POLYNOMIALS

SECTION A: (1 MARK)

1.	Form a quadratic polynomial whose zeroes are $\frac{2}{3}$ and $\frac{-1}{3}$. (CBSE 2008)	$(9x^2 - 3x - 2)$
2.	If -1 is a zero of the polynomial $f(x) = x^2 - 7x - 8$, then find the other zero.	(8)
	(CBSE 2012)	
3.	If α and β are the zeroes of the polynomial $2x^2 + 5x + 1$, then what is the value of $\alpha + \beta + \alpha\beta$?	(-2)
4.	If the sum of the zeroes of the polynomial $P(x) = 3k^2 + (2k + 1)x - k + 5$ is equal to the product of the zeroes, then, find the value of k.	(k = -6)
5.	The graph of the polynomial $f(x) = 2x - 5$ is a straight line. At which point does the graph intersect the x-axis? (CBSE 2012)	$\left(\frac{5}{2},0\right)$

SECTION B: (2 MARKS)

6.	For what value of k, (-4) is a zero of the polynomial $x^2 - x - (2k+2)$? (CBSE 2009)	К = 9
7.	If m and n are the zeroes of the polynomials $3x^2 + 11x - 4$, find the value of $\frac{m}{n} + \frac{n}{m}$. (CBSE 2012)	$\left(\frac{-145}{12}\right)$
8.	If the zeroes of the polynomial $x^2 + px + q$ are double in value to the zeroes of the polynomial $2x^2 - 5x - 3$, find the values of p and q.	p = -5, q = -6.
9.	Form a quadratic polynomial whose one zero is $3 + \sqrt{2}$ and the sum of zeroes is 6.	$x^2 - 6x + 7$
10.	If $ax^2 - 7x + c$ has 14 as the sum of the zeroes and also as product of the zeroes,	a = ½
	find the value of a and c. (HOTS)	c = 7.

SECTION C: (3 MARKS)

11.	Find the zeroes of the following polynomials by factorization method and verify	
	the relations between the zeroes and the coefficients of the polynomial.	(i)1/2 <i>,</i> √2
	(i) $2x^2 - (1 + 2\sqrt{2})x + \sqrt{2}$ (EXEMPLAR)	_
	(ii) $y^2 + \frac{3}{2}\sqrt{5}y - 5.$	(ii) $-2\sqrt{5}, \frac{\sqrt{5}}{2}$
12.	Find the value of a and b so that $8x^4 + 14x^3 - 2x^2 + ax + b$ is exactly divisible	a= -7
	by $4x^2 + 3x - 2$. (CBSE 2011)	b= 2.
13.		$\frac{1}{(2u^2)}$ 7u
	polynomial whose zeroes are $\frac{1}{p}$ and $\frac{1}{q}$. (CBSE 2011)	$\frac{1}{2}(2y^2 - 7y + 6)$
14.	On dividing a polynomial $3x^3 + 4x^2 + 5x - 13$ by a polynomial g(x), the quotient	$x^{2} - 2x + 3$
	and the remainder were (3x + 10) and (16x – 43) respectively. Find g(x).	
	(CBSE 2011)	
15.	If one zero of a polynomial $3x^2 - 8x + 2k + 1$ is seven times the other, find the	K = 2/3.
	value of k. (CBSE 2011)	

SECTION D: (4 MARKS)

- 16. Find the other zeroes of the polynomial $P(x) = 2x^4 + 7x^3 19x^2 14x + 30$, if two of its zeroes are $\frac{3}{2}$ and -5. (CBSE 2011)
- 17. Given $\sqrt{2}$ is a zero of the cubic polynomial $6x^3 + \sqrt{2}x^2 10x 4\sqrt{2}$, find the other two zeroes.
- 18. If the polynomial $x^4 6x^3 + 16x^2 25x + 10$ is divided by another polynomial $x^2 2x + k$, the remainder comes out to be x + a, find the values of k and a.
- 19. If the remainder on division of $x^3 + 2x^2 + kx + 3 by (x 3)is$ 21, find the quotient and the value of k. Hence find the zeroes of the cubic polynomial $x^3 + 2x^2 + kx 18$. (EXEMPLAR)
- $\frac{-\sqrt{2}}{2}, \frac{-2\sqrt{2}}{3}$ K = 5 a = -5. k = -9Quotient = $x^{2} + 5x + 6$ Zeroes: 3,-2, -3 k = 2.

 $-\sqrt{2},\sqrt{2}$

20. If α and β are the zeroes of the polynomial $p(x) = 2x^2 + 5x + k$ satisfying the relation $\alpha^2 + \beta^2 + \alpha\beta = \frac{21}{4}$, then find the value of k.