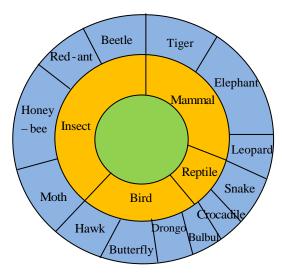
GENERAL APTITUDE

Q. No. 1 - 5 Carry One Mark Each


1.	"India is a country of rich heritage and cultural diversity." Which one of the following facts best supports													
	the claim made in the above sentence?													
	(A)	India is a union of 28 states and 7 union ter	ritories											
	(B)	India has a population of over 1.1 billion	India has a population of over 1.1 billion											
	(C)	India is home to 22 official languages and thousands of dialects												
	(D)	The Indian cricket team draws players from over ten states												
Answ	ver:	(C)												
2.	The v			compared to 60 last year. The Indian Rupee has										
	(A)	Depressed (B) Depreciated	(C)	Appreciated (D) Stabilized										
Ansv	ver:	(B)												
3.	'Adv	vice' is												
	(A)	a verb	(B)	a noun										
	(C)	an adjective	(D)	both a verb and a noun										
Ansv		(B)	, ,											
4.	The 1	next term in the series 81, 54, 36, 24 is												
Ansv	ver:	(16)												
_														
5.		thich of the following options will the express												
	(A)	M < R > P > S	(B)	M > S < P < F										
	(C)	Q < M < F = P	(D)	P = A < R < M										
Ansv	ver:	(D)												
				••••••										

Q. No. 6 – 10 Carry Two Marks Each

- **6.** Find the next term in the sequence: 7G, 11K, 13M, ____
 - (A) 15Q
- (B) 17Q
- (C) 15P
- (D) 17P

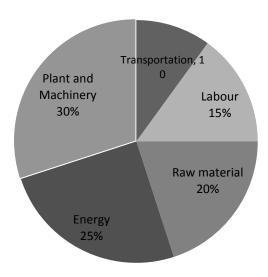
Answer: (B)

7. The multi-level hierarchical pie chart shows the population of animals in a reserve forest. The correct conclusions from this information are:

- (i) Butterflies are birds
- (ii) There are more tigers in this forest than red ants
- (iii) All reptiles in this forest are either snakes or crocodiles
- (iv) Elephants are the largest mammals in this forest
- (A) (i) and (ii) only

(B) (i), (ii), (iii) and (iv)

(C) (i), (iii) and (iv) only


(D) (i), (ii) and (iii) only

Answer: (D)

8. A man can row at 8 km per hour in still water. If it takes him thrice as long to row upstream, as to row downstream, then find the stream velocity in km per hour.

Answer: (4)

9. A firm producing air purifiers sold 200 units in 2012. The following pie chart presents the share of raw material, labour, energy, plant & machinery, and transportation costs in the total manufacturing cost of the firm in 2012.

The expenditure on labour in 2012 is Rs. 4,50,000. In 2013, the raw material expenses increased by 30% and all other expenses increased by 20%. If the company registered a profit of Rs. 10 lakhs in 2012, at what price (in Rs.) was each air purifier sold?

Answer:	(20,000)

10. A batch of one hundred bulbs is inspected by testing four randomly chosen bulbs. The batch is rejected if even one of the bulbs is defective. A batch typically has five defective bulbs. The probability that the current batch is accepted is ______.

Answer: (0.8145)

MECHANICAL ENGINEERING

Q. No. 1 – 25 Carry One Mark Each

1. Consider a 3×3 real symmetric matrix S such that two of its eigen values are $a \ne 0$, $b \ne 0$ with respective

eigenvectors $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$. If $a \neq b$ then $x_1y_1 + x_2y_2 + x_2y_2$ equals

- (A) *a*
- (B) *b*
- (C) *ab*
- (D) 0

Answer: (D)

- **2.** If a function is continuous at a point,
 - (A) The limit of the function may not exist at the point
 - (B) The function must be derivable at the point
 - (C) The limit of the function at the point tends to infinity
 - (D) The limit must exist at the point and the value of limit should be same as the value of the function at that point

Answer: (D)

3. Divergence of the vector field $x^2z\hat{i} + xy\hat{j} - yz^2\hat{k}$ at (1, -1, 1) is

- (A) 0
- (B) 3
- (C) 5

(D) 6

Answer: (C)

4. A group consists of equal number of men and women. Of this group 20% of the men and 50% of the women are unemployed. If a person is selected at random from this group, the probability of the selected person being employed is ______.

Answer: (0.64 to 0.66)

5. The definite integral $\int_{1}^{3} \frac{1}{x} dx$ is evaluated using Trapezoidal rule with a step size of 1. The correct answer is _____.

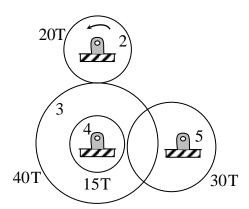
Answer: (1.1 to 1.2)

6.		A rotating steel shaft is supported at the ends. It is subjected to a point load at the centre. The maximum bending stress developed is 100 MPa. If the yield, ultimate and corrected endurance strength of the shaft									
	mate	material is 300 MPa, 500 MPa and 200 MPa, respectively, then the factor of safety for the shaft is									
Ans	wer:	(1.9 to 2.1)									
7.	Two	solid circular s	shafts of radii	R1 and R2 are	e subjec	eted to san	ne torque. Th	e maximum	ı shear stresses		
	deve	loped in the two	shafts are τ_1	and τ_2 . If $R1/r$	R2=2,	then τ_2/τ_1	is				
Ans	wer:	(7.9 to 8.1)									
8.		Consider a single degree-of-freedom system with viscous damping excited by a harmonic force. A resonance, the phase angle (in degree) of the displacement with respect to the exciting force is									
	(A)	0	(B) 4:	5	(C)	90	(D) 135			
Ans	wer:	(C)									
9.	A m	ass m ₁ of 100	kg travelling	with a uniform	velocit	ty of 5 m/s	s along a line	collides wi	ith a stationary		
		mass m ₂ of 1000 kg. After the collision, both the masses travel together with the same velocity. The coefficient of restitution is									
	(A)	0.6	(B) 0	.1	(C)	0.01	(D)) 0			
Ans	wer:	(D)									
10.	Whi	ch one of follow	ving is NOT c	correct?							
10.	(A)	Which one of following is NOT correct? (A) Intermediate principal stress is ignored when applying the maximum principal stress theory									
	(- - /		r		-PP	, 6 11	P.III	I 20200 (

(B) The maximum shear stress theory gives the most accurate results amongst all the failure theories

As per the maximum strain energy theory, failure occurs when the strain energy per unit volume

(C)


exceeds a critical value

(D) As per the maximum distortion energy theory, failure occurs when the distortion energy per unit volume exceeds a critical value

(B) Answer:

Gear 2 rotates at 1200 rpm in counter clockwise direction and engages with Gear 3. Gear 3 and Gear 4 are 11. mounted on the same shaft. Gear 5 engages with Gear 4. The numbers of teeth on Gears 2, 3, 4 and 5 are 20, 40, 15 and 30, respectively.

The angular speed of Gear 5 is

- 300 rpm counter clockwise (A)
- 300 rpm clockwise (B)
- (C) 4800 rpm counter clockwise
- (D) 4800 rpm clockwise

Answer: (A)

- **12.** Consider a long cylindrical tube of inner and outer radii, r_{i} and r_{o} , respectively, length, L and thermal conductivity, k. Its inner and outer surfaces are maintained at T_i and T_0 , respectively $(T_i > T_O).$ Assuming one-dimensional steady state heat conduction in the radial direction, the thermal resistance in the wall of the tube is

- (A) $\frac{1}{2\pi kL} \ln \left(\frac{r_{l}}{r_{o}}\right)$ (B) $\frac{1}{2\pi r_{i}k}$ (C) $\frac{1}{2\pi r_{i}k} \ln \left(\frac{r_{o}}{r_{i}}\right)$ (D) $\frac{1}{4\pi r_{i}k} \ln \left(\frac{r_{o}}{r_{i}}\right)$

Answer: (C)

13.	Whi	Which one of the following pairs of equations describes an irreversible heat engine?									
	(A)	$\oint \delta Q > 0$ and $\oint \delta Q$	$\frac{\delta Q}{T} < 0$			(B)	$\oint \delta \mathbf{Q} < 0$ and	and $\oint \frac{\delta Q}{T}$	< 0		
	(C)	$\oint \delta Q > 0$ and $\oint \frac{\delta}{\delta}$	$\frac{\delta Q}{T} > 0$			(D)	$\oint \delta Q < 0$ ar	and $\oint \frac{\delta Q}{T}$	>0		
Ansv	wer:	(A)									
14.	Cons	sider the turbulen	t flow o	f a fluid thr	ough a ci	roula	r nine of di	amatar	D Ida	antify the correc	t pair of
14.		Consider the turbulent flow of a fluid through a circular pipe of diameter, D. Identify the correct pair of statements.									
	I.	The fluid is wel	ll-mixed								
	II.	The fluid is unr									
	III.	$Re_D < 2300$	inxed								
	IV.	$Re_D > 2300$									
	(A)	I, III	(B)	II, IV	((C)	II, III		(D)	I, IV	
Ansv		(D)	, ,			` ′	·		, ,	·	
15 .	For a	a gas turbine power plant, identify the correct pair of statements.									
	Р.	Smaller in size	compare	d to steam p	power plar	nt for	same power	er output			
		Starts quickly c	ompared	l to steam po	ower plant	t					
	R.	Works on the p	rinciple	of Rankine	cycle						
	S.	Good compatib	ility with	n solid fuel							
	(A)	P, Q	(B)	R, S	((C)	Q, R		(D)	P, S	
Ansv	wer:	(A)									
16.	A so	ource at a tempera	ature of	500 K prov	rides 1000	kJ c	of heat. The	e tempera	ıture (of environment	is 27°C.
		maximum useful		-				-			
Ansv		(399 to 401)									

17.	A sa	mple of m	oist air at	a total pressu	re of 85 KPa	has a	ı dry	bulb temper	rature of 30°C (saturation vapour
	_				-		lative	humidity o	of 65%, the absolute humidity (in
				r kg of dry ai	r 18	•			
Ansv	wer:	(19 to 22							
10	Tho	••••••••••••••••••••••••••••••••••••••	ilizina mai	nlv thamal a	nanay fan nam		a mat	tamial ia	
18.	(A)		nic Machini	nly thermal e	••	novin (B)	•		l Machining
	(C)		e Jet Mach			(D)		er Beam Ma	-
				8		(2)		v. = v	······································
Ansv	wer:	(D)							
			_						
19.	The a	actual sale	es of a prod	luct in differe	nt months of	a par	ticula	r year are gi	ven below:
	Se	eptember	October	November	December	Janı	uary	February	
		180	280	250	190	24	40	?	
	The	torecast (of the sale	s, using the	4-month mo	oving	aver	age method	l, for the month of February is
		·							
Ansv	wer:	(239 to 2	241) 						
20.			• .			•	•		ol on an AISI 1020 steel rod. The
				-	cut is 0.5 mi	m. Th	ie tod	ol has a side	e cutting edge angle of 60°. The
	uncu	t chip thic	kness (in n	nm) is	·				
Ansv	wer:	(0.08 to							
21.	A mi	nimal spa	nning tree	in network flo	ow models in	volve	es		
	(A)	All the r	nodes with	cycle/loop all	lowed				
	(B)	All the r	nodes with	cycle/loop no	ot allowed				
	(C)	Shortest	path between	een start and	end nodes				
	(D)	All the r	nodes with	directed arcs					
Ansv	wer:	(B)							

22. Match the casting defects (Group A) with the probable causes (Group B):

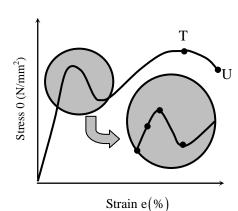
Group A	Group B					
(p) Hot tears	1: Improper fusion of two streams of liquid metal					
(q) Shrinkage	2: Low permeability of the sand mould					
(r) Blow holes	3: Volumetric contraction both in liquid and solid stage					
(s) Cold Shut	4: Differential cooling rate					

(A) P-1, Q-3, R-2, S-4

(B) P-4, Q-3, R-2, S-1

(C) P-3, Q-4, R-2, S-1

(D) P-1, Q-2, R-4, S-3


Answer: (B)

- **23.** Cutting tool is much harder than the workpiece. Yet the tool wears out during the tool-work interaction, because
 - (A) extra hardness is imparted to the workpiece due to coolant used
 - (B) oxide layers on the workpiece surface impart extra hardness to it
 - (C) extra hardness is imparted to the workpiece due to severe rate of strain
 - (D) vibration is induced in the machine tool

Answer: (C)

24. The stress-strain curve for mild steel is shown in the figure given below. Choose the correct option referring to both figure and table.

Point on the graph	Description of the point
Р	Upper Yield Point
Q	2. Ultimate Tensile Strength
R	3. Proportionality Limit
S	4. Elastic Limit
Т	5. Lower Yield Point
U	6. Failure

- (A) P-1, Q-2, R-3, S-4, T-5, U-6
- P-3, Q-1, R-4, S-2, T-6, U-5
- (C) P-3, Q-4, R-1, S-5, T-2, U-6
- (D) P-4, Q-1, R-5, S-2, T-3, U-6

Answer: (C)

25. The hot tearing in a metal casting is due to

- high fluidity (A)
- high melt temperature (B)
- (C) wide range of solidification temperature
- low coefficient of thermal expansion (D)

(C) Answer:

Q. No. 26 – 55 Carry Two Marks Each

An analytic function of a complex variable z = x + iy is expressed as f(z) = w(x, y) + iv(x, y), where **26.** $i = \sqrt{-1}$. If $u(x, y) = x^2 - y^2$, then expression for v(x, y) in terms of x, y and a general constant c would be

- (A) xy + c (B) $\frac{x^2 + y^2}{2} + c$ (C) 2xy + c (D) $\frac{(x y)^2}{2} + c$

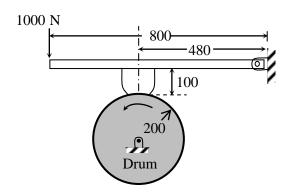
Answer:

Consider two solutions $x(t) = x_1(t)$ and x(t) and $x(t) = x_2(t)$ of the differential equation **27.** $\frac{d^2x(t)}{dt^2} + x(t) = 0, t > 0, \text{ Such that } x_1(0) = 1, 1, \frac{dx_1(t)}{dt} = 0, x_2(0) = 0, \frac{dx_2(t)}{dt} = 1.$

The Wronskian $W(t) = \begin{vmatrix} x_1(t) & x_2(t) \\ \frac{dx_1(t)}{dt} & \frac{dx_2(t)}{dt} \end{vmatrix}$ at $t = \frac{\pi}{2}$ is

- (A) 1
- (B) -1
- (C) 0

Answer: (A)


- **28.** A machine produces 0, 1 or 2 defective pieces in a day with associated probability of 1/6, 2/3 and 1/6, respectively. The mean value and the variance of the number of defective pieces produced by the machine in a day, respectively, are
 - (A) 1 and 1/3
- (B) 1/3 and 1
- (C) 1 and 4/3
- (D) 1/3 and 4/3

Answer: (A)

29. The real root of the equation $5x - 2\cos x - 1 = 0$ (up to two decimal accuracy) is _____.

Answer: (0.53 to 0.56)

30. A drum brake is shown in the figure. The drum is rotating in anticlockwise direction. The coefficient of friction between drum and shoe is 0.2. The dimensions shown in the figure are in mm.

The braking torque (in N.m) for the brake shoe is ______.

Answer: (63 to 65)

31. A body of mass (*M*) 10 kg is initially stationary on a 45° inclined plane as shown in figure. The coefficient of dynamic friction between the body and the plane is 0.5. The body slides down the plane and attains a velocity of 20 m/s.

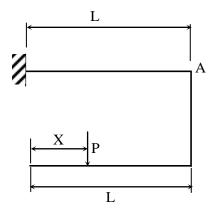
Answer: (56 to 59)

32. Consider a simply supported beam of length, 50h, with a rectangular cross-section of depth, h, and width, 2h. The beam carries a vertical point load, P, at its mid-point. The ratio of the maximum shear stress to the maximum bending stress in the beam is

- (A) 0.02
- (B) 0.10
- (C) 0.05
- (D) 0.01

Answer: **(D)**

33. The damping ratio of a single degree of freedom spring-mass-damper system with mass of 1 kg, stiffness 100 N/m and viscous damping coefficient of 25 N.s/m is _____.


Answer: (1.24 to 1.26)

34. An annular disc has a mass m, inner radius R and outer radius 2R. The disc rolls on a flat surface without slipping. If the velocity of the centre of mass is v, the kinetic energy of the disc is

- (A) $\frac{9}{16}$ mv² (B) $\frac{11}{16}$ mv² (C) $\frac{13}{16}$ mv²

Answer:

35. A force P is applied at a distance x from the end of the beam as shown in the figure. What would be the value of x so that the displacement at 'A' is equal to zero?

- 0.5L
- (B) 0.25L
- (C) 0.33L
- (D) 0.66L

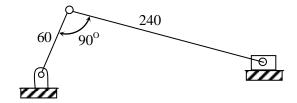
Answer: **(C)**

36. Consider a rotating disk cam and a translating roller follower with zero offset. Which one of the following pitch curves, parameterized by t, lying in the interval 0 to 2π , is associated with the maximum translation of the follower during one full rotation of the cam rotating about the center at (x, y) = (0, 0)?

(A)
$$x(t) = \cos t$$
, $y(t) = \sin t$

(B)
$$x(t) = \cos t$$
, $y(t) = 2\sin t$

(C)
$$x(t) = \frac{1}{2} + \cos t$$
, $y(t) = 2\sin t$ (D) $x(t) = \frac{1}{2} + \cos t$, $y(t) = \sin t$


(D)
$$x(t) = \frac{1}{2} + \cos t$$
, $y(t) = \sin t$

Answer: **(C)**

37. A four-wheel vehicle of mass 1000 kg moves uniformly in a straight line with the wheels revolving at 10 rad/s. The wheels are identical, each with a radius of 0.2 m. Then a constant braking torque is applied to all the wheels and the vehicle experiences a uniform deceleration. For the vehicle to stop in 10 s, the braking torque (in N.m) on each wheel is _____.

(9 to 11) **Answer:**

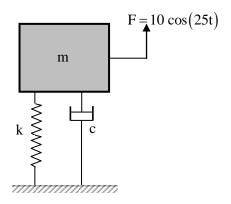
38. A slider-crank mechanism with crank radius 60 mm and connecting rod length 240 mm is shown in figure. The crank is rotating with a uniform angular speed of 10 rad/s, counter clockwise.

For the given configuration, the speed (in m/s) of the slider is _____.

(0.54 to 0.68) **Answer:**

39. Consider an objective function $Z(x_1, x_2) = 3x_1 + 9x_2$ and the constraints

$$x_1 + x_2 \le 8$$
,


$$x_1 + 2x_2 \le 4,$$

$$x_1 \ge, x_2 \ge 0,$$

The maximum value of the objective function is _____.

Answer: (17 to 19)

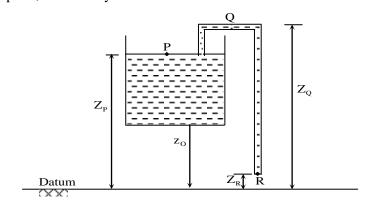
40. A mass-spring-dashpot system with mass m = 10 kg, spring constant k = 6250 N/m is excited by a harmonic excitation of $10 \cos(25t)$ N. At the steady state, the vibration amplitude of the mass is 40 mm.

The damping coefficient (*c*, in N.s/m) of the dashpot is _____.

Answer: (9 to 11)

41. A certain amount of an ideal gas is initially at a pressure P_1 and temperature T1. First, it undergoes a constant pressure process 1-2 such that T2 = 3T1/4. Then, it undergoes a constant volume process 2-3 such that T3 = T1/2. The ratio of the final volume to the initial volume of the ideal gas is

.....


- (A) 0.25
- (B) 0.75
- (C) 1.0
- (D) 1.5

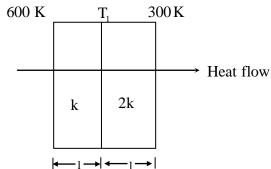
Answer: (B)

42. An amount of 100 kW of heat is transferred through a wall in steady state. One side of the wall is maintained at 127°C and the other side at 27°C. The entropy generated (in W/K) due to the heat transfer through the wall is _____.

Answer: (80 to 85)

43. A siphon is used to drain water from a large tank as shown in the figure below. Assume that the level of water is maintained constant. Ignore frictional effect due to viscosity and losses at entry and exit. At the exit of the siphon, the velocity of water is

(A) $\sqrt{2g(Z_Q - Z_R)}$

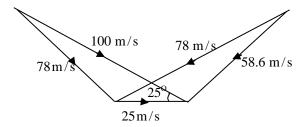

(B) $\sqrt{2g(Z_P - Z_R)}$

(C) $\sqrt{2g(Z_O - Z_R)}$

(D) $\sqrt{2gZ_0}$

Answer: (B)

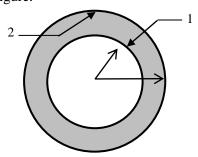
44. Heat transfer through a composite wall is shown in figure. Both the sections of the wall have equal thickness (*l*).


The conductivity of one section is k and that of the other is 2k. The left face of the wall is at 600 K and the right face is at 300 K. The interface temperature Ti (in K) of the composite wall is _____.

Answer: (399 to 401)

45. A fluid of dynamic viscosity 2×10^{-5} kg/m.s and density 1 kg/m³ flows with an average velocity of 1 m/s through a long duct of rectangular (25 mm \times 15 mm) cross-section. Assuming laminar flow, the pressure drop (in Pa) in the fully developed region per meter length of the duct is _____.

Answer: (1.7 to 2.0)


46. At the inlet of an axial impulse turbine rotor, the blade linear speed is 25 m/s, the magnitude of absolute velocity is 100 m/s and the angle between them is 25°.

The relative velocity and the axial component of velocity remain the same between the inlet and outlet of the blades. The blade inlet and outlet velocity triangles are shown in the figure. Assuming no losses, the specific work (in J/kg) is _____.

Answer: (3250 to 3300)

47. A solid sphere of radius r1 = 20 mm is placed concentrically inside a hollow sphere of radius r2 = 30 mm as shown in the figure.

The view factor F21 for radiation heat transfer is

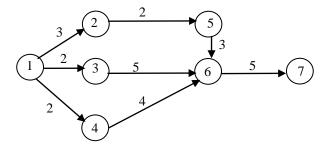
$$(A)\frac{2}{3}$$

$$(B)\frac{4}{9}$$

$$(C)\frac{8}{27}$$

$$\left(D\right)\frac{9}{4}$$

Answer: (B)

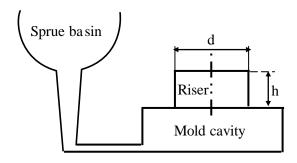

48. A double-pipe counter-flow heat exchanger transfers heat between two water streams. Tube side water at 19 liter/s is heated from 10°C to 38°C. Shell side water at 25 liter/s is entering at 46°C. Assume constant properties of water, density is 1000 kg/m³ and specific heat is 4186 J/kg K. The LMTD (in °C) is

Answer: (10.8 to 11.2)

49. A diesel engine has a compression ratio of 17 and cut-off take place at 10% of the stroke. Assuming ratio of specific heats (γ) as 1.4, the air-standard efficiency (in percent) is _____.

Answer: (58 to 62)

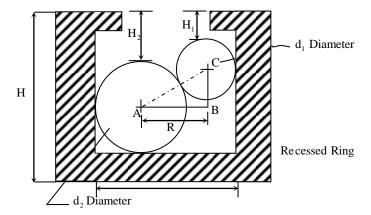
50. Consider the given project network, where numbers along various activities represent the normal time. The free float on activity 4-6 and the project duration, respectively, are


- (A) 2, 13
- (B) 0, 13
- (C) -2, 13
- (D) 2, 12

Answer: (A)

- **51.** A manufacturer can produce 12000 bearings per day. The manufacturer received an order of 8000 bearings per day from a customer. The cost of holding a bearing in stock is Rs.0.20 per month. Setup cost per production run is Rs.500. Assuming 300 working days in a year, the frequency of production run should be
 - (A) 4.5 days
- (B) 4.5 months
- (C) 6.8 days
- (D) 6.8 months

Answer: (C)


52. A cylindrical blind riser with diameter d and height h, is placed on the top of the mold cavity of a closed type sand mold as shown in the figure. If the riser is of constant volume, then the rate of solidification in the riser is the least when the ratio h/d is

- (A) 1:2
- (B) 2:1
- (C) 1:4
- (D) 4:1

Answer: (A)

53. The diameter of a recessed ring was measured by using two spherical balls of diameter $d_2 = 60$ mm and $d_1 = 40$ mm as shown in the figure.

The distance $H_2 = 35.55$ mm and $H_1 = 20.55$ mm. The diameter (D, in mm) of the ring gauge is											
ver:	er: (92 to 94)										
Whic	h pair of following	staten	nents is correct for	orthogo	onal cutting usi	ng a single	-point cutting tool?				
P.	Reduction in friction	on ang	gle increases cuttin	g force							
	Reduction in friction	on ang	gle decreases cutting	ng force	•						
R.	Reduction in friction	on ang	gle increases chip t	hicknes	SS						
S.	Reduction in friction	on ang	gle decreases chip	thickne	ss						
(A)	P and R	(B)	P and S	(C)	Q and R	(D)	Q and S				
ver:	(D)										
For s	pot welding of two	steel	sheets (base metal	each (of 3 mm thickr	iess, weldii	ng current of 10000 A is				
appli	ed for 0.2s. The he	at dis	sipated to the bas	e meta	l is 1000 J. A	ssuming th	nat the heat required for				
melti	ng 1 mm³ volume o	f stee	el is 20 J and inter	facial c	ontact resistan	ce between	sheets is 0.0002Ω , the				
volume (in mm ³) of weld nugget is .											
ver:	(140 to 160)										
	Whice P. R. S. (A) Ver: For sapplimentity voluments	Which pair of following some P. Reduction in friction Reduction In	Which pair of following statem P. Reduction in friction and Reduction and Reduction in friction	Which pair of following statements is correct for P. Reduction in friction angle increases cuttin Reduction in friction angle decreases cuttin R. Reduction in friction angle increases chip to S. Reduction in friction angle decreases chip to (A) P and R (B) P and S Ver: (D) For spot welding of two steel sheets (base metal) applied for 0.2s. The heat dissipated to the base melting 1 mm³ volume of steel is 20 J and intervolume (in mm³) of weld nugget is	Which pair of following statements is correct for orthogonal P. Reduction in friction angle increases cutting force Reduction in friction angle decreases cutting force Reduction in friction angle increases chip thickness. Reduction in friction angle decreases chip thickness. Reduction in friction angle decreases chip thickness. (A) P and R (B) P and S (C) (C) (D) For spot welding of two steel sheets (base metal) each of applied for 0.2s. The heat dissipated to the base metal melting 1 mm³ volume of steel is 20 J and interfacial covolume (in mm³) of weld nugget is	Which pair of following statements is correct for orthogonal cutting usi P. Reduction in friction angle increases cutting force Reduction in friction angle decreases cutting force R. Reduction in friction angle increases chip thickness S. Reduction in friction angle decreases chip thickness (A) P and R (B) P and S (C) Q and R Ver: (D) For spot welding of two steel sheets (base metal) each of 3 mm thickness applied for 0.2s. The heat dissipated to the base metal is 1000 J. A melting 1 mm³ volume of steel is 20 J and interfacial contact resistance volume (in mm³) of weld nugget is	Which pair of following statements is correct for orthogonal cutting using a single P. Reduction in friction angle increases cutting force Reduction in friction angle decreases cutting force Reduction in friction angle increases chip thickness S. Reduction in friction angle decreases chip thickness (A) P and R (B) P and S (C) Q and R (D) Ver: (D) For spot welding of two steel sheets (base metal) each of 3 mm thickness, welding applied for 0.2s. The heat dissipated to the base metal is 1000 J. Assuming the melting 1 mm ³ volume of steel is 20 J and interfacial contact resistance between volume (in mm ³) of weld nugget is				

*** END OF THE PAPER ***