WORKING STRESS METHOD

Slenderness ratio (λ)

$$\lambda = \frac{\text{effective length}}{\text{least lateral dimension}}$$

if $\lambda > 12$ then the column is long.

Load carrying capacity for short column

$$P = \sigma_{sc} A_{sc} + \sigma_{cc} \cdot A_{c}$$

where, $A_c = Area of concrete, A_c = A - A_{sc}$

 σ_{sc} = Stress in compression steel

 σ_{cc} = Stress in concrete

A = Total area

A_{sc} = Area of compression steel

Load carrying capacity for long column

$$P = C_r(\sigma_{sc}A_{sc} + \sigma_{cc}A_c)$$

where, $C_r = Reduction factor$

$$C_r = 1.25 - \frac{l_{\text{eff}}}{48 \, \text{B}}$$

or

$$C_{\rm r} = 1.25 - \frac{l_{\rm eff}}{160 \, i_{\rm min}}$$

where, $l_{\rm eff}$ = Effective length of column

B = Least lateral dimension

 i_{min} = Least radius of gyration and i_{min} =

$$i_{min} = \sqrt{\frac{I}{A}}$$

where I = Moment of inertia and A = Cross-sectional area

Effective length of column

Table. Effective Length of Compression Members

Degree of End	Symbol	Theoretical	Recommended
Restraint of compression members	(ii)	value of Effective Length (iii)	value of Effective Length (iv)
Effectively held in position at both ends, restrained against rotation at one end	<u> </u>	0.70 1	0.80 1
Effectively held in position at both ends, but not restrained against rotation	<u> </u>	1.00 <i>I</i>	1.00 <i>I</i>
Effectively held in position and restrained against rotation at one end, and at the other restrained against rotation but not held in position		1.00 <i>I</i>	1.20 I
Effectively held in position and restrained against rotation in one end, and at the other partially restrained against rotation but not held in position		mim &	1.50 1
Effectively held in position at one end but not restrained against rotation, and at the other end restrained against rotation but not held in position		2.00 1	2.00 1
Effectively held in position and restrained against rotation at one end but not held in position nor restrained against rotation at the other end	min.	2.00 1	2.00 1

Column with helical reinforcement

Strength of the column is increased by 5%

$$P = 1.05 (\sigma_{sc} A_{sc} + \sigma_{cc} A_{c}) \rightarrow For short column$$

$$P = 1.05 C_r (\sigma_{sc} A_{sc} + \sigma_{cc} A_c)$$
 \rightarrow For long column

Helical reinforcement is provided only for circular columns.

Longitudinal reinforcement

- (a) Minimum area of steel = 0.8% of the gross area of column
- (b) Maximum area of steel
 - (i) when bars are not lapped $A_{max} = 6\%$ of the gross area of column
 - (ii) when bars are lapped $A_{max} = 4\%$ of the gross area of column

Minimum number of bars for reinforcement

For rectangular column → 4

For circular column → 6

- Minimum diameter of bar = 12 mm
- Maximum distance between longitudinal bar = 300 mm
- Pedestal: It is a short length whose effective length is not more than 3 times of least lateral dimension.
- Transverse reinforcement (Ties)

$$\phi = \max \operatorname{imum} \begin{cases} \frac{1}{4} \cdot \phi_{\text{main}} \\ 6 \text{ mm} \end{cases}$$

 $\phi = \max \operatorname{imum} \left\{ \frac{1}{4} \cdot \phi_{\text{main}} \right\}$ where, $\phi_{\text{main}} = \operatorname{dia} \operatorname{of} \operatorname{mainbar}$

 ϕ = dia of bar for transverse reinforcement

Pitch (p)

$$\phi = minimum \begin{cases} least \ lateral \ dimension \\ 16 \ \phi_{min} \\ 300 \ mm \end{cases}$$

where, ϕ_{min} = minimum dia of bar

Helical reinforcement

(i) Diameters of helical reinforcement is selected such that

$$0.36 \left[\frac{A_g}{A_c} - 1 \right] \frac{f_{ck}}{f_y} \le \frac{V_h}{V_c}$$

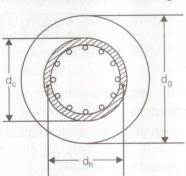
Pitch of helical reinforcement: (p)

(a) p × 75 mm (b) p × $\frac{1}{6}$ dc (c) p × 3 ϕ_h (d) p × 25 mm where, $d_c = \text{Core diameter} = d_c - 2 \times \text{clear cover to helical reinforcement}$

$$A_G = Gross area = \frac{\pi}{4} (d_g)^2$$

 $d_{\rm g} = {\rm Gross}\,{\rm diameter}$ $V_{\rm h} = {\rm Volume}\,{\rm of}\,{\rm helical}\,{\rm reinforcement}\,{\rm in}\,{\rm unit}\,{\rm length}\,{\rm of}\,{\rm column}$

1000 mm


 ϕ_h = Diameter of steel bar forming the helix

$$V_h = \left(\frac{1000}{p}\right) (\pi d_h) \frac{\pi}{4} (\phi_h)^2$$

$$A_c = \frac{\pi}{4} (d_c)^2 \qquad V_c = A_c \times 1$$

d_b = centre to centre dia of helix $= d_a - 2 clear cover - \phi_h$

 ϕ_h = diameter of the steel bar forming the helix

Some others I.S recommendations

- Slenderness limit
 - (i) Unsupported length between end restrains ≯ 60 times least lateral dimension.
 - If in any given plane one end of column is unrestrained than

its unsupported length
$$\times \frac{100B^2}{D}$$
.

(b) All column should be designed for a minimum eccentricity of

$$e_{min} = maximum \begin{cases} \frac{l}{500} + \frac{'B' \text{ or 'D'}}{30} \\ 20 \text{ mm} \end{cases}$$

LIMIT STATE METHOD

1. Slenderness ratio (λ)

$$\lambda = \frac{\text{effective length}}{\text{least lateral dimension}}$$

$$\lambda < 12 \rightarrow \text{Short column}$$

2. Eccentricity

$$e_{min} = maximum \begin{cases} \frac{l}{500} + \frac{B/D}{20} \\ 30 \text{ mm} \end{cases}$$

If $e_{min} \le 0.05 D$ then it is a short axially loaded column.

$$P_u = 0.4 f_{ck} A_c + 0.67 f_y A_{sc}$$

where, P = axial load on the column

3. Short axially loaded column with helical reinforcement

$$P_u = 1.05(0.4 f_{ck} A_c + 0.67 f_y A_{sc})$$

- 4. Some others I.S Recommendations
 - (a) Slenderness limit
 - (i) Unsupported length between end restrains

 ✓ 60 times least lateral dimension.
 - (ii) If in any given plane one end of column is unrestrained than its unsupported length $\Rightarrow \frac{100B^2}{D}$,
 - (b) All column should be designed for a minimum eccentricity of

$$e_{min} = maximum \begin{cases} \frac{l}{500} + \frac{B}{30} \\ 20 \text{ mm} \end{cases}$$

Concentrically Loaded Columns

where e = 0, i.e, the column is truly axially loaded.

$$P_{\rm u} = 0.45 f_{\rm ck} A_{\rm c} + 0.75 f_{\rm y} A_{\rm sc}$$

This formula is also used for member subjected to combined axial load and bi-axial bending and also used when e > 0.05D.