Q are two points on the circle different from A and B, then:


(A) the angle subtended by AB at P and Q are either equal or supplementary.

- (B) the sum of the angles subtended by AB at P and Q is always equal two right angles.
- (C) the angles subtended at P and Q by AB are always equal.
- (D) the sum of the angles subtended at P and Q is equal to four right angles.
- **47.** In the given figure, AB and CD are two common tangents to the two touching circles. If CD = 6 cm, then AB is equal to:
 - (A) 9 cm
 - (B) 15 cm
 - (C) 12 cm
 - (D) none of the above
- 48. In the given figure, CD is a direct common tangent to two circles intersecting each other at A and B, then:
 - $\angle CAD + \angle CBD = ?$
 - (A) 120°
 - (B) 90°
 - (C) 360°
 - (D) 180°



- 49. O and O' are the centres of circle of radii 20 cm and 37 cm. AB = 24 cm. What is the distance OO'?
 - (A) 51 cm
 - (B) 45 cm
 - (C) 35 cm
 - (D) 48 cm

Ó

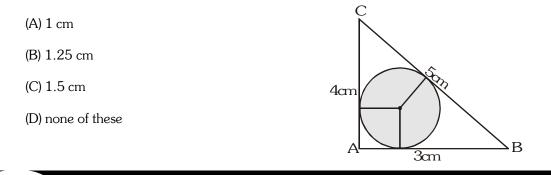
O

(A) 4.8 cm (B) 10.8 cm (C) 9.6 cm (D) none of these

51. In a circle of radius 17 cm, two parallel chords are drawn on opposite sides of a diameter. The distance between the chords is 23 cm. If the length of one chord is 16 cm, then the length of the other is :

(A) 23 cm (B) 30 cm (C) 15 cm (D) none of these

- **52.** If two circles are such that the centre of one lies on the circumference of the other, then the ratio of the common chord of two circles to the radius of any of the circles is :
 - (A) $\sqrt{3}: 2$ (B) $\sqrt{3}: 1$ (C) $\sqrt{5}: 1$ (D) none of these
- **53.** Two circles touch each other internally. Their radii are 2 cm and 3 cm. The biggest chord of the other circle which is outside the inner circle, is of length :
 - (A) $2\sqrt{2}$ cm (B) $3\sqrt{2}$ cm (C) $2\sqrt{3}$ cm (D) $4\sqrt{2}$ cm


54. Through any given set of four points P,Q, R, S it is possible to draw :

(A) atmost one circle (B) exactly one circle (C) exactly two circles (D) exactly three circles

- **55.** The distance between the centres of equal circles each of radius 3 cm is 10 cm. The length of a transverse tangent is :
 - (A) 4 cm (B) 6 cm (C) 8 cm (D) 10 cm

56. The number of common tangents that can be drawn to two given circles is at the most :

- (A) 1 (B) 2 (C) 3 (D) 4
- 57. ABC is a right angled triangle AB = 3 cm, BC = 5 cm and AC = 4 cm, then the inradius of the circle is :

- **58.** A circle has two parallel chords of lengths 6 cm and 8 cm. If the chords are 1 cm apart and the centre is on the same side of the chords, then a diameter of the circle is of length:
 - (A) 5 cm (B) 6 cm (C) 8 cm (D) 10 cm

59. Three equal circles of unit radius touch each other. Then, the area of the circle circumscribing the three circles is :

(A)
$$6\pi (2 + \sqrt{3})^2$$
 (B) $\frac{\pi}{6} (2 + \sqrt{3})^2$ (C) $\frac{\pi}{3} (2 + \sqrt{3})^2$ (D) $3\pi (2 + \sqrt{3})^2$

60. The radius of a circle is 20 cm. The radii (in cm) of three concentric circles drawn in such a manner that the whole area is divided into four equal parts, are:

(A) $20\sqrt{2}$, $20\sqrt{3}$, 20 (B) $\frac{10\sqrt{3}}{3}$, $\frac{10\sqrt{2}}{3}$, $\frac{10}{3}$ (C) $10\sqrt{3}$, $10\sqrt{2}$, 10 (D) 17, 14, 9

	ANSWER KEY														
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	В	Α	С	С	Α	С	Α	С	С	С	D	Α	В	D	С
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	В	Α	С	Α	С	В	В	С	С	В	В	В	Α	С	В
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	В	В	С	С	С	D	В	С	В	В	С	D	Α	В	Α
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	А	С	D	Α	С	В	В	D	А	С	В	Α	D	С	С

TRIGONOMETRY

The following concepts/formulae will assist you in solving the following questions :

- 1. Concept of similar triangles : If two triangles are similar, their sides are proportional and angles are equal.
- 2. $\sin(180^\circ \theta) = \sin \theta$ $\cos(180^\circ - \theta) = -\cos \theta$
- 3. $\tan (A + B) = \frac{\tan A + \tan B}{1 \tan A \tan B}$ $\tan (A B) = \frac{\tan A \tan B}{1 + \tan A \tan B}$

4. sine rule :
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

5. cosine rule :

(i)
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

(ii) $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$
(iii) $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

143

TRIGONOMETRY

TRI	GONOMETRY			EXERCISE
1.	If $\frac{\sin A}{\sin B} = p$ and $\frac{\cos A}{\cos B}$	= q, then tan B is equal to	:-	
	(A) $\pm \frac{p}{q} \sqrt{\frac{q^2 - 1}{1 - p^2}}$	(B) $\pm \sqrt{\frac{q^2 - 1}{1 - p^2}}$	(C) $\pm \frac{p}{q} \sqrt{\frac{p^2 - 1}{1 - q^2}}$	(D) None of these
2.	If $T_n = \sin^n \theta + \cos^n \theta$, the (A) 0	nen 2T ₆ – 3T ₄ + 1 is equal (B) sin θ	to (C) $\cos \theta$	(D) $2\sin\theta\cos\theta$
3.	If $T_n = \sin^n \theta + \cos^n \theta$, the (A) 0	nen 6T ₁₀ - 15T ₈ + 10T ₆ - (B) 1	1 is equal to (C) sin ² θ	(D) $\sin^3 \theta$
4.	If sin θ and cos θ are the	roots of $ax^2 + bx + c = 0$	(ac ≠ 0), then	
	(A) $a^2 + b^2 - 2ac = 0$	(B) $a^2 - b^2 + 2ac = 0$	(C) $(a + c)^2 = b^2 + c^2$	(D) None of these
5.	A flagstaff 5 m high stan		n. At an observer at a heigl	nt of 30 m, the flagstaff and the
	[Hint : The angle of a tria	angle divides the opposite s	side in the ratio of the sides	containing the angle]
	(A) $\frac{5\sqrt{3}}{2}$	(B) $5\sqrt{\frac{3}{2}}$	(C) $5\sqrt{\frac{2}{3}}$	(D) None of these
6.	If $b = 3$, $c = 4$ and $b = \frac{4}{3}$	$\frac{\pi}{3}$, then the number of trian	ngles that can be construct	ed is :-
	(A) One	(B) Two	(C) Infinite	(D) None of these
7.	In an equilateral triangle	the inradius r and circumra	adius R are connected by :	$[\text{Hint}: r = \frac{\Delta}{s}]$
	(A) $r = \frac{R}{3}$	(B) r = $\frac{R}{2}$	(C) r = 4R	(D) None of these
8.	We are given b, c and sir	n B such that B is acute and	$d b < c \sin B$, then :-	
	(A) One triangle is possib	le	(B) Two triangles are pos	sible
	(C) A right angled triangl	-	(D) No triangle is possible	
9.	The perimeter of a triang	gle ABC is 6 times the A.M	I. of the sines of its angles.	If $a = 1$, the angle A (acute) is ;-
	(A) $\frac{\pi}{2}$	(B) $\frac{\pi}{3}$	(C) $\frac{\pi}{4}$	(D) $\frac{\pi}{6}$
10.	If the radius of the circum	ncircle of an isosceles trian	gle PQR is equal to PQ(= F	PR), then the angle P is :-
	(A) $\frac{\pi}{6}$	(B) $\frac{\pi}{3}$	(C) $\frac{\pi}{2}$	(D) $\frac{2\pi}{3}$
11.		the top of two vertical tow d 30° respectively. The rati		point of the line joining the feet is :-
	(A) 2 : 1	(B) √3 : 1	(C) 3 : 2	(D) 3 : 1
12.	A tower of height h stand	ling at the centre of a squar	re with sides of length a ma	kes the same angle α at each of
	the four corners. Then - h	$\frac{a^2}{a^2 \cot^2 \alpha}$ is :-		
	(A) 1	(B) $\frac{3}{2}$	(C) 2	(D) 4
13.	AB is a vertical pole. The	Z	C is the midpoint of AB. I	P is a point on level gound. The
	(A) $\frac{5}{21}$	(B) $\frac{5}{51}$	(C) $\frac{5}{24}$	(D) $\frac{5}{26}$

14. Each side of an equilateral triangle subtends angle of 60° at the top of a tower of height h standing at the centre

of the triangle. If 2a be the length of the side of the triangle, then $\frac{a^2}{h^2}$ =

- (A) $\frac{8}{3}$ (B) $\frac{3}{8}$ (C) $\frac{4}{3}$ (D) $\frac{3}{4}$
- **15.** A tower subtends an angle of 30° at a point on the same level as the foot of tower. At a second point h m high above the first, the depression of the foot of tower is 60°. The horizontal distance of the tower from the point is:-

(A)
$$\frac{h}{\sqrt{3}}$$
 (B) $\frac{h \cot 60^{\circ}}{\sqrt{3}}$ (C) $\frac{h \cot 60^{\circ}}{3}$ (D) $h \cot 30^{\circ}$

16. The angle of elevation of a cloud at a height h above the level of water in a lake is α and the angle of depression of its image in the lake is β . The height of the cloud above the surface of the lake is equal to :-

(A)
$$\frac{h(\tan\beta + \tan\alpha)}{(\tan\beta - \tan\alpha)}$$
 (B) $\frac{h\cos(\alpha + \beta)}{\sin(\beta - \alpha)}$ (C) $\frac{h(\cot\alpha + \cot\beta)}{\cos\alpha - \cos\beta}$ (D) h

17. The elevation of a tower due north of a station A is α and of another station B due west of A is β. The height of tower is :-

(A)
$$\frac{AB\cos\alpha}{\sqrt{\cot^2\beta - \cot^2\alpha}}$$
 (B) $\frac{AB\sin\alpha\sin\beta}{\sqrt{\sin^2\alpha - \sin^2\beta}}$ (C) $\frac{AB\tan\alpha\cot\beta}{\sqrt{\tan^2\alpha - \tan^2\beta}}$ (D) $\frac{AB\sin\alpha\cos\beta}{\sqrt{\sin(\alpha + \beta)\sin(\alpha - \beta)}}$

- 18. A man observes that when he moves up a distance c metres on a slope, the angle of depression of a point on the horizontal plane from the base of the slope is 30°, and when he moves up further a distance c metres, the angle of depression of that point is 45°. The angle of inclination of the slope with the horizontal is :
 (A) 60°
 (B) 45°
 (C) 75°
 (D) 30°
- **19.** A person walking along a straight road observes that at two points 1 km apart, the angles of elevation of a pole in front of him are 30° and 75°. The height of the pole is :-

(A)
$$250(\sqrt{3} + 1)m$$
 (B) $250(\sqrt{3} - 1)m$ (C) $225(\sqrt{2} - 1)m$ (D) $225(\sqrt{2} + 1)m$

20. A flagstaff stands in the centre of a rectangular field whose diagonal is 1200 m and subtends angles 15° and 45° at the mid points of the sides of the field. The height of the flagstaff is :-

(A) 200 m (B) $300\sqrt{2+\sqrt{3}}$ m (C) $300\sqrt{2-\sqrt{3}}$ m (D) 400 m

21. Two flagstaffs stand on a horizontal plane. A and B are two points on the line joining their feet and between. The angles of elevation of the tops of the flagstaffs as seen from A are 30° and 60° and as seen from B are 60° and 45°. If AB is 30 m, the distance between the flagstaffs in metres is :-

(A) $30 + 15\sqrt{3}$ (B) $45 + 15\sqrt{3}$ (C) $60 - 15\sqrt{3}$ (D) $60 + 15\sqrt{3}$

22. In a cubical hall ABCDPQRS with side 10 m, G is the centre of the wall BCRQ and T is the mid point of the side AB. The angle of elevation of G at the point T is :-

(A)
$$\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$$
 (B) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (C) $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (D) $\cot^{-1}\left(\frac{1}{\sqrt{3}}\right)$

23. Each side of an equilateral triangle subtends an angle of 60° at the top of a tower h m high located at the centre of the triangle. If a is the length of each side of the triangle, then :-

(A)
$$3a^2 = 2h^2$$
 (B) $2a^2 = 3h^2$ (C) $a^2 = 3h^2$ (D) $3a^2 = h^2$

24. The angles of elevation of the top of a tower from two points on the ground at a distance a and 2a from its foot are α and β , respectively. If h is the height of the tower, then $\tan(\alpha - \beta) =$

(A)
$$\frac{ah}{a^2 + h^2}$$
 (B) $\frac{ah}{2a^2 + h^2}$ (C) $\frac{ah}{a^2 + 2h^2}$ (D) $\frac{h}{2a^2}$

145

- 25. The distances of three points on a pole from its foot are in A.P. If the angles of elevation of these points from a point on the ground are α, β and γ respectively, then tan α, tan β and tan γ are in :(A) AP
 (B) GP
 (C) HP
 (D) None of these
- **26.** The angle of elevation of a cloud from a point x m above a take is θ and the angle of depression of its reflection in the take is 45° . The height of the cloud is :-

(A) x tan
$$(45^\circ - \theta)$$
 (B) x tan $(45^\circ + \theta)$ (C) $\frac{1}{x} \cot (45^\circ - \theta)$ (D) $\frac{1}{x} \cot (45^\circ + \theta)$

27. In a triangular plot ABC with BC = 7 m, CA = 8 m and AB = 9 m. A lamp post is situated at the middle point E of the side AC and subtends an angle tan⁻¹ 3 at the point B, the height of the lamp post is :(A) 21 m
(B) 24 m
(C) 27 m
(D) 30 m

28. A vertical tower CP subtends the same angle θ , at point B on the horizontal plane through C, the foot of the tower and at point A in the vertical plane. If the triangle ABC is equilateral with length of each side equal to 4 m, the height of the tower is :-

(A)
$$8\sqrt{3}$$
 m (B) $\frac{4}{\sqrt{3}}$ m (C) $4\sqrt{3}$ m (D) $\frac{8}{\sqrt{3}}$ m

29. From a point on the horizontal plane, the elevation of the top of a hill is 45°. After walking 500 m towards its summit up a slope inclined at an angle of 15° to the horizon the elevation is 75°, the height of the hill is :-

(A) $500\sqrt{6}$ m (B) $500\sqrt{3}$ m (C) $250\sqrt{6}$ m (D) $250\sqrt{3}$ m

30. The elevation of a steeple at a place due south of it is 45° and at a place B due west of A the elevation is 15° . If AB = 2a, the height of the steeple is :-

(A)
$$\left(\frac{\sqrt{3}-1}{\sqrt{2}}\right)a$$
 (B) $\left(\frac{\sqrt{3}+1}{\sqrt{2}}\right)a$ (C) $a(3^{1/4}-3^{-1/4})$ (D) $a(3^{1/4}+3^{-1/4})$

31. A river flows due North, and a tower stands on its left bank. From a point A upstream and on the same bank as the tower, the elevation of the tower is 60° and from a point B just opposite A on the other bank the elevation is 45°. If the tower is 360 m high, the breadth of the river is :-

(A)
$$120\sqrt{6}$$
 m (B) $\frac{240}{\sqrt{3}}$ m (C) $240\sqrt{3}$ m (D) $240\sqrt{6}$ m

~ · ·

32. A balloon of radius r subtends an angle α at the eye of an observer and the elevation of the centre of the balloon from the eye is β , the height h of the centre of the balloon is given by :-

(A)
$$\frac{r \sin \beta}{\sin \alpha}$$
 (B) $r \sin \beta \sin \alpha$ (C) $\frac{r \sin \beta}{\sin(\alpha/2)}$ (D) $\frac{r \sin \alpha}{\sin(\beta/2)}$

33. Two poles of height a and b stand at the centres of two circular plots which touch each other externally at a point and the two poles subtend angles of 30° and 60° respectively at this point, then distance between the centres of these plots is :-

(A)
$$a + b$$
 (B) $\frac{(3a + b)}{\sqrt{3}}$ (C) $\frac{a + 3b}{\sqrt{3}}$ (D) $a\sqrt{3} + b$

34. A man standing on a level plane observes the elevation of the top of a pole to be α . He then walks a distance equal to double the height of the pole and finds that the elevation is now 2α . Then $\alpha =$

(A)
$$\frac{\pi}{6}$$
 (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{12}$ (D) $\frac{\pi}{8}$

35. A vertical tower PQ subtends the same angle of 30° at each of the two places A and B, 60 m apart on the ground. If AB subtends an angle of 120° at P, the foot of the lower, the height of the tower is :-

36. The angle of elevation of the top of a tree at a point B due south of it is 60° and at a point C due north of it is 30°. D is a point due north of C where the angle of elevation is 15°, then

(given
$$\sqrt{3} = 1 \frac{8}{11}$$
 and BC 4 CD = $2^3 4 3^2 4 19 4 11$) the height of the tree is :-
(A) 53 (B) 55 (C) 57 (D) 59

37. From the top of a cliff of height a, the angle of deppresion of the foot of a certain tower is found to be double the angle of elevation of the top of the tower of height h. If θ be the angle of elevation, then its value is :-

$$\cos^{-1}\sqrt{\frac{2h}{a}}$$
 (B) $\sin^{-1}\sqrt{\frac{2h}{a}}$ (C) $\sin^{-1}\sqrt{\frac{a}{2-h}}$ (D) $\tan^{-1}\sqrt{3-\frac{2h}{a}}$

38. The angle of elevation of the top of a tower from a point A due south of the tower is α and from a point B due east of the tower is β . If AB = d, then the height of the tower is :-

(A)
$$\frac{d}{\sqrt{\tan^2 \alpha - \tan^2 \beta}}$$
 (B) $\frac{d}{\sqrt{\tan^2 \alpha + \tan^2 \beta}}$ (C) $\frac{d}{\sqrt{\cot^2 \alpha + \cot^2 \beta}}$ (D) $\frac{d}{\sqrt{\cot^2 \alpha - \cot^2 \beta}}$

39. AB is vertical tower. The point A is on the ground and C is the middle point of AB. The part CB subtend an angle α at a point P on the ground. If AP = nAB, then tan α =

(A)
$$n(n^2 + 1)$$
 (B) $\frac{n}{2n^2 - 1}$ (C) $\frac{n^2}{2n^2 + 1}$ (D) $\frac{n}{2n^2 + 1}$

40. The top of a hill observed from the top and bottom of a building of height h is at angles of elevation p and q respectively. The height of hill is :-

(A)
$$\frac{h \cot p}{\cot q - \cot p}$$
 (B) $\frac{h \cot p}{\cot p - \cot q}$ (C) $\frac{h \tan p}{\tan p - \tan q}$ (D) $\frac{h \tan p}{\tan q - \tan p}$

41. If A and B are two points on one bank of a straight river and C, D are two other points on the other bank of river. If direction from A to B is same as that from C to D and AB = a, \angle CAD = α , \angle DAB = β , \angle CBA = γ , then CD =

(A)
$$\frac{a\sin\beta\sin\gamma}{\sin\alpha\sin(\alpha+\beta+\gamma)}$$
 (B) $\frac{a\sin\alpha\sin\gamma}{\sin\beta\sin(\alpha+\beta+\gamma)}$ (C) $\frac{a\sin\alpha\sin\beta}{\sin\gamma\sin(\alpha+\beta+\gamma)}$ (D) None of these

42. A vertical lamp post of height 9 metres stands at the corner of a rectangular field. The angle of elevation of its top from the farthest corner is 30°, while from another corner it is 45°. The area of the field is :-

(A) $81\sqrt{2}$ m² (B) $9\sqrt{2}$ m² (C) $81\sqrt{3}$ m² (D) $9\sqrt{3}$ m²

43. ABC is a triangular park with AB = AC = 100 m. A clock tower is situated at the midpoint of BC. The angles of elevation of top of the tower at A and B are cot⁻¹(3.2) and cosec⁻¹(2.6) respectively. The height of tower is :-

(A)
$$\frac{25}{2}$$
 m (B) 25 m (C) 50 m (D) None of these

44. ABCD is a square plot. The angle of elevation of the top of a pole standing on D from A or C is 30° and that from B is θ , then tan θ is equal to :-

(A)
$$\sqrt{6}$$
 (B) $\frac{1}{\sqrt{6}}$ (C) $\frac{\sqrt{3}}{\sqrt{2}}$ (D) $\frac{\sqrt{2}}{\sqrt{3}}$

45. If a flagstaff subtends equal angles at four points A, B, C and D on the horizontal plane through the foot of the flagstaff, then A, B, C and D must be the vertices of :-

(A) Square (

146

(B) Cyclic quadrilateral (C) Rectangle

(D) Parallelogram

	ANSWER KEY														
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	В	А	А	B, C	В	D	В	D	D	D	D	С	В	В	А
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	А	В	С	А	С	D	А	В	В	А	В	А	В	С	С
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	А	С	В	С	В	С	D	С	D	В	В	А	В	В	В

SEQUENCE, SERIES & PROGRESSIONS

Sequence: A set of numbers occurring in a definite order or by a rule is called a sequence.

e.g. $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots, \frac{1}{n}, \dots$ is a sequence, since the numbers occur in a definite order. A sequence can be finite

or infinite according to the number of elements in it. If there are finite number of elements, then it is a finite

sequence and if there are infinite number of elements in it, then it is an infinite sequence and is denoted by [a_].

Series: Let $u_1, u_2, u_3, \dots, u_n$ be a given sequence of n numbers, where n is a specified positive integer. Then their sum i.e. $u_1 + u_2 + u_3 + \dots + u_n$ is called a finite series and the numbers $u_1, u_2, u_3, \dots, u_n$ are called terms of the series.

If $S_n = u_1 + u_2 + u_3 + \dots + u_n$, then S_n is called sum to n terms of the series and is denoted by

$$\sum_{r=1}^n u_r \text{ or } \sum u_r$$

e.g 2 + 4 + 6 ++ 30 is a finite series and can be denoted as $\sum_{n=1}^{15} 2n$ ($\sum \rightarrow Sigma$, summation notation)

Progressions: Sequences of special types are called progressions. The sequence $a_1, a_2, a_3, \ldots, a_n, \ldots$ or $\{a_n\}$

e.g. If $a_n = 2n$, then the sequence is 2, 4, 6, 8, ...

But to define a sequence, we may not always have a formula for the nth term. For example, the sequence of the prime numbers is 2, 3, 5, 7, 11, 13, for which a formula for the nth term may not be given.

ARITHMETIC PROGRESSION (A.P.)

A sequence $a_1, a_2, a_3, \dots, a_n$ is said to be in arithmetic progression, when $a_2 - a_1 = a_3 - a_2 = \dots$ i.e when the quantities increase or decrease continuously by a common quantity and this common quantity is called the common difference of the A.P.

The general term or the nth term is denoted by T_n.

Arithmetic Mean (A.M.): When three quantities are in A.P., the middle one is called arithmetic mean of the other two. Let a, m, b are in A.P., then A.M. of a and b

i.e. $m = \frac{a+b}{2}$

 \therefore A.M. = $\frac{a+b}{2}$

In general, if a, $m_1, m_2, m_3, ..., m_n$, b are in A.P. then the intermediate numbers $m_1, m_2, m_3, ..., m_n$ are called the n arithmetic means between a and b.

Also, the A.M. of a₁, a₂, a₃,, a_n which are in A.P. is

$$A.M. = \left(\frac{a_1 + a_2 + a_3 + \dots + a_n}{n}\right)$$

To Insert n A.Ms between a and b: If a and b are the first and last term respectively between which we have to insert n arithmetic means $m_1, m_2, m_3, ..., m_n$, then common difference $d = \frac{b-a}{n+1}$

Thus,

$$m_{1} = a + \frac{1}{n+1}$$

$$m_{2} = a + 2\left(\frac{b-a}{n+1}\right)$$

$$m_{3} = a + 3\left(\frac{b-a}{n+1}\right)$$

$$\dots$$

$$m_{n} = a + n\left(\frac{b-a}{n+1}\right)$$

b-a

Properties of Arithmetic Progressions:

1. If a certain number is added or subtracted to each term of a given A.P., then the resulting sequence is also an A.P. and it has the same common difference as that of the given A.P.

e.g., 1, 4, 7, 10, 13, 16,, then

3, 6, 9, 12, 15, 18,, is also an A.P.

and 2, 5, 8, 11, 14, 17,....., is also an A.P.

2. If each term of an A.P. is multiplied by a fixed constant (or divided by a non zero fixed constant), then the resulting sequence is also an A.P.

e.g., 6, 12, 18, 24, 30, 36, then

9, 18, 27, 36, 45, 54,, is also an A.P.

3, 6, 9, 12, 15, 18,, is also an A.P.

- **3**. If $m_1, m_2, m_3, \dots, m_k$ and $n_1, n_2, n_3, \dots, n_k$ are in A.P., then $(m_1 + n_1), (m_2 + n_2), (m_3 + n_3), \dots, (m_k + n_k)$ are also in A.P.
- **4**. If $m_1, m_2, m_3, ..., m_k$ and $n_1, n_2, n_3, ..., n_k$ are in A.P., then $(m_1 n_1), (m_2 n_2), (m_3 n_3), ..., (m_k n_k)$ are also in A.P.
- **5**. If there are odd number of terms in an A.P. as $a_1, a_2, a_3, \ldots, a_n$ then the middle most term is the A.M. of the given sequence.

e.g., 4, 10, 16, 22, 28

then,
$$\frac{4+10+16+22+28}{5} = 16$$

also $\frac{4+28}{2} = \frac{10+22}{2} = 16$ (A.M.)

- 6. If there are even number of terms in an A.P. as $a_1, a_2, a_3, \dots, a_n$ then $a_1 + a_n = a_2 + a_{n-1} = a_3 + a_{n-2}$ etc. e.g., 4, 10, 16, 22, 28, 34, 40, 46 then, 4 + 46 = 10 + 40 = 16 + 34 = 22 + 28 also $\frac{4+46}{2} = \frac{10+40}{2} = \frac{16+34}{2} = \frac{22+28}{2} = 25$ (A.M.)
- 7. The sum of an A.P. with n terms is given by $S_n = n(A.M.)$

EXERCISE

1. If the sides of a right triangle are in A.P., then the ratio of its smallest side to the greatest side is :-(A) 3 : 4 (B) 3 : 5 (C) 4 : 5 (D) None of these Sum of the series : $x + (x + 1) + (x + 2) + \dots + y$ is :-2. (A) $\frac{x+y}{2}(x-y+1)$ (B) $\frac{x+y}{2}(x+y+1)$ (C) $\frac{x+y}{2}(y-x+1)$ (D) None of these 3. Given that n A.M.'s are inserted between two sets of numbers a, 2b and 2a, b, where a, $b \in R$. If the mth means in the two cases are same then ratio a : b is equal to :-(B) (n - m + 1) : m(C)(n-m+1):n(D) m : (n - m + 1)(A) n : (n - m + 1)4. The sum of all the 2 digit numbers, which leave remainder 1 when divided by 4, is :-(A) 1212 (B) 1210 (C) 1012 (D) 1201 5. Sum of first n terms of an A.P. is an(n - 1). The sum of squares of these terms is :-(A) $\frac{a^2}{6}n(n-1)(2n-1)$ (B) $\frac{2a^2}{2}n(n+1)(2n+1)$ (C) $a^2n^2(n-1)^2$ (D) $\frac{2a^2}{2}n(n-1)(2n-1)$ The nth term of the series $1 + \frac{1}{1+3} + \frac{1}{1+3+5} + \dots$ is :-6. (A) $\frac{2}{n(n+1)}$ (B) $\frac{1}{n^2}$ (C) n² (D) None of these If a, b, c, d, e, f are A.M.s between 2 and 12, then a + b + c + d + e + f is equal to :-7. (B) 84 (D) None of these (A) 14 (C) 42 If A is the AM between a and b, then $\frac{A-2b}{A-a} + \frac{A-2a}{A-b} = :-$ 8. (A) 4 (C) - 4(D) None of these (B) 2 The nth term of the sequence 2, 5, 11, 20, 32, is :-9. (A) $\frac{3n^2 + 3n - 4}{2}$ (B) $\frac{3n^2 - 3n + 4}{2}$ (C) $\frac{3n^2 + 3n + 4}{2}$ (D) None of these 10. For the A.P. $a + (a + d) + (a + 2d) + + \ell$ of n terms :-(A) $S_n = \frac{n}{2} (a + \ell)$ (B) $S_n = \frac{n}{2} \{2a + (n-1)d\}$ (C) $S_n = \frac{n}{2} \{2\ell - (n-1)d\}$ (D) $S_n = \frac{(\ell - a + d)(a + \ell)}{2d}$ 11. If a, b, c are in A.P. then :-(A) the equation $(b - c) x^2 + (c - a) x + (a - b) = 0$, $b \neq c$ has equal roots (B) a^2 , b^2 , c^2 are in A.P. (C) $\lambda a + \mu$, $\lambda b + \mu$, $\lambda c + \mu$ are in A.P., $\lambda, \mu \in \mathbb{R}$ (D) None of these Which term of the sequence 8 - 6i, 7 - 4i, 6 - 2i, is a real number ? 12. (A) 7th (B) 6th (C) 5th (D) 4th 149

С	BSE : CLASS-X			
13.	The sum of n terms of a	series is $An^2 + Bn$, then the	ne nth term is :-	
	(A) A(2n – 1) – B	(B) A(1 – 2n) + B	(C) A(1 – 2n) – B	(D) A(2n – 1) + B
14.	In an A.P. sum of first p	terms is equal to the sum o	of first q terms. Sum of it's	first p + q terms is :-
	(A) – (p + q)	(B) p + q	(C) 0	(D) None of these
15.	$2, \sqrt{6}$, 4.5 are the following the following the following the following the following the following for the following the following for the following the following for	owing terms of an A.P.		
	(A) 101st, 207th, 309th	L	(B) 101st, 201st, 301st	
	(C) 2nd, 6th, 9th		(D) None of these	
16.	The sum of 40 A.M's be	tween two numbers is 120	. The sum of 50 A.M's betw	ween them is equal to :-
	(A) 130	(B) 160	(C) 150	(D) None of these
17.	The sum of first n terms	of an A.P. whose last term	is ℓ and common difference	ce is d is :-
	(A) $\frac{n}{2}[2\ell + (n-1)d]$	(B) $\frac{n}{2}[2\ell - (n-1) d]$	(C) $\frac{n}{2}[\ell + (n-1) d]$	(D) $\frac{n}{2}[\ell - (n-1)d]$
18.	In an A.P., sum of first r	n terms is 2n ² + 3n, it's com	nmon difference is :-	
	(A) 4	(B) 3	(C) 2	(D) 6
19.	The number of terms co	mmon to the arithmetic pro	ogressions 3, 7, 11,, 4	407 and 2, 9, 16,, 709 is :-
	(A) 51	(B) 14	(C) 21	(D) 28
20.	If $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ be the an	rithmetic mean between a a	and b, then the value of n i	s :-
	(A) 1	(B) 0	$(C) - \frac{1}{2}$	(D) –1
21.	The ratio of first to the l	ast of n A.M.'s between 5 a	and 35 is $1:4$. The value of	of n is :-
	(A) 9	(B) 11	(C) 10	(D) None of these
22.	If the sum of first n terms will be :-	s of an A.P. is Pn + Qn ² wh	ere P and Q are constants,	then common difference of A.P.
	(A) P + Q	(B) P – Q	(C) 2P	(D) 2Q
23.	Let the sequence $a_1, a_2,$	$a_3,, a_n,$ form an	A.P., then $a_1^2 - a_2^2 + a_3^2 - a_3^2 + a_3^2 - a$	$a_4^2 + \dots + a_{2n-1}^2 - a_{2n}^2$ is equal to
	(A) $\frac{n}{2n-1} (a_1^2 - a_{2n}^2)$	(B) $\frac{2n}{n-1} (a_{2n}^2 - a_1^2)$	$(C) \; \frac{n}{n+1} \big(a_1^2 + a_{2n}^2 \big) \;$	(D) None of these
24.	If x, y, z are in A.P., the	n(x + y - z)(y + z - x) is each	qual to :-	
	(A) $8xy + 3y^2 - 4x^2$	(B) $8xy - 3y^2 - 4x^2$	(C) $8xy - 3x^2 + 4y^2$	(D) $8xy - 3y^2 + 4x^2$
25.	If the ratio of 2nd to the	7th of n AM's between –7	and 65 is $1:7$, then n is a	equal to :-
	(A) 11	(B) 13	(C) 12	(D) None of these
26.		n(x + 2y - z)(x + z - y)(z + z)		
	(A) xyz	(B) 2xyz	(C) 4xyz	(D) None of these
27.	The value of n, for whic	h $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ is the A.M.	between a and b is :-	
	(A) 0	(B) 1	$(C) - \frac{1}{2}$	(D) –1

MATHEMATICS

If the A.M. of the roots of a quadratic equation is $\frac{8}{5}$ and the A.M. of their reciprocals is $\frac{8}{7}$, then the quadratic 28. equation is :-(B) $7x^2 - 16x + 5 = 0$ (A) $7x^2 + 16x + 5 = 0$ (C) $5x^2 - 16x + 7 = 0$ (D) $5x^2 - 8x + 7 = 0$ 29. If S denotes the sum of first n terms of the A.P. $a + (a + d) + (a + 2d) + \dots$ whose nth term is ℓ , then the common 'd' of the A.P. is :-(B) $\frac{\ell^2 - a^2}{2S - a + \ell}$ (C) $\frac{\ell^2 - a^2}{2S - (a + \ell)}$ (A) $\frac{\ell - a}{n}$ (D) None of these 30. For the A.P. $x + (x + 1) + (x + 2) + \dots + y$ (A) C. D. is 1 (B) Numer of terms is y - x + 1(C) Sum of the series is $\frac{y-x+1}{2}(x+y)$ (D) None of these If $\log_3 2$, $\log_3 (2^x - 5)$ and $\log_3 (2^x - \frac{7}{2})$ are in A.P., then x = 31. (B) 3 (A) 2 (C) 4 (D) 2 or 3 **32.** If the angles A < B < C of a triangle are in A.P. then :-(A) $c^2 = a^2 + b^2 - ab$ (B) $b^2 = a^2 + c^2 - ac$ (C) $c^2 = a^2 + b^2$ (D) None of these **33.** If a, b, c are in A.P., then (a + 2b - c)(2b + c - a)(c + a - b) equals :-(A) $\frac{1}{2}$ abc (B) abc (C) 2abc (D) 4abc **34.** If 1, $\log_{9}(3^{1-x} + 2)$, $\log_{3}(4 \cdot 3^{x} - 1)$ are in A.P., then x equals :-(A) $\log_3 4$ (B) 1 - log₄ 3 (C) $1 - \log_3 4$ (D) log₄ 3 The last term in the nth row of the following arrangement is :-35. 1 2 3 4 5 6 8 7 9 10 (C) $\frac{n(n+1)}{2}$ (B) n(n + 1)(A) n (D) None of these **36.** For an A.P., $\frac{S_{kn}}{S_n}$ is independent of n. The value of $\frac{d}{a}$ for this A.P. is :-(A) 1 (B) 2 (C) 3 (D) 4 **37.** If non-zero numbers a_1 , a_2 , a_3 , ..., a_n are in A.P. (whose common difference d is non-zero), then $a_1a_n\bigg(\frac{1}{a_1a_2}+\frac{1}{a_2a_3}+\frac{1}{a_3a_4}+\ldots\ldots+\frac{1}{a_{n-1}a_n}\bigg) \ \text{is independent of}:=$ (A) n (B) n and a_1 (D) a_1 , a_n and d. (C) n, a_1 and a_n

C	BSE :		455-	X						
38.					² . The	ratio c	of the p th	term to q th term i	s :-	
	(A) <u>p –</u>	-	11		3) <u>p</u>			(C) $\frac{2p-1}{2q-1}$		(D) None of these
39.	The valu	le of x	, for wl	hich lo	g ₂ (5.2)	⁽ + 1),	$\log_4(2^{1} \rightarrow$	(+1) and 1 are in	A.P. is :-	
	(A) log ₂	$\left(\frac{2}{5}\right)$		(H	3) log ₂	$\left(\frac{5}{2}\right)$		(C) $\log_2\left(\frac{3}{2}\right)$		(D) $\log_2\left(\frac{2}{3}\right)$
40.	Sum of	numbe	ers in th	ne n th r	row of	the arr	angeme	nt		
				1						
			2	3						
		5	6	7	8	9				
	10	11	12	13	14	15	16 is			
	(A) n ³ +	(n – 1) ³	(H	3) n ³ +	(n + 1)3	(C) $(2n - 1)^3$		(D) $(2n + 1)^3$
41.	The sun	n of nu	mbers	in the 1	nth rov	v of th	e followin	ng arrangement is		
				1						
			3		5					
		7		9		11				
	13		15		17		19			
	(A) n² (n	n + 1)		(F	3) n ³ –	n		(C) n ³		(D) None of these
42.	When a number				.P., x -	+ y + :	z = 15 a	nd when $\frac{1}{a}, \frac{1}{x}, \frac{1}{y}, \frac{1}{x}$	$\frac{1}{z}, \frac{1}{b}$ are in $\frac{1}{z}$	A.P., $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{5}{3}$; then the
	(A) 8, 2				3) 9, 1			(C) 7, 3		(D) None of these
43.		ns of fi	rst n te			.P.'s ar	e in the		n + 15). The	e ratio of their 12th terms is :-
	(A) $\frac{4}{9}$			(H	3) 7 16			(C) $\frac{3}{7}$		(D) None of these
44.	The sun	n of all	numbe	ers fror	n 1 to	1000	which ar	e neither divisible	by 2 nor by	5 is :-
	(A) 200	000		(F	3) 500	500		(C) 250000		(D) None of these
45.	The nex	kt term	of the	sequei	nce 9,	16, 27	7, 42,	is :-		
	(A) 53			(H	3) 61			(C) 57		(D) None of these

	ANSWER KEY														
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	В	С	D	В	D	В	С	С	В	A,B,C,D	A, C	D	D	С	D
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	С	В	А	В	А	А	D	А	В	А	С	А	С	С	A,B,C
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	В	В	D	С	С	В	D	С	А	А	С	В	В	А	В
152			0												

GEOMETRIC PROGRESSION (G.P.)

A sequence $a_1, a_2, a_3, \dots, a_n$ is said to be in geometric progression, when

$$\frac{a_2}{a_1} = \frac{a_3}{a_2} = \frac{a_4}{a_3} = r(say)$$

and a_1 , a_2 , a_3 ,, a_n are all non-zero numbers and r is said to be the common ratio of the G.P. e.g. (i) 2, 4, 8, 16, \rightarrow r = 2

(ii)
$$\frac{1}{2}, \frac{3}{2}, \frac{9}{2}, \frac{27}{2}, \dots \rightarrow r = 3$$

The general term or the nth term is denoted by T_n .

$$\Gamma_n = a.r^{(n-1)}$$

Geometric Mean (G.M.): When three quantities are in G.P., the middle one is called geometric mean of the other two. Let a, m, b are in G.P., then m is the G.M. of a and b

and since $\frac{m}{a} = \frac{b}{m}$

 $\therefore \qquad m^2 = ab \quad \Rightarrow \qquad m = \pm \sqrt{ab}$

In general if $\boldsymbol{a}_1^{},\,\boldsymbol{a}_2^{},\,\boldsymbol{a}_3^{},\,\ldots\!,\,\boldsymbol{a}_n^{}$ are in G.P., then

G.M. = $(a_1.a_2.a_3...a_n)^{1/n}$

To Insert n G.Ms between a and b: If a and b are the first and last term respectively between which we have to insert n geometric means $m_1, m_2, m_3, ..., m_n$ then

common ratio,

$$r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$$

$$m_1 = a \cdot \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$$

$$m_2 = a \cdot \left(\frac{b}{a}\right)^{\frac{2}{n+1}}$$

$$m_{3} = a \cdot \left(\frac{b}{a}\right)^{\frac{3}{n+1}}$$
$$\dots \dots \dots$$
$$\dots$$
$$m_{n} = a \cdot \left(\frac{b}{a}\right)^{\frac{n}{n+1}}$$

Properties of Geometric Progressions:

- 1. If each term of a G.P. is multiplied or divided by a certain non-zero constant, then the resulting sequence is also a G.P.
 - e.g. 3, 6, 12, 24, 48, 96, then 9, 18, 36, 72, 144, 288, is also a G.P. $\frac{9}{2}$, 9, 18, 36, 72, 144, ... is also a G.P.
- **2**. If a_1, a_2, a_3, \dots and b_1, b_2, b_3, \dots are two geometric progressions , then the sequence $a_1b_1, a_2b_2, a_3b_3, \dots$ is also a G.P.
 - e.g. 2, 6, 18, 54, 162, and 1, 2, 4, 8, 16, then 2, 12, 72, 432, 2592, is also a G.P.
- **3**. If there are odd number of terms in a G.P. as $a_1, a_2, a_3, \ldots, a_n$ then the middle most term is the G.M. of the given sequence.

e.g., 2, 4, 8, 16, 32

then, $(2 \times 4 \times 8 \times 16 \times 32)^{1/5} = 8$

also $(2 \times 32)^{1/2} = 8$

4. If there are even number of terms in a G.P. as $a_1, a_2, a_3, \dots, a_n$ then

 $\sqrt{a_1.a_n} = \sqrt{a_2.a_{n-2}} = \sqrt{a_3.a_{n-3}} = G.M.$

5. If we have to take three terms in G.P., it is convenient to take them as $\frac{m}{k}$, m, mk, where $\frac{m}{k}$, m and mk are consecutive terms of G.P. and k is the common ratio.

Similarly, we can take 5 terms of G.P. as $\frac{m}{k^2}, \frac{m}{k}$, m, mk, mk².

6. If we have to take four terms in G.P., it is convenient to take them as $\frac{m}{k^3}, \frac{m}{k}$, m, mk³, where $\frac{m}{k^3}, \frac{m}{k}$, m and mk³ are consecutive terms of G.P. and k² is the common ratio.

Similarly, we can take 6 terms of G.P. as $\frac{m}{k^5}, \frac{m}{k^3}, \frac{m}{k}$, mk, mk³, mk⁵.

- 7. If $a_1, a_2, a_3, \dots, a_n$ are in G.P. then $a_1^m, a_2^m, a_3^m, \dots, a_n^m$ are also in G.P.
- 8. If $a_1, a_2, a_3, \ldots, a_n$ are in G.P. (for every $a_i > 0$, $i \in I^+$) then $\log a_1, \log a_2, \log a_3, \ldots$, $\log a_n$ are in A.P.
- 9. The sum of an infinite G.P. is given as $S_{\infty} = \frac{a}{1-r} |r| < 1$, where a is the first term and r is the common ratio of the G.P. of infinite terms.

EXERCISE

1.	Find the 22nd term	n of the G.P. –2, 2, –2		
	(A) –22	(B) –2	(C) 2	(D) None of these
2.	Find the 7th term of	of the series $-\frac{1}{8} + \frac{1}{4} - \frac{1}{2}$	+1	
	(A) 8	(B) –16	(C) –8	(D) None of these
3	The 5th, 8th and 1	1th terms of G.P. are a,	b, c respectively, then which	n one of the following is true?
	(A) 2b = ac	(B) $b^2 = ac$	(C) $a + b + c = 0$	(D) None of these
4.	The 5th and 12th t	erms of a G.P. are 32 a	nd 4096 respectively. Find t	he nth term of the G.P.
	(A) 2 ⁿ	(B) n ²	(C) 2n ²	(D) None of these
5.	What is the least nu	umber of terms of the G.	P. 5 + 10 + 20 + who	se sum would surely exceed 10^6 ?
	(A) 17	(B) 18	(C) 19	(D) 21
6.	The A.M. of two po	ositive nubmbers is 15 ar	nd their G.M. is 12. What is	the smaller number?
	(A) 8	(B) 12	(C) 6	(D) 24
7.	The sum of three n	umbers in G.P. is 38 and	d their product is 1728. Find	l the greatest number.
	(A) 24	(B) 18	(C) 16	(D) 8
8.	The sum of first thr the G.P.	ee terms of a G.P. is to t	he sum of the first six terms	is 125:152. Find the common ratio of
	(A) $\frac{3}{5}$	(B) 3	(C) $\frac{2}{5}$	(D) $\frac{5}{8}$
9.			f the first two terms are eac n A.P. Find the product of th	h increased by 1 and the third term is hese three numbers.
	(A) 125	(B) 64	(C) 216	(D) 124
10.	The third term of G	G.P. is 4. The product of	first five terms is :	
	(A) 4 ³	(B) 4 ⁴	(C) 4 ⁵	(D) None of these
11.	The sum of first thr	ee terms of a G.P. is 21	and sum of their squares is	189. Find the common ratio.
	(A) $\frac{1}{2}$ or 2	(B) 3 or $\frac{1}{3}$	(C) 4 or $\frac{1}{4}$	(D) None of these
12.	The sum of the first a	and the third term of a G.F	P. is 15 and that of the 5th and	the 7th terms is 240. Find the 9th term.
	(A) 678	(B) 786	(C) 867	(D) 768
13.	Sum of three conse	ecutive terms in a G.P. is	42 and their product is 512	2. Find the largest of these numbers.
	(A) 28	(B) 16	(C) 32	(D) None of these
14.			ne two extremes be multiplied oduct of original numbers.	l each by 4 and the mean by 5 , the new
	(A) 8000	(B) 6000	(C) 7000	(D) None of these
15.	The sum of four ter third term	ms in G.P. is 312. The s	um of first and fourth terms	is 252. Find the product of second and
	(A) 500	(B) 150	(C) 60	(D) None of these
16.	A bouncing tennis t	all rebounds each time to	o a height equal to one half th	he height of the previous bounce. If it is en it hits the ground for the 10th time.
	(A) 47 $\frac{15}{16}$	(B) 37 $\frac{5}{16}$	(C) 67 11 16	(D) None of these

С	BSE : CLASS->			
17.	Find the sum to n term	ns of the series 7 + 77 + 77	7 + 7777 +	
	(A) $\frac{7}{9}$ {10(10 ⁿ - 1) - n}	(B) $\frac{7}{9} \{ \frac{10}{9} (10^n - 1) - n \}$	(C) $7\{\frac{10}{9}(10^n - 1) - n\}$	(D) None of these
18.	Find the sum to n term	ns of the series 0.8 + 0.88 +	- 0.888 +	
	(A) $\frac{8}{9} \left[\frac{1}{9} \{ 1 - (0.1)^n \} \right]$	(B) $\frac{8}{9} \left[\frac{1}{10} \{ 1 - (0.1)^n \} \right]$	(C) $\frac{8}{9} \left[n - \frac{1}{9} \{ 1 - (0.1)^n \} \right]$	(D) None of these
19.	If the pth, qth and rth	terms of a G.P. be respectiv	vely a, b and c then the value	of $a^{q-r} \cdot b^{r-p} \cdot c^{p-q}$ is :
	(A) 0	(B) 1	(C) 3	(D) $\frac{abc}{pqr}$
20.	If a, b, c are respective $(y - z)\log a + (z - x)\log z$		s of a G.P. then the value of	
	(A) 0	(B) 1	(C) 3	(D) None of these
21.				ast three form a G.P. The sum of first and the fourth number?
	(A) $85\frac{13}{25}$	(B) 25 $\frac{73}{85}$	(C) 83	(D) None of these
22.	Find the sum to n term	ns of the series $1 + 3 + 7 + $	15 +	
	(A) $[(2^n - 1) - n]$	(B) $[(2^n - 1) + n]$	(C) $[2(2^n - 1) - n]$	(D) None of these
23.	Find the sum of $\frac{1}{2} + \frac{3}{2^2}$	$\frac{3}{2} + \frac{5}{2^3} + \dots + \frac{2n-1}{2^n}$		
	$(A)\left(\frac{2n-3}{2^n}\right)$	$(B)\left(3-\frac{2n+3}{2^n}\right)$	$(C)\left(\frac{2n+3}{2^n}\right)$	(D) None of these
24.	Find the sum to n term	ns of the series $11 + 102 +$	1003 + 10004 +	
	(A) $(10^n - 1) + \frac{n(n+1)}{2}$	(B) $\frac{10}{9}(10^n - 1) + \frac{n(n+1)}{2}$	$\frac{1}{2}$ (C) $10^{n} + n^{2} - 1$	(D) None of these
25.	Find the sum to first n	groups of		
		(+ 9) + (1 + 3 + 9 + 27) + .		
	(A) $\frac{1}{2}(3^n - 1)$	(B) $\frac{3}{4}(3^n - 1) - \frac{n}{2}$	(C) n ² + 1	(D) None of these
26.	Find the sum to n term	ns of the following series : 2	2 + 5 + 14 + 41 +	
	(A) $\frac{3}{4}(3^{n-1}) + \frac{n}{2}$	(B) $\frac{3}{4}(3^n - 1) + \frac{n}{2}$	(C) (3n + 1)	(D) None of these
27.	Find the sum to n term	$ns: 1 + 2x + 3x^2 + 4x^3 + \dots$;x≠1	
	(A) 1 + nx ⁿ	(B) $\frac{x(x+1)}{2} + x^n$	(C) $\frac{1-x^n}{(1-x)^2}$	(D) $\left\{ \frac{1-x^n}{(1-x)^2} - \frac{nx^n}{(1-x)} \right\}$
28.	Find the sum to n term	ns of : $1 + 3x + 5x^2 + 7x^3 + 3x^3 + 5x^2 + 5x^3 + 5x^3$, x ≠ 1	
	(A) $2(1 - x^{n-1})$		(B) $\frac{2x(1-x^{n-1})}{(1-x^2)}$	
	(C) $\frac{2x(1-x^{n-1})}{(1-x)^2} + \frac{1-(2x^{n-1})}{(1-x)^2}$	$\frac{2n-1)x^n}{1-x)}$	(D) None of these	
29.	Find the sum to first n	terms : $1 + \frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \dots$		
	(A) $\frac{3}{4} - \frac{3+2n}{4(3^{n-1})}$	(B) $\frac{9}{4} - \frac{3}{4} \left[\frac{3+2n}{3^n} \right]$	(C) $2n - \left(\frac{1}{n}\right)^2$	(D) None of these
15	6			

30.	Find the sum to n term	ns of 3.2 + 5.2 ² + 7.2 ³ +		
	(A) $2^{n+2} - 2^{n+1} - 2$	(B) $n \cdot 2^{n+2} - 2^{n+1} + 2$	(C) $n.2^{n+2} + 2^{n-2}$	(D) None of these
31.	Find the sum of the se	pries: $1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots$	• to n terms.	
	(A) $\frac{35}{16} + \frac{7n}{5}$	(B) $\frac{12n-7}{16(5^{n-1})}$	(C) $\frac{35}{16} - \left[\frac{12n+7}{16(5^{n-1})}\right]$	(D) None of these
32.	Find the sum of the se	eries : 1.3 ² + 2.5 ² + 3.7 ² +	to 20 terms.	
	(A) 12896	(B) 187898	(C) 98970	(D) 188090
33.	Find the sum of the se	ries: $\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3}{1 + 3}$	$\frac{1}{+3^3}$ + to 16 terms.	
	(A) 224	(B) 446	(C) 2356	(D) None of these
34.		rs, the first three are in G.P. a ne as the fourth, find the thir		vith common difference 6. If the
	(A) –8	(B) 4	(C) 2	(D) can't be determined
35.		e G.P. is 16 and the sum of	squares of its terms is 153	$\frac{3}{5}$. Find the fourth term of the
	progression :- (A) $\frac{7}{16}$	(B) $\frac{5}{32}$	(C) $\frac{3}{16}$	(D) None of these
36.			to ∞ , $ a < 1$ and $ b < 1$	< 1, then the value of :
	$1 + ab + a^2b^2 + \dots$ to			
	(A) $\frac{xy}{x+y}$	(B) $\frac{x+y+1}{xy}$	(C) $\frac{xy}{x-y}$	(D) $\frac{xy}{x+y-1}$
37.		st payment is 100, then fir		one-tenth of what it was for the ayment which he can receive,
	(A) 900	(B) 9999	(C) 1000	(D) None of these
38.	Find the sum of the se	ries $\frac{1}{4} - \frac{3}{16} + \frac{9}{64} - \frac{27}{256} + \dots$		
	(A) $\frac{1}{3}$	(B) $\frac{1}{4}$	(C) $\frac{1}{7}$	(D) None of these
39.	The sum of first two te	erms of a G.P. is $\frac{5}{3}$ and the	sum to infinity of the series is	s 3. Find the first term.
	(A) 1	(B) $\frac{2}{3}$	(C) 5	(D) Both (A) and (C)
40.	A ball is dropped from	n a height of 96 feet and it	rebounds $\frac{2}{3}$ of the height it	falls. If it continues to fall and
		l distance that the ball can tr (B) 360 ft	0	(D) None of these

MATHEMATICS

	ANSWER KEY														
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	С	С	В	Α	В	С	В	Α	В	С	А	D	С	Α	Α
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	А	В	С	В	Α	D	С	В	В	В	В	D	С	В	В
Que.	31	32	33	34	35	36	37	38	39	40					
Ans.	С	D	В	С	С	D	С	С	D	С					
		*		da e e e e e e e e e e e e e e e e e e e						*	de				157
															157

CO-ORDINATE GEOMETRY

1.	The points (k – 1, k + 2), (k, k + 1), (k + 1, k) are	collinear for					
	(A) any value of k		(B) $k = -1/2$ only					
	(C) no value of k		(D) integral values of k o	nly				
2.	The area of the triangle	formed by the points (k, 2	2 - 2k), (- k + 1, 2k) and (- 4 - k, 6 - 2 k) is 70 units. For					
	(A) four real values of k		(B) no integral value of A	ζ				
	(C) two integral values o	f k	(D) only one integral value of k					
3	The quadrilateral ABCD	formed by the points A (0	0, 0), B (3, 4), C (7, 7) and D (4, 3) is a					
	(A) rectangle	(B) square	(C) rhombus	(D) parallelogram				
4.	The triangle with vertice	es A (2, 7), B (4, y) and C (-	- 2, 6) is right angled at A i	if				
	(A) y = −1	(B) y = 0	(C) y = 1	(D) none of these				
5.	The join of the points (–	(3, -4) and $(1, -2)$ is divid	ed by y-axis in the ratio.					
	(A) 1 : 3	(B) 2 : 3	(C) 3 : 1	(D) 3 : 2				
6.	The straight lines $x + y$	-4 = 0, 3x + y - 4 = 0 ar	dx + 3y - 4 = 0 form a tr	iangle which is				
	(A) isosceles	(B) right angled	(C) equilateral	(D) none of these				
7.	The points P(a, b + c), Q	Q(b, c + a) and $R(c, a + b)$ a	are such that $PQ = QR$ if					
	(A) a, b, c are in A.P.	(B) a, b, c are in G.P.	(C) a, b, c are in H.P.	(D) none of these				
8.	If a, b, c are in A.P. then	n the points (a, x), (b, y) and	d (c, z) are collinear if					
	(A) $x^2 = y$	(B) $x = z^2$	(C) $y^2 = z$	(D) x, y, z are in A.P.				
9.	The centroid of a triangle of the triangle is	e lies at the origin and the c	coordinates of its two vertice	es are (–8, 7) and (9, 4). The area				
	(A) 95/6	(B) 285/2	(C) 190/3	(D) 285				
10.	The mid points of the sid of BC is	des AB and AC of a triangl	e ABC are (2, - 1) and (- 4	4, 7) respectively, then the length				
	(A) 10	(B) 20	(C) 25	(D) 30				
11.	If the vertices of a triangl of the triangle are	e ABC are A (- 4, - 1), B (1	l, 2) and C (4, – 3), then the	e coordinates of the circumcentre				
	(A) (1/3, – 2/3)	(B) (0, – 4)	(C) (0, – 2)	(D) (- 3/2, 1/2)				
12.	The extremities of a diag the coordinates of the fo		e the points (3, -4) and (-6	5, 5). If third vertex is (– 2, 1) then				
	(A) (1, 0)	(B) (0, 0)	(C) (1, 1)	(D) none of these				
13.	The number of lines tha	t can be drawn through the	e point (4, — 5) at a distance	e 12 from the point (- 2, 3) is				
	(A) 0	(B) 1	(C) 2	(D) Infinite				

MATHEMATICS

159

14. If O is the origin and the coordinates of A and B are (x_1, y_1) and (x_2, y_2) respectively then OA 4 OB cos \angle AOB is equal to (B) $x_1x_2 + y_1y_2$ (C) $x_1y_2 + x_2y_1$ (D) $x_1x_2 - y_1y_2$ (A) $x_1y_1 + x_2y_2$ If the lines x + ay + a = 0, bx + y + b = 0 and cx + cy + 1 = 0 (a, b, c being distinct and $\neq 1$) are concurrent, 15. then the value of $\frac{a}{a-1} + \frac{b}{b-1} + \frac{c}{c-1}$ is (A) - 1(B) 0 (C) 1 (D) none of these The line $\frac{x}{3} + \frac{y}{4} = 1$ meets the axis of y and axis of x at A and B respectively. A square ABCD is constructed on 16. the line segment AB away from the origin, the coordinates of the vertex of the square farthest from the origin are (B) (4.7) (C)(6, 4)(D) (3.8) (A) (7, 3) ABCD is a quadrilateral. P (3, 7) and Q (7, 3) are the middle points of the diagonals AC and BD respectively. 17. The coordinates of the mean point (or the centre of mean position) of the vertices of the quadrilateral are (A)(0, 0)(B) (3, 3) (C) (5, 5) (D) (7, 7) The area of a triangle, two of whose vertices are (2, 1) and (3, -2) is 5. The coordinates of the third vertex can 18. not be (C) (-1, 20)(A)(6, -1)(B) (4, 5) (D) (2, 9) If the circumcentre of a triangle lies at the point (a, a) and the centroid is the mid point of the line joining the 19. points (2a + 3, a + 4) and (a - 4, 2a - 3); then the orthocentre of the triangle lies on the line (B) (a - 1) x + (a + 1) v = 0(A) v = x(C) (a - 1) x - (a + 1) y = 0(D) (a + 1) x - (a - 1) y = 2aIf A(at², 2at), B(a/t², -2a/t) and S (a, 0) are three points, then $\frac{1}{SA} + \frac{1}{SB}$ is independent of 20. (A) a (B) t (C) both a and t (D) none of these If the line $\sqrt{5}x = y$ meets the lines x = 1, x = 2, ..., x = n at points $A_1, A_2, ..., A_n$ respectively, then 21. $(OA_1)^2 + (OA_2)^2 + \dots + (OA_2)^2$ is equal to (A) $3n^2 + 3n$ (B) $2n^3 + 3n^2 + n$ (C) $3n^3 + 3n^2 + 2$ (D) (3/2) $(n^4 + 2n^3 + n^3)$ 22. One diagonal of a square is the portion of the line 3x + 2y = 12 intercepted between the axes. The coordinates of the extremity of the other diagonals not lying in the first quadrant are (A)(1, -1)(B)(-1, -1)(C)(-1, 1)(D) none of these 23. ABCD is a square in which A lies on the positive y-axis and B lies on the positive x-axis. If D is the point (12, 17), the coordinates of C are (B) (17, 5) (C) (14, 16) (A) (17, 12) (D) (15, 3) ABCD is a rhombus. Its diagonals AC and BD intersect at the point M and satisfy BD = 2AC. If the coordinates 24. of D and M are (1, 1) and (2, -1) respectively, the coordinates of A are (A) (- 3, - 1/2) (B) (1, -3/2)(C)(3/2, -1)(D) (1/2, -3)

		D	С	А	С	А	А	D	В	В	С	D	А	В	С
Que	. 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
							ANSWE		7						
	35x - 22y - 1 = 0 passes through (A) (a, b) (B) (b, a)						(C) (a, – b) (D) (– a, b)								
84.	If the stra	aight lii		- 2x – 9	9 = 0, 3										ght lin
	(A) (29/2) (29/2								5/2, 13)		
3.	The line AB such		-		-							-	pendicu	ılar bise	ector (
	(A) 11 /	8		(B) 8 / 11	L		(C) 88	3		(D) none	of thes	е	
82.	The cent area of t					origin a	ind the	coordir	nates of	its two	vertice	s are (-	8, 0) ar	nd (9, 1	1), th
	(A) $\sqrt{ a^2 }$	$-b^{2} _{/}$	/2	(B) a + b			(C) $a - b$ (D) $\sqrt{a^2 + b^2} / 2$							
81.	The dista is	ance be	etween	the or	tnocent	re and ti	ne circu	mcentr	e of the	e triangi	e with v	vertices	(0, 0), ((J, a) an	<u>a</u> (b, t
-	(A) (1, √			·	, , , ,	1/√3)		. , .	. ,	. ,		D) (1, 1			1/1 /
80.			the tri												
	(A) $(5/13, 0)$ (B) $(-7, 0)$ The incentre of the triangle with vertices $(1, \sqrt{3})$,						(C) $(13/5, 0)$ (D) $(15, 0)$								
29.	A ray of point (5,	3). Th		dinates	of the p	point A									u ngc
0	(A) (-4/3	, .			b) (0, 13)			. , .	/3, 8/3	,		D) (2/3		41	
,0.	The coordinates of the points A and B are respectively (– 3, 2) and (2, 3). P and Q are points on the line joining A and B such that $AP = PQ = QB$. A square PQRS is constructed on PQ as one side, the coordinates of R are														
28.	(A) $2a^2/t$		s of the		$2b^2/ca$		spactiv	(C) 20		(2 3) 1			of these		ioinin
27.	Area of t		ombus e				x ± by								
	(A) obtus	se angle	ed triar	ngle (B) acute	angled t	riangle	(C) rig	ght ang	led triar	ngle (D) none	of thes	9	
26.	The poir	nts (0, 8	8/3), (1	1, 3) ar	nd (82, 3	30) are 1	the vert	ertices of							
	(C) ((2 –	√2), (2	2 - √2	<u>2</u>))				(D) ((2	$2 - \sqrt{2}$), – (2 –	·√2))				
	(A) (2 +	$\sqrt{2}, 2$	$+\sqrt{2}$)				(B) ((2	$2 + \sqrt{2}$), - (2 +	+ √2))				
		If $(0, 1)$, $(1, 1)$ and $(1, 0)$ are the mid points of the sides of a triangle, the coordinates of its incentre are													

D D B

17

С

32

18

D

33

19

D

34

А

20

В

21

В

22

С

23

В

24

В

25

С

26

D

27

С

28

D

29

С

30

А

Que.

Ans.

Que.

Ans.

160

16

В

31

CREE · CLASS V

POLYGONS

★ DEFINITIONS & USEFUL CONCEPTS

- Polygon: It is a closed plane figure bounded by some straight Lines. A polygon is called a Triangle, Quadrilateral, Pentagon, Hexagon, Heptagon, Octagon. Nonagon and Decagon according as it contains 3,4,5,6, 7, 8, 9, 10 sides respectively.
- (ii) Convex & Concave Polygon : A polygon in which none of its interior angles is more than 180° is known as a convex polygon.

On the other hand, if at least one angle of a polygon is more than 180°, then it is said to be concave.

(iii) Regular Polygon: A polygon having all sides equal and all angles equal is called a regular polygon.

I. Each exterior angle of a regular polygon =
$$\left(\frac{360}{\text{Number of sides}}\right)^0$$

- II. Each interior angle = 180° (exterior angle).
- (iv) In a convex polygon of n sides, we have:
 - I. Sum of all interior angles = (2n 4) right angles;
 - **II.** Sum of all exterior angles = 4 right angles.
- (v) Number of diagonals of a polygon of n sides = $\frac{n(n-1)}{2} n$

EXERCISE

1	T1-	C 11		1	(- 1	. f 1							
1.	The sum $(A) 4$ with					-	10			right ar		/1	D) (9	4): _l_+	-
2.	(A) 4 rig The sum				B) 4n rig			• • •	· /	right af	igies	()	D) (2n -	4) rigni	angles
Ζ.				-		-	• -			4) • 1 /	1	/1	n.	1	
•	(A) 4 rig			-	B) 2n rig					1) right a	•		D) $rac{n}{2}$ rig	ght ang	les
3.	Each int	erior ai	ngle ot			gon is 1	.35°. Tł			ides of t	the poly	0			
	(A) 6	1 (1	•	B) 8	.11 1		(C)	5			(1	D) 9		
4.	Each an	gle of a	a regula			ill be :			1000			/1			
-	(A) 72°		1 (`	B) 90°			(C)	108°			()	D) 120°		
5.	Each int	erior ai	ngle of			agon is	:		1000			/1			
c	(A) 60°			,	B) 120°	1		. ,	108°	-1+- (0	(0) +:	,	D) 90°		
6.	If one of of a reg										'8) time	es of on	e of the	interio	rangie
	(A) 4		agon,		B) 5	561 01 51	ues of 1	(C)				(1	D) 8		
7.	The rati	o of the	o meas		-	e of a re	oular o	• • •		measure	of its a	•		s٠	
	(A) 1 : 2		2 meas		B) 1 : 3		-galar o		2:3	measure	01 110 0		D) $3:1$	0.	
8.	The sur		interio		-	nexagon	is :	(0)	2.0			(-	0,0.1		
	(A) 360°			-	B) 540°			(C)	720°			(]	D) 900°		
9.	The sur		interic	`	,	olvoon	is 1080			r of side	s of the	•			
	(A) 8				B) 6				10				D) 9		
10.	The ang	les of a	a penta	•		ratio 1	: 2 : 3			nallest a	ngle is	•	_,_		
	(A) 72°		1		B) 45°				54°		5		D) 27°		
11.	If each i	nterior	angle o	of a rec	gular po	lygon is	11 time	es its ex	terior a	angle, th	ie numł	per of s	ides of t	he poly	gon is
	(A) 22		0		B) 24	20			18	U ,			D) 11	1 9	0
12.	One and	gle of a	hexago	on is 1	00° and	all the o	other fiv	ve angle	s are e	qual. Wl	hat is th	ie meas	sure of e	each on	e of th
	equal angles ?														
	(A) 36°			(1	B) 144°			(C)	124°			(1	D) 72°		
13.	The rati										and th	e ratio	betwee	n their	interio
	angles is	52:3.	The nu				e polygo		-	tively;					
	(A) 4, 8	•			B) 5, 10		0	(C)	6, 12			(1	D) 8, 16)	
14.	How ma	any diag	gonals			hexagor	n ?					(1			
	(A) 6	1.	1	•	B) 4		0	(C)	11			(1	D) 9		
15.	How ma	any diag	gonals			decagor	י ר		05			(1			
17	(A) 19	1	07 1.		B) 29	1	c • 1		35			(1	D) 45		
16.	A polyge	on has	27 diag			imber of	t sides c	-		IS :		/1	10		
17	(A) 9	(•	B) 10			. ,	11	. 1	. (7)		D) 12		f 11.
17.	The rati		interio	or angle	e to the	exterio	r angle	or a reg	gular po	blygon i	s (7 : 2). The i	number	of sides	s of the
	(A) 6	15.		(1	B) 9			(C)	7			(1	D) 8		
18.	The sum	n of the	interic	•	,	ogular r	olugon			m of its	ovtoric		-	olugon	is ·
10.	(A) an o		ment		B) a nor		Joiygon		a deca		CALCIL		D) a hex		
19.	Each ex	0	nole of				40° ТҺ				ne nolu			agon	
± / ·	(A) 8				B) 9	301113 -		(C)			re boià		D) 10		
20.															
_ ~ .	polygon					onte		J.00 01 0		- 1-0.23				5. 0iut	un
	(A) 5			(]	B) 6			(C)	8			(]	D) 10		
				,				. ,				,			
						ΔΝ	ISWE	R K	EV						
Que.	1	2	3	4	5	AN 6		-N N 8	9	10	11	12	13	14	15
Ans.	D	A	B	C T	B	D	D	C	A	D	B	12 C	A	D	10 C
1 113.									А						Ľ

162

Que. Ans. 16

Α

17

В

18

D

19

В

20

В

LOGARITHMS

IMPORTANT FACTS AT A GLANCE

★ LOGARITHM

If a is a positive real number, other than 1 and $a^m = x$, then m is called the logarithm of x to the base a, written as $\log_a x$.

Thus, $\mathbf{a}^{\mathbf{m}} = \mathbf{x} \iff \log_{\mathbf{a}} \mathbf{x} = \mathbf{m}$.

Ex. (i) $10^2 = 100 \iff \log_{10} 100 = 2$

(ii)
$$5^3 = 125 \iff \log_5 125 = 3$$

(iii)
$$3^{-3} = \frac{1}{27} \iff \log_3\left(\frac{1}{27}\right) = -3$$
 (vi) $(.1)^2 = .01 \iff \log_{.1}(.01) = 2$.

★ PROPERTIES OF LOGARITHMS

- (i) $\log_a (xy) = \log_a x + \log_a y$ (ii) $\log_a \left(\frac{x}{y}\right) = \log_a x \log_a y$
- (iii) $\log_{a} (x^{k}) = k (\log_{a} x)$ (iv) $\log_{a} 1 = 0$ [:: $a^{0} = 1$]

(vi)
$$\log_a x = \frac{1}{\log_x a}$$

(vii)
$$\log_a x = \frac{\log_b x}{\log_b a}$$
. So, $\log_b x = \frac{\log x}{\log b}$ (viii) $a^{\log_a x} = x$; e.g. $5^{\log_5 7} = 7$.

 (ix) If a > 1 and x > 1, then $\log_a x > 0$.
 (x) If 0 < a < 1 and 0 < x < 1, then $\log_a x > 0$.

 (xi) If 0 < a < 1 and x > 1, then $\log_a x > 0$ (xii) If a > 1 and 0 < x < 1, then $\log_a x < 0$.

Remark: When base is not mentioned, it will be taken as 10.

Common Logarithm: Logarithms to the base 10 are known as common logarithms.

SOLVED EXAMPLES

Ex.1 Evaluate:

(v) $\log_{x} x = 1$

(i) $\log_2 32$ (ii) $\log_3 \left(\frac{1}{243}\right)$ (iii) $\log_{100} (0.1)$

 $\textbf{Sol.} \quad \text{(i)} \qquad \log_2 32 = m \ \Leftrightarrow \ 2^m = 32 = 2^5 \ \Leftrightarrow \ m = 5.$

(ii) $\log_3\left(\frac{1}{243}\right) = m \iff 3^m = \frac{1}{243} = \frac{1}{3^5} = 3^{-5} \iff m = -5$

(iii)
$$\log_{100} (0.1) = m \Leftrightarrow 100^m = 0.1 = \frac{1}{10} \Leftrightarrow 10^{2m} = 10^{-1}$$

$$\Leftrightarrow 2m = -1 \iff m = -\frac{1}{2}$$

Ex.2 Evaluate:

(i)
$$36^{\log_6 4}$$
 (ii) $\log_a 1$ (iii) $\log_{25} 25$.

Sol. (i) We know that: $a^{\log_a x} = x$.

$$\therefore \qquad 36^{\log_6 4} = (6^2)^{\log_6 4} = 6^{2\log_6 4} = 6^{\log_6 (4^2)} = 6^{\log_6 (16)} = 16$$

- $\text{(ii)} \qquad \log_a 1 = m \ \Leftrightarrow \ a^m = 1 = a^0 \ \Leftrightarrow m = 0.$
- (iii) We know that $\log_a a = 1$. So, $\log_{25} 25 = 1$.

Ex.3 Evaluate:

(i) $\log_9 27 - \log_{27} 9$ (ii) $\log_3 5 \cdot \log_{25} 27$

Sol. (i) $\log_9 27 = m \iff 9^m = 27 \iff 3^{3m} = 3^3 \iff 3m = 3 \iff m = I.$

And, $\log_{27} 9 = n \iff (27)^n = 9 \iff 3^{3n} = 3^2 \iff 3n = 2 \iff n = \frac{2}{3}$.

$$\therefore \ \log_9 27 - \log_{27} 9 = \left(1 - \frac{2}{3}\right) = \frac{1}{3}$$

(ii) We know that
$$\log_a b = \frac{\log b}{\log a}$$
.

$$\therefore \ \log_3 5. \ \log_{25} 27 = \frac{\log 5}{\log 3} \times \frac{\log 27}{\log 25} = \frac{\log 5}{\log 3} \times \frac{\log 3^3}{\log 5^2} = \frac{\log 5}{\log 3} \times \frac{3\log 3}{2\log 5} = \frac{3}{2}$$

Ex.4 If $\log_{\sqrt{8}} x = 3\frac{1}{3}$, find x.

Sol.
$$\log_{\sqrt{8}} x = \frac{10}{3} \Rightarrow x = (\sqrt{8})^{10/3} = (2^{3/2})^{10/3} = 2^{\left(\frac{3}{2} \times \frac{10}{3}\right)} = 2^5 = 32$$

Ex.5 Evaluate : $\log_2 (\log_3 81)$.

Sol.
$$\log_3 81 = m \Leftrightarrow 3^m = 81 = 3^4 \Leftrightarrow m = 4.$$

 $\therefore \ \log_2 (\log_3 81) = \log_2 4 = \log_2 (2^2) = 2 (\log_2 2) = 2 \ \text{H} \ 1 = 2.$

Ex.6 If $\log_{10} 2 = 0.30103$, then find the number of digits in 2^{64}

Sol. $\log_{10} (2^{64}) = 64 \text{ U} \log_{10} 2 = 64 \text{ U} 0.30103 = 19.26592$

 \therefore Its characteristic is 19.

Hence, the number of digits in 2^{64} is 20.

Ex.7 Evaluate: $\log_{b} a \log_{c} b \log_{d} c \log_{a} d$.

Sol. $\log_b a \cdot \log_c b \cdot \log_d c \cdot \log_a d$

 $\frac{\log a}{\log b} \times \frac{\log b}{\log c} \times \frac{\log c}{\log d} \times \frac{\log d}{\log a} = 1$

Ex.8. If $\log_{10} [98 + \sqrt{x^2 - 12x + 36}] = 2$, find x.

Sol. $\log_{10} [98 + \sqrt{x^2 - 12x + 36}] = 2 = \log_{10} 100$

$$\Leftrightarrow 98 + \sqrt{x^2 - 12x + 36} = 100 \Leftrightarrow \sqrt{x^2 - 12x + 36} = 2$$
$$\Leftrightarrow x^2 - 12x + 36 = 4 \Leftrightarrow x^2 - 12x + 32 = 0$$
$$\Leftrightarrow (x - 8) (x - 4) = 0 \Leftrightarrow x = 8 \text{ or } x = 4.$$

Ex.9 Find the value of $\log_{10} 20 + \log_{10} 30 - \frac{1}{2} \log_{10} 36$.

Sol.
$$\log_{10} 20 + \log_{10} 30 - \frac{1}{2} \log_{10} 36$$

= $\log_{10} 20 + \log_{10} 30 - \log_{10} (36^{1/2}) = \log_{10} 20 + \log_{10} 30 - \log_{10} 6$
= $\log_{10} \left(\frac{20 \times 30}{6}\right) = \log_{10} 100 = \log_{10} (10^2) = 2.$

(ii) log₁₀ 4.5

Ex.10. If $\log_{10} 2 = 0.3010$ and $\log_{10} 3 = 0.4717$, find :

(i) log₁₀ 25

Sol. (i) $\log_{10} 25 = \log_{10} \left(\frac{100}{4}\right) = \log_{10} 100 - \log_{10} 4 = 2 - 2 \log_{10} 2 = (2 - 2 \ 4 \ 0.3010) = 1.398$ (ii) $\log_{10} 4.5 = \log_{10} \left(\frac{9}{2}\right) = \log_{10} 9 - \log_{10} 2 = \log_{10} (3^2) - \log_{10} 2 = 2 \log_{10} 3 - \log_{10} 2$ $= (2 \ 4 \ 0.4771 - 0.3010) = 0.6532.$

EXERCISE

If $a^x = b$, then:			
(A) $\log_b x = a$	(B) $\log_a x = b$	(C) $\log_x a = b$	(D) $\log_a b = x$
If $\log_a b = c$, then:			
(A) $b^{c} = a$	(B) $a^{c} = b$	(C) $a^b = c$	(D) b ^a = c
log _a (pq) is equal to :			
(A) $(\log_a p) (\log_a q)$	(B) $\log_a p + \log_a q$	(C) $\log_a p - \log_a q$	(D) $\log_p a + \log_q a$
$\log_{a}\left(\frac{p}{q}\right)$ is equal to :			
(A) $\log_a p - \log_a q$	(B) $(\log_a p) \div (\log_a q)$	(C) $\log_a p + \log_a q$	(C) $\log_a q - \log_a p$
If $\log_a 4 = \frac{1}{4}$, then a is e	qual to :		
(A) 16	(B) 64	(C) 128	(D) 256
The value of $\log_{27} 9$ is :			
(A) $\frac{1}{3}$	(B) $\frac{3}{2}$	(C) $\frac{2}{3}$	(D) 3
The value of $\log_5\left(\frac{1}{625}\right)$	is :		
(A) 4	(B) – 4	(C) $\frac{1}{4}$	(D) $-\frac{1}{4}$
The value of $\log_{\sqrt{2}} 16$ is :			
(A) 4	(B) 8	(C) 16	(D) $\frac{1}{8}$
If $\log_8 x = \frac{2}{3}$, then the value of the second	alue of x is :		
(A) $\frac{3}{4}$	(B) $\frac{4}{3}$	(C) 4	(D) 3
If $\log_{x}\left(\frac{9}{16}\right) = -\frac{1}{2}$, then	the value of x is :		
$(A) - \frac{3}{4}$	(B) $\frac{3}{4}$	(C) $\frac{81}{256}$	(D) $\frac{256}{81}$
If $\log_{10} x = -2$, then x is	:		
(A) $\sqrt{10}$	(B) $\frac{1}{\sqrt{10}}$	(C) <u>1</u> 20	(D) $\frac{1}{100}$
If $\log_{10000} x = -\frac{1}{4}$, then	the value of x is :		
(A) $\frac{1}{10}$	(B) $\frac{1}{100}$	(C) $\frac{1}{1000}$	(D) $\frac{1}{10000}$
	(A) $\log_{b} x = a$ If $\log_{a} b = c$, then: (A) $b^{c} = a$ $\log_{a} (pq)$ is equal to : (A) $(\log_{a}p) (\log_{a}q)$ $\log_{a} \left(\frac{p}{q}\right)$ is equal to : (A) $\log_{a} p - \log_{a} q$ If $\log_{a} 4 = \frac{1}{4}$, then a is e (A) 16 The value of $\log_{27} 9$ is : (A) $\frac{1}{3}$ The value of $\log_{\sqrt{2}} 16$ is : (A) 4 The value of $\log_{\sqrt{2}} 16$ is : (A) 4 If $\log_{8} x = \frac{2}{3}$, then the value (A) $\frac{3}{4}$ If $\log_{x} \left(\frac{9}{16}\right) = -\frac{1}{2}$, then (A) $-\frac{3}{4}$ If $\log_{10} x = -2$, then x is (A) $\sqrt{10}$ If $\log_{10000} x = -\frac{1}{4}$, then	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

			N	IATHEMATICS
13.	The value of log _{.01} (1000)) is :		
	(A) $\frac{1}{3}$	(B) $-\frac{1}{3}$	(C) $\frac{3}{2}$	(D) $-\frac{3}{2}$
14.	The value of \log_2 (log ₅ 62	25) is :		
	(A) 2	(B) 5	(C) 10	(D) 15
15.	The value of $\log_{10} 0.000$	01 is :		
	(A) – 4	(B) – 5	(C) $-\frac{1}{4}$	(D) $-\frac{1}{5}$
16.	If $\log_x 0.1 = -\frac{1}{3}$, then the	he value of x is :		
	(A) 10	(B) 100	(C) 1000	(D) $\frac{1}{1000}$
17.	The value of $25^{\log_5 4}$ is :			
	(A) 16	(B) 32	(C) 20	(D) 625
18.	If $\log_{10} [\log_{10} (\log_{10} x)] =$		2	10
	(A) 10	(B) 10 ²	(C) 10 ³	(D) 10 ¹⁰
19.	The value of $\log_2 [\log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 $			
00	(A) 0 $f(x) = f(x) = f(x) = f(x) = f(x)$	(B) 1	(C) 2	(D) 4
20.	If $\log_2 [\log_3 (\log_2 x)] = 1$, (A) 512		(C) 19	
21.	(A) 512 If $\log_{10} 2x = 1$, the value	(B) 128	(C) 12	(D) 0
21.		01 x 13 .		
	(A) $\frac{1}{5}$	(B) 100	(C) 5	(D) 20
22.	$[\log_{10} 10 + \log_{10} 100 +$	$\log_{10} 1000 + \log_{10} 10000 +$	⊦ log ₁₀ 100000] is :	
	(A) 15	(B) log ₁ 11111	(C) log ₁₀ 1111	(D) 14 log ₁₀ 100
23.	The value of $\left(\log\frac{3}{5} + \log\right)$	$\left(\frac{5}{36} + \log 12\right)$ is equal to :		
	(A) log 5	(B) log 3	(C) log 2	(D) 0
24.	$\left(\log\frac{11}{5} + \log\frac{14}{3} - \log\frac{22}{15}\right)$) is equal to :		
	(A) log 2	(B) log 3	(C) log 5	(D) log 7
25.	The value of $\left(\frac{1}{3}\log_{10}128\right)$	$5 - 2\log_{10} 4 + \log_{10} 32$ is :		
	(A) 0	(B) $\frac{4}{5}$	(C) 2	(D) None of these
26.	The value of 7log $\left(\frac{16}{15}\right)$	$+5\log\left(\frac{25}{24}\right)+3\log\left(\frac{81}{80}\right)$	is :	
	(A) log 2	(B) log 4	(C) log 6	(D) log 8
27.	$\log_{-1/3} 81$ is equal to :			
	(A) – 27	(B) – 4	(C) 4	(D) 27
				167

С	BSE : CLASS-X			
28.	$\log_{2\sqrt{3}} 1728$ is equal to :			
	(A) 3	(B) 5	(C) 6	(D) 9
29.	$If \log_{10} x + \log_{10} y = z, t$	hen x is equal to :		
	(A) $\frac{z}{v}$	(B) $\frac{10^{2}}{v}$	(C) yz	(D) (10 ^z) y
	$(a^2) \dots (b^2)$	$\left(c^{2}\right)$		
30.	$\log\left(\frac{a^2}{bc}\right) + \log\left(\frac{b^2}{ac}\right) +$	$\log\left(\frac{b}{ab}\right)$ is :		
	(A) 1	(B) 0	(C) 2	(D) abc
31.	$\frac{1}{(\log_a bc) + 1} + \frac{1}{(\log_b ca) + 1}$	$\frac{1}{1} + \frac{1}{(\log_c ab) + 1}$ is equal to :		
	(A) 1	(B) 2	(C) 3	(D) $\frac{3}{2}$
32.	$\frac{1}{\log_{xy}(xyz)} + \frac{1}{\log_{yz}(xyz)} + \frac{1}$	$\frac{1}{\log_{zx}(xyz)}$ is equal to :		
	(A) 1	(B) 2	(C) 3	(D) 4
33.	The value of (log _b a Y log	g _c bЧ log _a c) is :		
	(A) 0	(B) 1	(C) abc	(D) a + b + c
34.	(log _b a) Y (log _a b) is equal	to :		
	(A) a	(B) b	(C) 0	(D) 1
35.	Which of the following st	atements is not correct ?		
	(A) $\log_{10} 1 = 0$		(B) $\log (1 + 2 + 3) = \log 1 + 3$	- log 2 + log 3
	(C) $\log_{10} 10 = 1$		(D) $\log (2 + 3) = \log (2 + 3)$	
36.	_	g y and $x = 1.15683$, then the function of the second se	he value of y is :	
	(A) 7.736	(B) 7.376	(C) 3.456	(D) 1.234
37.	Given that $\log_{10} 2 = 0.3$	010, the value of $\log_{10} 5$ is :		
	(A) 0.3241	(B) 0.6911	(C) 0.6990	(D) 0.7525
38.	If $\log_{10} 2 = 0.30103$, th	en the value of $\log_{10} 50$ is :		
	(A) .69897	(B) 1.30103	(C) 1.69897	(D) 2.30103
39.	If $\log_{10} 2 = 0.3010$, the	value of $\log_{10} 80$ is :		
	(A) 1.9030	(B) 1.6020	(C) 3.9030	(D) None of these
40.	The value of $(\log_9 27 + 1)$	og ₈ 32) is :		
	(A) 4	(B) 7	(C) $\frac{7}{2}$	(D) $\frac{19}{6}$
41.	If $\log_{10} 2 = 0.3010$, the	n the value of $\log_{10} 25$ is :		
	(A) 1.5050	(B) 1.3980	(C) 1.2040	(D) 0.6020
42.	If $\log 2 = 0.3010$ and 5 ²	x = 400, then x is equal to :		
	(A) 2.40	(B) 3.72	(C) 4.36	(D) 1
43.	(log ₁₀ 40000 - log ₁₀ 4)	equals :		
	(A) 4	(B) 10000	(C) log ₁₀ 39996	(D) 39996
16	68			

44.	Consider the following statements :									
	1. $\log_{10} (0.1)^2 + \log_1$	$_0 10 \cdot \log_{10} 100 = 0$								
	2. $\log_{10} \log_{10} 10 = 1$									
	3. $\log_{10} \sqrt{10} + \log_{10}$	$\sqrt{10} = 1$								
	Choose the correct answe									
	(A) 1 and 3 are correct		(C) 1 and 2 are correct	(D) all are correct						
45.	(log ₅ 3) Ч (log ₃ 625) equa	ıls :								
	(A) 1	(B) 2	(C) 3	(D) 4						
46.	If $\log_{10} 2 = 0.3010$ and	$\log_{10} 3 = 0.4771$, then the v	value of log ₁₀₀ (7.2) is :							
	(A) 1.9286	(B) 1.8573	(C) 1.8572	(D) .9286						
47.	The value of $\log_{10} 0.02$ l	ies between :								
	(A) 0 and 1	(B) - 2 and - 1	(C) 0 & – 1	(D) – 2 & – 3						
48.	If a, b, c are three consec	cutive integers, then log (ac +	- 1) has the value :							
	(A) $(\log b)^2$	(B) log b	(C) 2 log b	(D) log 2b						
49.	Given $\log_{10} 2 = 0.3010$	and $\log_{10} 3 = 0.4771$, then	the value of $\log_{10} 1.5$ is:							
	(A) 0.7161	(B) 0.1761	(C) 0.7116	(D) 0.7611						
50.	Given $\log 2 = 0.30103$,	the number of digits in 5^{20} is	S :							
	(A) 14	(B) 16	(C) 18	(D) 25						
51.	Value of $\log_{10} 1$ is :									
	(A) 1	(B) 0	(C) 0.1	(D) 0.01						
52.	Which one of the following									
	(A) $\log x + \log y = \log xy$		(B) $\log x + \log y = \log (x + y)$							
	(C) $\log x - \log y = \log \left(\frac{x}{y}\right)$		(D) $\log_x y = y^{\log x}$							
53.	Which of the following is	correct ?								
	(A) $\log m^n = (\log m)^n$		(B) $(\log_a b) $ H $(\log_b a) = 1$							
	(C) $\log (m H n) = (\log m H)$	log n)	(D) $\log (m - n) = \log m - \log m$	n						
54.	The value of (log $_{\rm b}$ a) (log $_{\rm c}$	b) (log _a c) is :								
	(A) 0	(B) 1	(C) 10	(D) log (abc)						
55.	If $\log_e x + \log_e (1 + x) =$									
	(A) $x^2 + x - 1 = 0$		(C) $x^2 + x - e = 0$	(D) $x^2 + x + e = 0$						
56.	If $\log_4 (x^2 + x) - \log_4 (x + x)$	-1) = 2, then the value of x $=$	is :							
	(A) 2	(B) 4	(C) 5	(D) 16						
57.	If $\log_8 x + \log_8 \frac{1}{6} = \frac{1}{3}$, the second sec	hen x is equal to :								
	(A) 12	(B) 16	(C) 18	(D) 24						
58.	The value of $\left(\frac{1}{\log_3 60} + \frac{1}{10}\right)$	$\frac{1}{\log_4 60} + \frac{1}{\log_5 60}$ is :								
	(A) 5	(B) 0	(C) 60	(D) 1						

С	BSE : CLASS-X										
59.	If $\log_{10} 125 + \log_{10} 8 = 2$	k, then x is equal to :									
	(A) – 3	(B) 3	(C) $\frac{1}{3}$	(D) .064							
60.	If $\log a + \log b = \log (a + b)$	b), then:									
	(A) a = b	$(B) b = \frac{1}{a}$	(C) b = $\left(\frac{a-1}{a}\right)$	$(D) b = \left(\frac{a}{a-1}\right)$							
61.	If $\log \frac{m}{n} + \log \frac{n}{m} = \log \frac{n}{m}$	(m + n), then:									
	(A) m + n = 1	(B) $\frac{\mathrm{m}}{\mathrm{n}} = 1$	(C) m – n = 1	(D) $m^2 - n^2 = 1$							
62.	The value of : $(\log_3 4)$ (log	g_4 5) (log ₅ 6) (log ₆ 7) (log ₇ 8)	(log ₈ 9) is :								
	(A) 2	(B) 7	(C) 8	(D) 33							
63.	If $\log (x + 1) + \log (x - 1)$	$= \log 3$, then x is equal to :									
	(A) 1	(B) 2	(C) 3	(D) 4							
64.	log 9										
	(A) 2	(B) 3	(C) 4	(D) $\frac{1}{2}$							
65.	The value of x satisfying $\log_{32} x = 0.8$ is :										
	(A) 25.6	(B) 16	(C) 10	(D) 12.8							
66.	If $\log_{10} x = 1.9675$, then $\log_{10} (1000 x)$ is :										
	(A) 19.675	(B) 4.9675	(C) 1.9675 Y 3	(D) 1967.5							
67.	The mantissa of log 3274	is .5150. The value of log (0.3274 is :								
	(A) 0.5150	(B) 1.5150	(C) 1.5150	(D) 2.5150							
68.	(log tan $1^{\circ} \cdot \log \tan 2^{\circ} \dots$. log tan 50°) is :									
	(A) 1	(B) – 1 5	(C) 0	(D) None of these							
69.	The characteristic in log (6	5.7432 Ч 10 ⁻⁵) is:									
70	(A) – 5	10 :	(B) – 4	(C) 1 (D) 5							
70.	If $\log_{10} 2 = .3010$, then I (A) .3322	(B) 3.2320	(C) 3.3222	(D) 5							
71.	If $\log_{10}(.1) = -1$, then lo		(C) 5.3222	(D) 5							
/1.	(A) - 1.3	(B) - 2	(C) – 2.3	(D) – 3							
72.		hen the value of $a^a b^b c^c$ is:									
	(A) abc	(B) $\frac{1}{abc}$	(C) 1	(D) log (abc)							
73.	$16^{\log_4 5}$ equals :										
	(A) 5	(B) 16	(C) 25	(D) $\frac{5}{64}$							
_											

			M.	ATHEMATICS					
74.	$\log_5 5 \cdot \log_4 9 \cdot \log_3 2 \sin$	nplifies to :							
	(A) 2	(B) 1	(C) 5	(D) $\frac{3}{2}$					
75.	$\log_2 7$ is :								
	(A) an integer	(B) a prime number	(C) a rational number	(D) an irrational number					
76.	If log a, log b, log c are in	A.P., then :							
	(A) a, b, c are in G.P.		(B) a^2 , b^2 , c^2 are in G.P.						
	(C) a, b, c are in A.P.		(D) $\log a^2$, $\log b^2$, $\log c^2$ are in G.P .						
77.	The value of $\left[\frac{1}{\log_{(p/q)} x}\right]$	+ $\frac{1}{\log_{(q/r)} x}$ + $\frac{1}{\log_{(r/p)} x}$ is	:						
	(A) 3	(B) 2	(C) 1	(D) 0					
78.	If $\log_4 x + \log_2 x = 6$, the	en the value of x is :							
	(A) 2	(B) 4	(C) 8	(D) 16					
79.	The value of $3^{-\frac{1}{2}\log_3 9}$ is :								
	(A) – 1		(B) $-\frac{1}{3}$	(C) $\frac{1}{3}$ (D) $-\frac{3}{2}$					
80.	If $10^{x} = 1.73$ and $\log_{10} 1$	1730 = 3.2380, then x equa	ls:						
	(A) 1.2380	(B) 0.2380	(C) 2.380	(D) 2.2380					

	ANSWER KEY														
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	D	В	В	Α	D	С	В	В	С	D	D	Α	D	Α	В
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	С	Α	D	В	Α	С	Α	D	D	A	Α	В	С	В	В
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	Α	В	В	D	D	В	С	С	Α	D	В	В	Α	Α	D
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	Α	В	С	В	Α	В	В	В	В	A	D	A	D	В	D
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	Α	Α	В	В	В	В	С	С	Α	С	D	С	С	В	D
Que.	76	77	78	79	80		-			-	-		-	-	
Ans.	Α	D	D	С	В										
t t															

- ★ Locus : If a point moves according to some given geometrical conditions, then the path traced out by the moving point is called its locus.
- **Ex.1** If a point moves in such a way that its distance from a given fixed point is always constant, then the locus of the path is a circle.
- **Ex.2** The locus of a point equidistant from two given points A and B is the perpendicular bisector of AB.
- **Ex.3** The locus of a point equidistant from two intersecting lines is the angle bisector of the angle made by these lines.
- **Ex.4** If ℓ and m be two lines such that $\ell \parallel m$. If a point moves in such a way that it is equidistant from ℓ and m, then locus is a line in just mid way between ℓ and m and parallel to each one of them.
- **Ex.5** Locus of the centres of all circles passing through two given points A and B is the perpendicular bisector of AB.
- **Ex.6** If the bisectors of $\angle B$ and $\angle C$ of a quadrilateral ABCD intersect in P, then P is equidistant from AB and CD.
- **Ex.7** If AB is a fixed line segment, then the locus of a point P such that $\angle APB = 90^\circ$, is a circle with AB as diameter.
- **Ex.8** The locus of the vertices of isosceles triangles having a common base is the perpendicular bisector of the base.
- **Ex.9** AB is a fixed line. The locus of a point P so that $AB^2 = AP^2 + BP^2$ is a circle with AB as diameter.
- Ex.10 The locus of mid-points of equal chords of a circle is the circle concentric with the given circle and radius equal to the distance of equal chords from the centre.
- Ex.11 The locus of mid points of parallel chords of a circle is 'the diameter of the circle perpendicular to the parallel chords.

EXERCISE	Ξ
----------	---

Consider a point which moves such that its distances from two given points A and B are equal. Then, the locus of the point P is : a circle with centre at A. (A) (B) a circle with centre at B. (C) a straight line passing through either A or B (D) a straight line, which is the right bisector of AB. 2. The locus of a point P which moves in such a way that its distance from a fixed straight line is constant, is : (A) a circle. (B) a straight line perpendicular to the given line. (C) a straight line parallel to the given line. (D) a straight line intersecting the given straight line at an acute angle. 3. The locus of a point equidistant from two intersecting lines, is :

(A) a single line (B) a pair of lines (C) a circle (D) a parabola

- 4. Which of the following statements is incorrect?
 - (A) A circle is the locus of a point.
 - (B) The locus of the points which are equidistant from three non-collinear points, is the centre of the circle passing through the given points.
 - The locus of the points which are equidistant from three distinct points on a line, is a line parallel to the (C) given line.
 - (D) None of these

1.

- 5. The locus of a point inside a circle and equidistant from two given points on the circle :
 - (A) is the chord joining the two points.
 - (B) is a circle with the line joining the two points, as its diameter.
 - is the perpendicular bisector of the chord joining the two points. (C)
 - (D) does not exist.
- 6. The locus of the mid points of equal chords of a circle is :
 - (A) a circle (B) a diameter
 - (C) a line not passing through the centre of the circle (D) none of these
- 7. If AB is a line segment, then the locus of a point P such that $\angle APB=90^\circ$, is:
 - (A) a circle with AB as diameter. (B) the triangle APB.
 - (C) a semi circle with AB as diameter. (D) the perpendicular bisector of AB.
- 8. The locus of the mid points of parallel chords of a circle, is :
 - (A) a circle. (B) the line joining the mid points.
 - the diameter perpendicular to the given chords. (D) none of these (C)
- 9. In a $\triangle ABC$, the point on BC which is equidistant from sides AB and AC, is the one where:
 - the median from A meets BC (A)
 - the altitude on BC meets BC (C)
- (B) the bisector of $\angle BAC$ meets BC
- (D) the perpendicular bisector of BC intersects BC.

10. Two fixed circles are in the same plane. If P is a point in that plane and the tangents from P to the two circles are equal, then the locus of P: (A) is a straight line perpendicular to the line joining the centres. (B) is a circle (C) is a parabola (D) cannot be determined 11. Let C be a circle. A point P moves such that the tangents from P to C, include an angle of 60°. The locus of P is: (A) a straight line (B) a circle concentric with C a circle touching C (D) a circle intersecting C at two points (C) 12. A number of triangles on the same base and on the same side of it are of equal areas. Then, the locus of their vertices is : (A) a straight line parallel to the base (B) a circle with the base as the diameter (C) a straight line parallel to the altitude of a triangle on the given base (D) None of these 13. P is a point in a rectangle ABCD such that PA + PD = PC + PB. The locus of P is : (A) diagonal AC or BD. (B) perpendicular bisector of AB or BC (D) none of these (C) a circle 14. The locus of the vertices of the isosceles triangles formed on a given base BC is: (A) a circle (B) a line perpendicular to BC (C) bisector of BC (D) right bisector of BC 15. If a point P moves such that the sum of the squares of its distances from two fixed points A and B is a constant, then the locus of P is : (A) a straight line (B) a circle (C) the perpendicular bisector of AB (D) an arbitrary curve 16. A wheel of diameter 80 cm rolls on a plane straight road. The locus of the centre of the wheel is : (A) a circle of radius 40 cm (B) a circle of radius 20 cm (C) a straight line parallel to the path of the wheel and 40 cm distant from it (D) a straight line parallel to the path of the wheel and 80 cm distant from it 17. The locus of the mid points of the equal chords of a given circle is : (A) the concentric circle with radius equal to the distance of the chords from the centre of the given circle (B) the concentric circle with radius equal to half the distance of the chords from the centre of the given circle (C) the largest equilateral triangle inscribed in the given circle (D) None of these

ANSWER KEY															
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	D	С	В	С	С	В	Α	С	В	Α	В	Α	В	D	В
Que.	16	17													
Ans.	С	Α													
474															