
BasIc concePts
Multiprogramming: It deals with the management of multiple
processes within a uniprocessor system.

Multiprocessing: It deals with the management of multiple pro-
cesses within a multiprocessor.

The fundamental operating system (OS) design is concurrency.
Concurrency encompasses a host of design issues, including
communication among processes, sharing of and competing for
resources, synchronization of the activities of multiple processes
and allocation of processor time to processes.

PrIncIPles of concurrency
There are two examples for concurrent processing as follows:

 1. In a single-processor multiprogramming system, processes
are interleaved in time to yield the appearance of simultane-
ous execution.

 2. In a multiprocessor system, it is possible not only to interleave
the execution of multiple processes but also to overlap them.

There are two problems with these techniques:

 1. Problem with sharing of global resources
 2. Problem with allocation of resources optimally.
 3. Problem with locating a programming error as results is not

deterministic and reproducible.

Example:
void process()
{
in = getchar();
out = in;
putchar(out);
}

The procedure ‘process’ reads a character and prints it. Let us sup-
pose that we have a uniprocessor system, with single user. Let the
user running multiple applications and all applications use the pro-
cedure for reading and printing, that is, all the applications share
common procedure for effi cient and close interaction among them.
But this sharing leads to problems. For example,

 1. Let the process P
1
 invokes ‘process’ and is interrupted imme-

diately after ‘getchar’ returns its value and stores it in ‘in’.
Here the most recently entered character ‘C’ is stored in vari-
able ‘in’.

 2. Now, suppose the process P
2
 is activated and it invokes ‘pro-

cess’, which runs to conclusion, inputting and then displaying
a single character, D, on the screen.

 3. The process P
1
 is resumed. By this time, the value ‘C’ has

been overwritten in ‘in’ and therefore lost. Instead ‘in’ con-
tains ‘D’, which is transferred to ‘out’ and displayed.

Here the problem is with sharing a global variable. To avoid these
types of problems, we impose some rules like, only one process

Chapter 2

Interprocess Communication,
Concurrency and Synchronization

 Principles of concurrency

 Process interaction

 Mutual exclusion

 Semaphores

 Binary semaphore

 Mutual exclusion using semaphores

 Progress using semaphores

 Classical problems of synchronization

 Dining philosophers problem

 Monitors

 Message passing

 Indirect addressing

 Mutual exclusion using message passing

LEARNING OBJECTIVES

7.18 | Unit 7 • Operating System

at a time may enter ‘process’ and that once in ‘process’ the
procedure must run to completion before it is available for
another process.

This problem is also applicable to multiprocessor
systems.

Race condition: A race condition occurs when multiple
processes or threads read and write data items so that the
final result depends on the order of execution of instructions
in the multiple processes.

Example: Let P
1
 and P

2
 be two processes that share global

variables a and b, with initial values a = 0, b = 1. At some
point in its execution, P

1
 executes a = a + b and P

2
 executes

b = a + b.
If P

1
 executes before P

2
, then a = 1, b = 2.

If P
2
 executes before P

1
, then b = 1, a = 1.

OS Concerns for Concurrency
 1. The OS must be able to keep track of various processes

using PCBs.
 2. The OS must allocate and deallocate various resources

for each active process.
 3. The OS must protect the data and physical resources of

each process.
 4. The functioning of a process and the output it produces

must be independent of the speed at which its execu-
tion is carried out relative to the speed of other concur-
rent processes.

Process InteractIon (IPc)
Process classification There are two types of processes as
follows:

 1. Independent/isolated
 2. Cooperating

Independent Process: It cannot affect or be affected by the
execution of another process.

Cooperating Process: It can affect or be affected by the exe-
cution of another process.

We can classify the ways in which processes interact on the
basis of the degree to which they are aware of each other’s
existence. There are three types of process interaction as
follows:

 1. Process unaware of each other
 2. Process indirectly aware of each other
 3. Processes directly aware of each other

Competition Among Processes
for Resources
 1. This situation arises when processes unaware of each

other.
 2. There is no exchange of information between the com-

peting processes.

 3. But the execution of one process may affect the behav-
iour of competing processes.

 4. With competing processes, there will be three control
problems as follows:

Need for mutual exclusion
Example: Suppose two or more processes require access
to a single non-sharable resource, such as a printer. Then
that resource is referred as critical resource and the portion
of the program that uses it is called critical section of the
program. In the case of printer, only one process will have
the control of printer while it prints an entire file.

Possibility of deadlock
Example: Two processes waiting for each other indefinitely
for the release of resources.

Possibility of starvation
Example: One process is denied access to a particular
resource which is required for the execution of that process.

Control of competition inevitably involves the OS,
because it is the OS that allocates resources.

Cooperation Among Processes by Sharing
This situation arises when the processes are indirectly aware
of each other. Processes may use and update the shared data
without reference to other processes but know that other
processes may have access to same data. So the control
mechanism must ensure the integrity of the shared data.
Problems with this type of sharing are

 1. Mutual exclusion
 2. Deadlock
 3. Starvation
 4. Data coherence

Data coherence
Suppose two items of data p and q are maintained in the
relationship p = q, that is, any program that updates p and q
values must maintain the relationship.

 Let P
1
 : p = p + 1;

 q = q + 1;
 P

2
: p = p * 2;

 q = q * 2;

Let initially the state is consistent, that is, p = 2, q = 2
Then the concurrent execution of P

1
 and P

2
 with mutual

exclusion on p, q will be p = p + 1;

 q = q * 2;
q = q + 1
 p = p * 2;

The final values of p and q will be p = 6, q = 5.
So the consistency is not maintained.

Chapter 2 • Interprocess Communication, Concurrency and Synchronization | 7.19

Cooperation Among Processes
by Communication
This situation arises when processes are aware of each other
directly. All the processes communicate with each other to
synchronize or coordinate the various activities. Problems
with this communication are as follows:

 1. Deadlock
 2. Starvation

BasIc DefInItIons
Atomic operations: A sequence of one or more statements
that appears to be indivisible, that is, no process will inter-
rupt the operation.

Critical section A section of code within a process that
requires access to shared resources and that must not be
executed while another process is in a corresponding sec-
tion of code.

Deadlock A situation in which two or more processes are
unable to proceed because each is waiting for one of the
others to do something.

Mutual exclusion The requirement that when one process
is in a critical section that accesses shared resources, no
other process may be in a critical section that accesses any
of those shared resources.

Race condition A situation in which multiple threads or
processes read and write a shared data item and the final
result depends on the relative timing of their execution.

Starvation A situation in which a runnable process is over-
looked indefinitely by the scheduler; although it is able to
proceed, it is never chosen.

crItIcal sectIon
 1. A section of code or set of operations, in which process

may be changing shared variables, updating a common
file or a table etc.

 2. For the process that execute concurrently, it should
ensure that execution of critical section should be
made atomic. Atomic means that either an operation in
the critical section should happen in its entirely or not
at all.

 3. Critical section of a process should not be executed
concurrently with the critical section of another
process.

 4. To avoid Race Condition, we must have the following:

 ‘if one process is in critical section, other competing
process must be excluded to enter their critical sec-
tions, that is, a process must enter the critical section
in a mutually exclusive way’.

 This is called problem of mutual exclusion.

 Region of code that updates or uses shared data to
provide a consistent view of objects need to make sure
an update is not in progress when reading the data.

 5. Need to provide mutual exclusion for a critical section.

Requirements for Critical Section Problem
Mutual exclusion: No two contending processes should be
simultaneously executing inside their critical section.

Bounded waiting: No process should have to wait forever
to enter its critical section.

Progress: If no process is executing in its critical section
and there exists some processes that wish to enter their criti-
cal sections, then only those processes that are not execut-
ing in the critical section can participate in the decision of
which will enter its critical section next and this selection
cannot be postponed indefinitely.

No Assumption: No assumption should be made about rela-
tive speed and properties of contenting processes.

Mutual exclusIon
 1. Only one process at a time can be updating shared

objects.
 2. Successful use of concurrency among processes

requires the ability to define critical sections and
enforce mutual exclusion.

 3. Mutual exclusion in the use of a shared resource is pro-
vided by making its access mutually exclusive among
the processes that share the resources.

Any facility that provides mutual exclusion should meet
the following requirements:

 1. No assumption regarding the relative speed of the
process.

 2. A process is in its critical section for a finite time only.
 3. Only one process allowed in the critical section.
 4. Process requesting access to critical section should not

wait indefinitely.
 5. A process waiting to enter critical section cannot be

blocking a process in critical section or any other
process.

Mutual exclusion can be satisfied in one of the following ways:

 1. Software approach: This approach leaves the mutual
exclusion responsibility with the process that wish to
execute concurrently. This approach is prone to high
processing overhead and bugs.

 2. Hardware support: Use special-purpose machine
instructions. This approach involves less overhead.

 3. Provide some level of support within the OS or a pro-
gramming language: Such techniques are as follows:
 • Semaphores
 • Monitors
 • Message passing

7.20 | Unit 7 • Operating System

Hardware support for mutual exclusion: Use one of the
following techniques:

 1. Interrupt disabling
 2. Special machine instructions

 • Compare and swap instructions
 • Exchange instructions

Interrupt Disabling
To provide mutual exclusion, it is sufficient to prevent a pro-
cess from being interrupted. A process can enforce mutual
exclusion in the following way:

while(true)
{
/* disable interrupts */;
/* critical section */;
/* enable interrupts */;
/* remainder */;
}

Here, the critical section is not interrupted, so mutual exclu-
sion is guaranteed.

Problems with Interrupt Disabling
The efficiency of execution could be noticeably degraded,
because the processor is limited in its ability to interleave
processes. Interrupt disabling does not work on in a multi-
processor architecture.

Special Machine Instructions
Two of the most commonly used special machine instruc-
tions are as follows:

 1. Compare and swap
 2. Exchange instruction

Compare and swap instructions It is defined as below:

 int compare_and_swap(int *word, int
testval, int newval)
{
int oldval;
oldval = *word;
if(oldval = = testval)
*word = newval;
return oldval;
}

 • ‘Access to a memory location excludes any other access
to that same location.’ On the basis of this principle, spe-
cial machine instructions provide mutual exclusion.

 • The above compare and swap instructions will check a
memory location (*word) against a test value. If current
value is test value, it is replaced with new value. Always
the old value is returned.

 • The below code provides mutual exclusion using com-
pare and swap instructions:

 /* Mutual Exclusion */
 const int n = /* number of processes */
 int S;
 void P(int i)
 {
 while (true)
 {
 while (compare_and_swap(S, 0, 1)==1)
 /* do nothing */;
 /* critical section */;
 S = 0;
 /* remainder */;
 }
 }
 void main()
 {
 S = 0;
 begin (P(1), P(2) P(n));
 }

Here, a shared variable ‘S’ is initialized to ‘0’. The only pro-
cess that may enter its critical section is one that finds ‘S’
equal to 0.

All other processes at enter their critical sections go into
a busy waiting mode.

Busy waiting or spin waiting is a technique in which a pro-
cess can do nothing but continue to execute an instruction
or set of instructions that tests the appropriate variable to
gain entrance.

When a process leaves, its critical section sets ‘S’ to 0. Then
the one of the waiting process will get access to enter its
critical section.

Exchange instructions The exchange instructions can be
defined as follows:

void exchange (int reg, int mem)
{
int temp;
temp = mem;
mem = reg;
reg = temp;
}

Mutual Exclusion Using Exchange
Instructions
/* Mutual Exclusion */;
int const n = /* number of processes */;
int S;
void P(int i)
{
int ki = 1;

Chapter 2 • Interprocess Communication, Concurrency and Synchronization | 7.21

while (true)
{
do
exchange(ki, S);
while(ki! = 0);
/* critical section */;
S = 0;
/* remainder */;
}
}
void main()
{
S = 0;
begin (P(1), P(2), ... P(n));
}

A shared variable ‘S’ is initialized to ‘0’. Each process uses
a local variable ki that is initialized to 1. The only process
that may enter its critical section is one that finds ‘S’ equal
to 0. It excludes all other processes from critical section by
setting ‘S’ to 1. When a process leaves its critical section, it
resets ‘S’ to 0 allowing another process to its critical section.

Advantages of using machine instruction
approach
 1. Applicable to any number of processes on either a sin-

gle processor or multiple processors, sharing the main
memory.

 2. Simple and easy to verify.
 3. Used to support multiple critical sections.

Disadvantages
 1. Busy waiting
 2. Starvation is possible
 3. Deadlock is possible

other MechanIsMs
for Mutual exclusIon
Let us discuss OS and programming language mechanisms
that are used to provide concurrency.

Semaphores
Semaphore is an integer value used for signalling among
processes.

There are two types of semaphores as follows:

 1. Binary semaphore
 2. Counting (or) general semaphore

Counting or general semaphore
Three operations may be performed on a semaphore all of
which are atomic:

 • Initialize
 • Decrement
 • Increment

The working of a counting semaphore with its operations is
defined as below:

 1. The semaphore may be initialized to a non-negative
integer value.

 2. The semwait operation decrements the semaphore
value. If the value becomes negative, then the process
executing the semwait is blocked, otherwise the pro-
cess continues execution.

 3. The semsignal operation increments the semaphore
value. If the resulting value is less than or equal to
zero, then one of the processes blocked by a semwait
operation, if any, is unblocked.

Example: Let the semaphore value S = 3.
If the semaphore value is positive, then that value gives the
number of processes that can issue a wait and immediately
continue to execute.

Let five processes P
1
, P

2
, P

3
, P

4
, P

5
 are going to execute

a critical section code based on the semaphore value S = 3.

S = 3 ←  Initially

  ↓  P
1
 sem wait

S = 2 ≥ 0, P
1
 executes

  ↓  P
2
 sem wait

S = 1 ≥ 0, P
2
 executes

  ↓  P
3
 sem wait

S = 0 ≥ 0, P
3
 executes

  ↓  P
4
 sem wait

S = -1 ≥ 0, P
4
 Blocked

  ↓  P
5
 sem wait

S = -2 ≥ 0, P
5
 Blocked

Initially, the ‘S’ value 3 means that at a time three processes
can issue a ‘wait’ signal and continue execution.

Whenever S becomes 0, the next process which executes
‘wait’ operation will be blocked.

Here P
4
 is blocked as it operates on the semaphore when

S = 0.
If the semaphore value becomes negative, it specifies the

number of processes waiting to be unblocked.
S = –2 means two processes are waiting to be unblocked.

Definition of semwait and semsignal
operations
struct semaphore
{
int semvalue;
Queuetype Queue;
};
void semwait(semaphore S)

7.22 | Unit 7 • Operating System

{
S.semvalue--;
if (S.semvalue < 0)
{
/* place the process in S. Queue */;
/* Block this process */;
}
}
void semsignal(semaphore S)
{
S.semvalue++;
if (S.semvalue < = 0)
{
/* remove a process from S. Queue */;
/* Place the process in ready queue */;
}
}

Advantages
 1. Because the waiting processes will be permitted to

enter their Critical Section in a FCFS order, so the
requirement of bounded waiting is met.

 2. CPU cycles are saved here as waiting process does not
perform any busy waiting.

Disadvantages
 1. Complex to implement, since it involves implementa-

tion of FCFS.
 2. Context switching is more, so more overheads are

involved.

Binary semaphore It is a semaphore that takes on only the
values 0 and 1.

The operations performed on a binary semaphore are as
follows:

 1. A binary semaphore may be initialized to 0 or 1.
 2. The semwaitB operation checks the semaphore value.

If the value is 0, then the process executing the sem-
waitB is blocked. If the value is 1, then the value is
changed to 0 and the process continues execution.

 3. The semsignalB operation checks to see if any pro-
cesses are blocked on this semaphore. If so, then a pro-
cess blocked by a semwaitB operation is unblocked. If
no processes are blocked, then the value of the sema-
phore is set to 1.

Definition of semwaitB and semsignalB
struct binary-semaphore
{
enum {zero, one} value;
Queue-type Queue;
};
void semwaitB(binary-semaphore S)
{

if (S.value = = one)
S.value = zero;
else
{
/* Place this process in S.Queue */;
/* Block this process */;
}
}
void semsignalB(binary-semaphore S)
{
if(S.Queue is empty)
S.value = one;
else
{
/* remove a process from S.Queue */;
/* Place process in ready list */;
}
}

Advantages
 1. The implementation of binary semaphore is extremely

simple.

Disadvantages
 1. It does not meet the requirement of Bounded waiting.
 2. A process, waiting to enter its Critical Section, will

perform Busy waiting, thus wasting CPU cycles.

Notes:

 1. Binary semaphores have the same expressive power as
general semaphores.

 2. MUTEX: It is similar to binary semaphore. The key dif-
ference between the two is that the process that locks
the mutex must be the one to unlock it.

 3. Both counting semaphores and binary semaphores
use a queue to hold processes waiting on the sema-
phore. The order in which the processes removed from
a Queue is FIFO, that is, the process that has been
blocked the longest is released from Queue first.

 4. A semaphore whose definition includes the order of
removal of Blocked processes is referred as a strong
semaphore otherwise it is a weak semaphore.

 5. Strong semaphores guarantee freedom from starvation.

Mutual Exclusion Using Semaphores
const int n = /* number of processes */;
Semaphore S = 1;
void P(int i)
{
while (true)
{
Semwait(S);
/* critical section */;
Semsignal(S);

Chapter 2 • Interprocess Communication, Concurrency and Synchronization | 7.23

/* remainder */;
}
}
void main()
{
begin (P(1), P(2),... P(n));
}

If no process is executing in Critical Section, then the sema-
phore values is 1. The first process that is executing ‘wait’
operation will decrement value to 0 and enter its critical
section. The process which execute ‘wait’ operation while
a cooperating process is executing in its critical section,
will find the semaphore value to 0 and keep looping in
the ‘while-loop’ of ‘wait’ operation. Spinning of a waiting
process in the while-loop, the binary semaphores are also
known as spin locks. When the process executing in the CS
makes an exit (from CS), it will execute the ‘signal’ opera-
tion and increment the semaphore value to 1.

At a time, only one of the cooperating processes can enter
critical section with the condition that the wait operation is
executed automatically. Mutual Exclusion is satisfied.

Example: Consider the following figure (Figure 1) which
shows the possible sequence of three processes using mutual
exclusion with a semaphore, S. Processes P, Q, R accesses a
shared resource protected by the semaphore S.

1

0

0

P Q

Q

Q

R

R

R −1

−1

−2

Semsignal(S)

 Queue for
semaphore

Semwait(S)

Value of ‘S ’

Semwait(S)

Semwait(S)

Semsignal(S)

Semsignal(S)

  Blocked on semaphore S
↓ Normal execution
↓ Critical region

Figure 1 Mutual exclusion using semaphore.

Progress Using Semaphores
When no process is executing in the CS, the semaphore
value will be 1. Then, one of the waiting process looping
in the while loop of wait-operation will find the semaphore
value of 1, exit from the while-loop, decrement the sema-
phore value to 0 and enter CS. Thus, if no process is execut-
ing in critical section and some are waiting to enter, then
one of the waiting processes will enter its critical section
immediately.

Bounded waiting using semaphores
Actually, one of the waiting processes will get entry into its
CS when an operating process executing in its critical sec-
tion exits. As this selection process is arbitrary, so a process
waiting to enter its CS is likely to face starvation. So, the
requirement of bounded waiting is not met.

classIcal ProBleMs
of synchronIzatIon
We will discuss three problems of synchronization:

 1. Bounded buffer problem
 2. Readers/writers problem
 3. Dining philosophers problem

Producer–Consumer Problem
 1. Producer inserts item in the buffer
 2. Updates Insertion pointer
 3. Consumer consumes items in the buffer
 4. Updates removal pointer
 5. Both update information about how full, how empty

the buffer.
 6. Prevents buffer overflow, prevents buffer underflow,

proper synchronization.

 Producer Consumer
 repeat repeat
 produce item v; while (in < = out);
 b[in] = v; w = b [out];
 in = in + 1; out = out + 1;
 forever; consume w;
 forever;

Table 1 Producer consumer problem solution using semaphores

 Producer Consumer
 repeat repeat
 produce item v; while (in < = out);
 SemwaitB(S); SemsignalB(S);
 b[in] = v; w = b[out];
 in = in + 1; out = out + 1;
 SemsignalB(S); SemsignalB(S);
 forever; consume w;
 forever;

If producer is slow or late, then consumer will busy at the
while statement.

Table 2 Improved solution

 Producer Consumer
 repeat repeat
 produce item v; Semwait(n);
 Semwait(S); Semwait(S);
 b[in] = v; w = b[out];
 in = in + 1; out = out + 1;
 Semsignal(S); Semsignal(S);
 Semsignal(n); consume w;
 forever; forever;

7.24 | Unit 7 • Operating System

The initial value of n and S are n = 0, S = 1. (n is the number
of items in the buffer).

Table 3 Producer consumer bounded buffer problem

 Producer Consumer
 repeat repeat
 produce item v; while(in == out)
 while((in + 1) % n = = out) no operation;
 no operation; w = b[out];
 b[in] = v; out = (out + 1) % n;
 in = (in + 1) % n; consume w;
 forever; forever;

The buffer size is enforced using another counting semaphore.

Table 4 Producer consumer bounded buffer problem solution

 Producer Consumers
 Repeat repeat
 Produce item v; Semwait(e);
 Semwait(e); Semwait(S);
 Semwait(S); w = b[out];
 b[in] = v; out = (out + 1) % n;
 in = (in + 1) % n Semsignal(S);
 Semsignal(S); Semsignal(e);
 Semsignal(e); consume w;
 forever; forever;

The initial value of buffer size, e is the size of the bounded
buffer.
Observations on semaphores:

 1. Semaphores are easy to use.
 2. wait() and signal() are to be implemented as atomic

operations.

Problems:
 1. signal() and wait() may be exchanged by the program-

mer, this may result in deadlock or violation of mutual
exclusion.

Readers/Writers Problem
 1. A reader reads data.
 2. A writer writes data.
 3. Data is shared among a number of processes.
 4. Multiple readers may read the data simultaneously,

that is, concurrently.
 5. Only one writer can write the data any time, that is, no

reader should be present.
 6. A reader and writer cannot access data simultaneously.
 7. Locking table: Whether any two can be in the critical

section simultaneously is shown in the table.

Reader Writer

Reader OK NO

Writer NO NO

Solution: Readers have priority; if a reader is in CS, any
number of readers could enter irrespective of any writer
waiting to enter critical section

 Writer Reader
 while(true) while(true)
 { {
 Semwait(S); Semwait(x);
 writeunit(); Num = Num + 1;
 Semsignal(S); if (Num = = 1)
 } Semwait(S);
 Semsignal(x);
 Readunit();
 Semwait(x);
 Num = Num - 1;
 if(Num == 0)
 Semsignal(S);
 Semsignal(x);
 }

Semaphore ‘S’ is used to enforce mutual exclusion.
Semaphore ‘x’ is used to assure that ‘Num’ is updated

properly.

Solution: If a writer wants critical section as soon as the
critical section is available, writer enters it.

Dining Philosophers Problem
N philosophers are sitting around a dining table. There
are N plates placed on the table such that each plate is
in front of a philosopher and N forks placed between the
plates. There is a bowl of Noodles placed at the centre
of the table. Whenever a philosopher feels hungry, he
tries to pick two forks which are shared with his nearest
neighbour. If any of his neighbours happens to be eat-
ing at the time, the philosopher has to wait. Whenever a
hungry philosopher gets two forks, he pours noodles into
his plate. After he finishes, he places the chopsticks back
onto the table and starts thinking. Now forks are available
for neighbours.

Solution:
define N 5 /* Number of philosophers*/
void philosopher(int i) /* philosopher number,
from 0 to 4*/
{
while (true)
{
think(); /* philosopher is thinking*/
take_fork(i) ; /*take left fork*/
take_fork ((i+ 1)% N); /* take right fork; %
is modulo operator*/
eat();
put _ fork (); /* put left back on the table*/
put _ fork ((i + 1) % N); /* put right fork
back on the table */

Notes:

 1. This solution leads to deadlock.
 2. Everyone picks the left fork and indefinitely wait for

right fork causing starvation.

Chapter 2 • Interprocess Communication, Concurrency and Synchronization | 7.25

MonItors
Monitor is a programming language construct that encap-
sulates variables, access procedures and initialization code
within an abstract data type. The monitor’s variable may
only be accessed via its access procedures and only one
process may be actively accessing the monitor at any one
time. The access procedures are critical sections. A monitor
may have a queue of processes that are waiting to access it.

 1. If the data in a monitor represent some resource, then
the monitor provides a mutual exclusion facility for
accessing the resource.

 2. A monitor supports synchronization by the use of con-
dition variables that are contained within the monitor
and accessible only within the monitor.

 3. Operations on conditional variables:
 • cwait(c): Suspend execution of calling process on

condition c. The monitor is now available for use by
another process.

 • csignal(c): Resume execution of some process
blocked after a wait on the same condition. If there
are several such processes, choose one of them; if
there is no such process, do nothing.

Monitor syntax is as follows:
Monitor monitor - name
{
shared variable declarations;
Procedure body P

1
 (...) { }

Procedure body P
2
 (...) { }

Procedure body P
n
 (...) { }

initialization code { }
}
Schematic view of a monitor:

Shared data

Entry queue

Operation
Initialization
 code

Schematic View of a monitor with condition variables:

Queue
associated
with any

conditions

code

X
Y

Entry queue

Initialization
Operation

Message PassIng
When processes interact with one another, two fundamental
requirements must be satisfied:

 1. Synchronization
 2. Communication

One approach to provide both of these is message passing.
The primitive functions in message passing are send

(destination, message) receive (source, message)

Design Characteristics of Message Systems
for IPC and Synchronization
Synchronization There must be some synchronization exist-
ing between two processes to communicate with each other.

 • Send: When a ‘send’ primitive is executed in a process,
then the sender may
 • blocked or
 • non-blocked
 • until the message is received.

 • Receive: When a process issues a ‘Receive’ primitive
there are two possibilities:

 1. If a message has previously been sent, the message is
received and execution continues.

 2. It there is no waiting message then either
 (i) The process is blocked until a message arrives or
 (ii) The process continues to execute, abandoning the

attempt to receive.

Thus, both the sender and receiver may be in one of

 1. Blocking send, blocking receive: Allows tight
synchronization.

 2. Non-blocking send, blocking receive:
 • Useful synchronization
 • Possibility of generating repeated messages

 3. Non-blocking send, non-blocking receive: No need to
wait

Addressing Two types of addressing methods:
 1. Direct addressing
 2. Indirect addressing

Direct Addressing
The send primitive includes a specific identifier of the des-
tination process. The ‘receive’ primitive can be handled in
one of two ways:

Explicit
The process must know ahead of time from which process
a message is expected. Useful for cooperating concurrent
processes.

Implicit
The ‘source’ parameter of ‘receive’ primitive possesses a
value returned when the receive operation has been per-
formed. Example, Printer server.

7.26 | Unit 7 • Operating System

Indirect Addressing
Messages are not sent directly from sender to receiver but rather
are sent to a shared data structure consisting of queues that can
temporarily hold messages. These queues are referred to as
mailboxes The relationship between the sender and receiver is

 • one-to-one
 • one-to-many

 • many-to-one
 • many-to-many

Mail box

Mail box

Mail box

Port

S1

S1

Sn

Sn

S1

S1

R1

R1

R1

Rn

Rn

R1

One-to-one

One-to-many

Many-to-many

Many-to-one

Message format The general message format will be

Message Type

Header
Source ID

Message length

Destination ID

Control
Information

Message contextsBody

Queuing discipline The queuing discipline may be

 • FIFO
 • Priority

Mutual Exclusion using message passing:

const int n = /* number of processes */;
void P(int i)

{

message msg;

while (true)

{

receive (box, msg);

/* critical section */;

send (box, msg);

/* remainder */;

}

}

void main()

{

create mailbox(box);

send(box, null);

begin (P(1), P(2) ... P(n));

}

 1. Here a set of concurrent processes that share a mailbox
‘box’, which can be used by all processes to send and
receive.

 2. The mailbox is initialized to contain a single message
with null content. A process wishing to enter its critical
section first attempts to receive a message.

 3. If the mail box is empty, then the process is blocked.

 4. Once a process acquired the message, it performs its
critical section and then places the message back into
the mailbox.

 5. Hence, the message functions as a token that is passed
from process to process.

exercIses

Practice Problems 1
Directions for questions 1 to 17: Select the correct alterna-
tive from the given choices.

 1. The value of a counting semaphore is 7. Then 15 wait
operations and 10 signal operations were completed on
this semaphore. The resulting value of semaphore is

 (A) 5 (B) 7
 (C) 2 (D) 0

 2. At a particular time of computation, the value of count-
ing semaphore is 7. Then 20 wait operations and ‘x’

signal operations were completed on this semaphore. If
the final value of the semaphore is 5, what is x?

 (A) 18 (B) 13
 (C) 5 (D) 0

 3. A process using a semaphore has a start value of 1 for
its semaphore. Since the start of execution of the pro-
gram, 12 signal operations were completed. How many
wait operations have been completed so far if the cur-
rent value of semaphore is 6?

 (A) 1 (B) 5
 (C) 7 (D) 11

Chapter 2 • Interprocess Communication, Concurrency and Synchronization | 7.27

 4. It is found that a program has multiple critical sections.
Choose correct statements from below:

 (i) Multiple semaphores are needed for handling the
situation.

 (ii) A single semaphore that uncompresses all the crit-
ical section is sufficient and is also more efficient.

 (iii) To get better control of the code, monitors need to
be implemented.

 (A) (i) and (ii) (B) (ii) and (iii)
 (C) (i) and (iii) (D) (i), (ii), (iii)

 5. Consider the below psuedocode:

 semaphore S = 1;
 semaphore E = 1;
 if(thread_count++ <100)
 spawnnewthread();

 wait(E);

// critical section – begin

// critical section – end

signal(S);

 Assume that above pseudocode gets called a hundred
times, what is the count of semaphore E?

 (A) 0 (B) 1
 (C) –99 (D) –100

 6. Consider the below code for a process i:

 flag[i] = true;
 if(turn == i and flag [i] == true)
 /* critical section begin */
 counter++;
 /* critical section end */
 turn = x;

 If the value of a counter started, what would be the
value of ‘counter’ count at the end of the program:

 (A) Semaphore count
 (B) Thread count
 (C) Concurrency count
 (D) Deadlock process count

 7. Consider the below pseudocode:

 function waitB(s)
 {
 if(s.value ==1)
 s.value = 0;
 else
 place the process in the Queue;

 }
 function signalB(s)
 {
 s. value = 1;
 }

 What does the code most likely behave as
 (A) general semaphore (B) weak semaphore
 (C) binary semaphore (D) mutex

 8. A shared variable x, initialized to 0 is operated on by
four concurrent processes P, Q, R, S as follows:

P(x) Q(x)

{ {

wait(); wait();

read(x); read(x);

increment x by 1; increment x by 1;

store(x); store(x);

signal(); signal();

} }

R(x) S(x)

{ {

wait(); wait();

read (x); read(x);

decrement x by 2; decrement x by 2;

store (x); store(x);

signal(); signal();

} }

 A counting semaphore ‘N’ is used by the processes whose
value is initialized to 2. What is the maximum possible
value of ‘x’ after all processes complete execution?

 (A) –2 (B) –1
 (C) 1 (D) 2

 9. Consider the following code:
Program concurrency;
Var x: Integer (: = 0);
 y: Integer (: = 0);
Procedure threadA() ;
begin
x = 1; /*S1*/
y = y + x; /*S2*/
end;
Procedure threadB() ;
begin
y = 4; /*S3*/
x = x + 5; /*S4*/
end;
begin /*mainprogram*/
parbegin
threadA();
threadB();
parend;

 end.

7.28 | Unit 7 • Operating System

 Suppose a process has two concurrent threads: one
thread executes statements S

1
 and S

2
, and the other

thread executes statements S
3
 and S

4
. What are the

maximum possible values of x and y when the code fin-
ishes execution? (All the statements S

1
, S

2
, S

3
 and S

4
 are

atomic).
 (A) x = 6, y = 4 (B) x = 6, y = 5
 (C) x = 1, y = 5 (D) x = 6, y = 10

 10. Consider the following program:
 boolean lock[2];
 int turn;
 void P(int id)

 {
 while(true)
 {
 lock[id] = true;
 while (turn! = id)
 {
 while (lock [1 – id])
 /*do nothing*/
 turn = id;
 }
 /*critical section*/
 lock[id] = false;
 /*reamainder*/
 }
 }
 void main()
 {
 lock[0] = false;
 lock[1] = false;
 turn = 0;
 parbegin (P(0), P(1));
 }

 Which of the following statements is correct for two
processes executing this code?

 (A) Given program provides mutual exclusion.
 (B) Given program does not provide mutual exclusion.
 (C) Given program provides mutual exclusion and

also solves starvation problem.
 (D) Given program provides mutual exclusion but

does not prevent from starvation.

 11. Consider two process P
0
 and P

1
 which share the follow-

ing variables:
 boolean flag [2]; /*initially false*/

 int turn;

 These two processes, Pi(i = 0 or 1), Pj (j = 1 or 0) exe-
cute the following code:

 do

 {

 flag[i] = TRUE;
 while(flag [j])

 {

 if (turn = = j)
 {

 flag[i] = false;
 while (turn = = j);
 flag [i] = TRUE;
 }

 }

 // critical section

 turn = j;
 flag[i] = FALSE;
 // remainder.

 }

 while(TRUE);

 The code satisfies

 (i) Mutual exclusion
 (ii) Progress
 (iii) Bounded waiting

 (A) (i), (ii) only (B) (ii), (iii) only
 (C) (i), (iii) only (D) (i), (ii), (iii)

 12. Which of the following statement(s) is false?
 (i) Spinlocks are not appropriate for single-processor

systems.
 (ii) Mailboxes may be used for synchronization.
 (iii) Message passing and semaphores do not have

equivalent functionality.

 (A) (i) only (B) (iii) only
 (C) (i), (iii) (D) (i), (ii), (iii)

 13. Consider the following code:
 signal (mutex);
 …………..
 Critical section
 …………..
 wait (mutex);
 Here ‘mutex’ is a semaphore variable, which is initial-

ized to 1. Then

 (A) Mutual exclusion is provided
 (B) Mutual exclusion violated, if several processes are

simultaneously active in their critical section.
 (C) Deadlock will occur
 (D) Starvation is possible

 14. Which of the following sequence of ‘wait’ and ‘signal’
operations leads to deadlock?

 (Here ‘mutex’ is a semaphore variable initialized to 1.)

 (A) wait (mutex);

 ……….

 Critical section

 ………..

 Signal (mutex);

Chapter 2 • Interprocess Communication, Concurrency and Synchronization | 7.29

 (B) wait (mutex);

 ………..

 Critical section

 ……………

 Wait (mutex);

 (C) Signal (mutex);

 …………

 Critical section

 ……….

 Wait (mutex);

 (D) signal (mutex);
 …………

 Critical section

 ………….

 Signal (mutex);

 15. Which of the following situation arises if a process
omits the wait(S) or the signal(S) on a semaphore vari-
able ‘S’ (Initially S = 1).

 (i) Mutual exclusion violated
 (ii) Deadlock will occur
 (A) (i) only (B) (ii) only
 (C) Both (i) and (ii) (D) Neither (i) nor (ii)

 16. consider the following shared data and code:
 data:
 int turn;
 Boolean flag[2];
 Code:
 do

 {
 flag [i] = TRUE;

 turn = j;
 while (flag [j] && turn = = j);
 //critical section
 flag [i] = FALSE;
 //remainder
 }

 while (TRUE);

 Let two processes Pi (i = 0 or 1) and Pj (j = 1 or 0) use
the shared data and executes the code. Then the code
provides

 (A) a solution to critical section problem
 (B) mutual exclusion but not progress.
 (C) progress but not mutual exclusion
 (D) both mutual exclusion, progress but no bounded

waiting.

 17. Consider the following code that shows the structure
of a process in an algorithm to solve the critical section
problem for two processes.

 var flag[2] of Boolean; /* initialized to false */
 repeat
 flag[i] = true;
 while flag[j] do no – op;
 //critical section
 flag[i] = false;
 // remainder
 until false
 Then which of the following statements is true?
 (A) The algorithm satisfies all the requirements of

critical section problem.
 (B) The algorithm satisfies only mutual exclusion and

progress.
 (C) The algorithm only satisfies progress requirement.
 (D) The algorithm does not satisfy critical section

problem requirements.

Practice Problems 2
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.

 1. The result of a computation depends upon the speed of
the processes involved, is said to be:

 (A) Cycle stealing (B) Race condition
 (C) A time lock (D) A deadlock

 2. A relation between processes such that each has some
part which must not be executed, while the critical sec-
tion of another is being executed is known as

 (A) Mutual exclusion (B) Semaphore
 (C) Multi-tasking D) Mutli-programming

 3. Producer–consumer problem can be solved using
 (A) Semaphores (B) Event counters
 (C) Monitors (D) All of the above

 4. To avoid the race condition, the number of processes
allowed in critical section is

 (A) 0 (B) 1
 (C) 2 (D) 3

 5. Mutual exclusion problem occurs between
 (A) Two disjoint processes that unaware of each other
 (B) Processes that share resources
 (C) Processes directly aware of each other.
 (D) Both (A) and (B)

 6. Semaphores are used to solve the problem of
 (A) Race condition (B) Multitasking
 (C) Mutual exclusion (D) Both (A) and (C)

 7. At a particular time, the value of a counting semaphore
is 10. It will become 7 after

 (A) 3 signal operations
 (B) 3 wait operations
 (C) 5 signal operations and 2 wait operations
 (D) None of the above

 8. Critical region is
 (A) A part of the OS which is not allowed to be ac-

cessed by any process
 (B) A set of instructions that accesses common shared

resource, which exclude one another in time

7.30 | Unit 7 • Operating System

 (C) The portion of main memory, which can be ac-
cessed only by one process at a time

 (D) Both (A) and (C)

 9. Concurrent processes are:
 (A) Processes that don’t overlap in time
 (B) Processes that overlap in time
 (C) Processes that are executed
 (D) Processes that are executed by a processor at the

same time

 10. Semaphore operations are atomic because they are
implemented within the______.

 (A) Kernel (B) Shell
 (C) User process (D) Normal process space

 11. The programming language construct that provides equiv-
alent functionality of a semaphore and better control is

 (A) Signal (B) Monitor
 (C) Mutex (D) Critical section.

 12. What is the ideal way of emptying the queue of a strong
semaphore?

 (A) Random (B) LIFO
 (C) FIFO (D) binary

 13. What are the disadvantages of machine instruction
approach?

 (i) While a process is waiting for entering a critical
section, process still consumes resources.

 (ii) There could be starvation
 (iii) There could be deadlocks
 (A) (i), (ii) only (B) (ii), (iii) only
 (C) (iii), (i) only (D) (i), (ii), (iii)

 14. Select from below the advantages of Machine Instruction
approach?

 (i) Applicable to any number of processes either uni-
processor or multi-processor system

 (ii) Simple and easy to verify
 (iii) Supports multiple critical sections
 (A) (i), (ii) only (B) (ii), (iii) only
 (C) (iii), (i) only (D) (i), (ii), (iii)

 15. Which of the below are requirements for mutual exclusion?
 (i) Only one process is allowed into critical section.
 (ii) A process remains inside its critical section for

finite time only.
 (iii) It must be possible for a process accessing critical

section to be delayed indefinitely.
 (iv) A process halting in critical section must do so

without interfering with other processes.
 (A) (i), (ii), (iii) (B) (ii), (i), (iv)
 (C) (i), (ii), (iv) (D) (i), (ii), (iii), (iv)

PrevIous years’ QuestIons

 1. Consider these two functions and two statements S
1

and S
2
 about them: [2006]

int work1 (int
*a,int i, int j)

{
 int x=a[i+2];
 a[j]=x+1;
 return a[i+2]-3;
}

int work2 (int
*a,int i, int j)

{
 int t1=i+2;
 int t2=a[t1];
 a[j]=t2+1;
 return t2 - 3;
}

 S1: The transformation from work1 to work2 is val-
id, that is,for any program state and input argu-
ments, work 2 will compute the same output and
have the same effect on program state as work 1

 S2: All the transformations applied to work 1 to get
work 2 will always improve the performance (i.e.,
reduce CPU time) of work 2 compared to work 1

 (A) S
1
 is false and S

2
 is false

 (B) S
1
 is false and S

2
 is true

 (C) S
1
 is true and S

2
 is false

 (D) S
1
 is true and S

2
 is true

 2. The atomic fetch-and-set x, y instructions uncondi-
tionally sets the memory location x to 1 and fetches
the old value of the of x in y without allowing any

intervening access to the memory location x. Consider
the following implementation of P and V functions on
binary semaphore S.

 void P (binary-semaphore *s) {
 unsigned y;
 unsigned *x = & (s → value);
 do {
 fetch-and-set x, y ;
 } while (y) ;
 }
 void V (binary-semaphore *s) {
 s → value = 0;
 }
 Which one of the following is true?
 [2006]
 (A) The implementation may not work if context

switching is disabled in P
 (B) Instead of using fetch-and-set, a pair of normal

load/store can be used
 (C) The implementation of V is wrong
 (D) The code does not implement a binary semaphore

 3. The P and V operations on counting semaphores,
where s is a counting semaphore, are defined as
follows:

Chapter 2 • Interprocess Communication, Concurrency and Synchronization | 7.31

 P(s) : s = s – 1;
 if s < 0 then wait;
 V(s) : s = s + 1;

 if s <= 0 then wake up a process waiting on s;

 Assume that P
b
 and V

b
, the wait and signal opera-

tions on binary semaphores, are provided. Two binary
semaphores x

b
 and y

b
 are used to implement the sema-

phore operations P(s) and V(s) as follows:
 P(s) : P

b
 (x

b
) ;

 s = s – 1;
 if (s < 0) {
 V

b
 (x

b
) ;

 P
b
 (y

b
) ;

 }
 else V

b
 (x

b
) ;

 V(s) : P
b
 (x

b
) ;

 s = s + 1;
 if (s<=0) V

b
 (y

b
) ;

 V
b
 (x

b
) ;

 The initial values of x
b
 and y

b
 are respectively

 [2008]
 (A) 0 and 0 (B) 0 and 1
 (C) 1 and 0 (D) 1 and 1

 4. Consider a system with four types of resources R
1
 (3

units), R
2
 (2 units), R

3
 (3 units), R

4
 (2 units). A non-

pre-emptive resource allocation policy is used. At any
given instance, a request is not entertained if it can-
not be completely satisfied. Three processes P

1
, P

2
, P

3

request the resources as follows if executed indepen-

dently. [2009]

Process P1:
t = 0: requests 2 units of R2

t = 1: requests 1 unit of R3

t = 3: requests 2 units of R1

t = 5: releases 1 unit of R2 and 1 unit of R1.
t = 7: releases 1 unit of R3

t = 8: requests 2 units of R4

t = 10: Finishes

Process P2:
t = 0: requests 2 units of R3

t = 2: requests 1 unit of R4

t = 4: requests 1 unit of R1

t = 6: releases 1 unit of R3

t = 8: Finishes

Process P3:
t = 0: requests 1 unit of R4

t = 2: requests 2 units of R1

t = 5: releases 2 units of R1

t = 7: requests 1 unit of R2

t = 8: requests 1 unit of R3

t = 9: Finishes

 Which one of the following statements is true if all
three processes run concurrently starting at time t = 0?

 (A) All processes will finish without any deadlock
 (B) Only P

1
 and P

2
 will be in deadlock.

 (C) Only P
1
 and P

3
 will be in a deadlock.

 (D) All three processes will be in deadlock.

 5. The enter_CS() and leave_CS() functions to imple-
ment critical section of a process are realized using
test-and-set instruction as follows: [2009]

 void enter_CS(X)
 {
 while (test-and-set(X)) ;
 }
 void (leave_CS(X))
 {
 X=0;
 }

 In the above solution, X is a memory location associated
with the CS and is initialized to 0. Now consider the fol-
lowing statements:

 (i) The above solution to CS problem is deadlock-
free.

 (ii) The solution is starvation free.
 (iii) The processes enter CS in FIFO order.
 (iv) More than one process can enter CS at the same

time.
 Which of the above statements is true?
 (A) (i) only
 (B) (i) and (ii)

 (C) (ii) and (iii)
 (D) (iv) only

 6. Consider the methods used by processes P
1
 and P

2

for accessing their critical sections whenever needed,
as given below. The initial values of shared Boolean
variables S

1
 and S

2
 are randomly assigned.

 [2010]

Method used by P1
while (S1 = = S2);
 Critical section
 S1 = S2;

Method used by P2
while (S1 != S2);
Critical section
S2 = not (S1);

 Which one of the following statements describes the
properties achieved?

 (A) Mutual exclusion but not progress
 (B) Progress but not mutual exclusion
 (C) Neither mutual exclusion nor progress
 (D) Both mutual exclusion and progress

 7. The following program consists of three concurrent
processes and three binary semaphores. The sema-
phores are initialized as S

0
 = 1, S

1
 = 0, S

2
 = 0.

Process P0 Process P1 Process P2

while (true) {
wait (S0);
print ‘0’
release (S1);
release (S2);
}

wait (S1);
Release (S0);

wait (S2);
release (S0);

7.32 | Unit 7 • Operating System

 How many times will process P
0
 print ‘0’? [2010]

 (A) At least twice (B) Exactly twice
 (C) Exactly thrice (D) Exactly once

 8. Fetch _ And _Add(X, i) is an atomic Read- Modify-
Write instruction that reads the value of memory loca-
tion X, increments it by the value i, and returns the old
value of X. It is used in the pseudocode shown below
to implement a busy wait lock. L is an unsigned inte-
ger shared variable initialized to 0. The value of 0 cor-
responds to lock being available, while any non-zero
value corresponds to the lock being not available.

 [2012]
 AcquireLock(L) {
 while(Fetch_And_Add(L, 1))
 L = 1;
 }
 ReleaseLock (L) {
 L = 0;
 }
 This implementation
 (A) fails as L can overflow
 (B) fails as L can take on a non-zero value when the

lock is actually available
 (C) works correctly but may starve some processes
 (D) works correctly without starvation

 9. A shared variable x, initialized to 0, is operated on by
four concurrent processes W, X, Y, Z as follows. Each
of the processes W and X reads x from memory, incre-
ments by one, stores it to memory, and then terminates.
Each of the processes Y and Z reads x from memory,
decrements by two, stores it to memory, and then ter-
minates. Each process before reading x invokes the P
operation (i.e., wait) on a counting semaphore S and
invokes the V operation (i.e., signal) on the semaphore
S after storing x to memory. Semaphore S is initialized
to 2. What is the maximum possible value of x after all
processes complete execution? [2013]

 (A) –2 (B) –1
 (C) 1 (D) 2

 10. A certain computation generates two arrays ‘a’ and
‘b’ such that a[i] = f(i) for 0 ≤ i < n and b[i] = g(a[i])
for 0 ≤ i < n. Suppose this computation is decomposed
into two concurrent processes X and Y such that X
computes the array ‘a’ and Y computes the array ‘b’.
The processes employ two binary semaphores R and
S, both initialized to zero. The array ‘a’ is shared by
the two processes. The structures of the processes are
shown below.

 Process X: Process Y:
 private i; private i;
 for (i = 0; i<n; i++) { for (i = 0; i<n; i++) {
 a[i] = f(i); EntryY(R, S);
 ExitX(R, S); b[i] = g(a[i]);
 } }

 Which one of the following represents the correct
implementations of ExitX and EntryY?

 [2013]
 (A) ExitX(R, S) { (B) ExitX(R, S) {
 P(R); V(R);
 V(S); V(S);
 } }
 EntryY(R,S){ EntryY(R,S){
 P(S); P(R);
 V(R); P(S);
 } }
 (C) ExitX (R, S){ (D) ExitX (R, S){
 P(S); V(R);
 V(R); P(S);
 } }
 EntryY(R,S){ EntryY(R,S){
 V(S); V(S);
 P(R); P(R);
 } }

 11. Consider the procedure below for the producer-con-
sumer problem which uses semaphores; [2014]

 semaphore n = 0;
 semaphore s = 1;
 void producer ()
 {
 while (true)
 {
 produce ()
 semWait (s);
 addToBuffer ();
 semSignal (s);
 semSignal (n);
 }
 }
 void consumer ()
 {
 while (true)
 {
 semWait (s);
 semWait (n);
 remove FromBuffer ();
 semSignal(s);
 consume () ;
 }
 }
 Which one of the following is true?

 (A) The producer will be able to add an item to the
buffer, but the consumer can never consume it.

 (B) The consumer will remove no more than one
item from the buffer.

 (C) Deadlock occurs if the consumer succeeds in ac-
quiring semaphore s when the buffer is empty.

 (D) The starting value for the semaphore n must be 1
and not 0 for deadlock free operation.

Chapter 2 • Interprocess Communication, Concurrency and Synchronization | 7.33

 12. The following two function P1 and P2 that share a var-
iable B with an initial value of 2 execute concurrently.

 [2015]

 P1 () { P2 () {
 C = B – 1; D = 2 * B;
 B = 2 * C; B = D – 1;
 } }

 The number of distinct values that B can possibly take
after the execution is _______

 13. Two processes X and Y need to access a critical sec-
tion. Consider the following synchronization con-
struct used by both the processes [2015]

Process X

/* other code for pro-
cess X */
while (true)
{
varP = true;
while(varQ == true)
{
/* Critical Section */
varP = false;
}
}
/* other code for pro-
cess X */

Process Y

/* other code for pro-
cess Y */ while (true)
{
varQ = true;
while (varP == true)
{
/* Critical Section */
varQ = false;
}
}

/* other code for pro-
cess Y */

 Here, varP and varQ are shared variables and both are
initialized to false. Which one of the following state-
ments is true?

 (A) The proposed solution prevents deadlock but
fails to guarantee mutual exclusion.

 (B) The proposed solution guarantees mutual exclu-
sion but fails to prevent deadlock.

 (C) The proposed solution guarantees mutual exclu-
sion and prevents deadlock.

 (D) The proposed solution fails to prevent deadlock
and fails to guarantee mutual exclusion.

 14. Consider the following proposed solution for the crit-
ical section problem. There are n process: P

0
…P

n–1
. In

the code, function pmax returns an integer not smaller
than any of its arguments. For all i, t[i] is initialized
to zero. [2016]

 do {
 c[i] = 1; t [i] = pmax (t[i], ……,
 t[n – 1]) + 1; c[i] = 0;
 for every j ≠ i in (0, …., n – 1) {
 while (c [j]);
 while (t[j] ! = 0 && t[j] < = t[i]);
 }
 Critical Section;
 t[i] = 0;
 Remainder Section;
 } while (true);

 Which one of the following is TRUE about the above
solution?

 (A) At most one process can be in the critical section
at any time.

 (B) The bounded wait condition is satisfied.
 (C) The progress condition is satisfied.
 (D) It cannot cause a deadlock.

 15. Consider the following two - process synchronization
Solution.

Process 0 Process 1

Entry: loop while (turn =
= 1);
 (Critical section)
Exit: turn = 1;

Entry: loop while (turn =
= 0);
(Critical section)
Exist: turn = 0;

 The shared variable turn is initialized to zero. Which
one of the following is TRUE? [2016]

 (A) This is a correct two - process synchronization
Solution.

 (B) This Solution violates mutual exclusion require-
ment.

 (C) This Solution violates progress requirement.
 (D) This Solution violates bounded wait require-

ment.

 16. Consider a non-negative counting semaphore S. The
operation P(S) decrements S, and V(S) increments S.
During an execution, 20 P(S) operations and 12 V(S)
operations are issued in some order. The largest initial
value of S for which at least one P(S) operation will
remain blocked is _____ . [2016]

 17. A multithreaded program P executes with x number
of threads and uses y number of locks for ensuring
mutual exclusion while operating on shared memory
locations. All locks in the program are non-reentrant,
i.e., if a thread holds a lock l, then it cannot re-acquire
lock l without releasing it. If a thread is unable to
acquire a lock, it blocks until the lock becomes avail-
able. The minimum value of x and the minimum value
of y together for which execution of P can result in a
deadlock are: [2017]

 (A) x = 1, y = 2 (B) x = 2, y = 1
 (C) x = 2, y = 2 (D) x = 1, y = 1

 18. Consider the following solution to the producer-con-
sumer synchronization problem. The shared buffer
size is N. Three semaphores empty, full and mutex
are defined with respective initial values of 0, N and
1. Semaphore empty denotes the number of available
slots in the buffer, for the consumer to read from.
Semaphore full denotes the number of available slots
in the buffer, for the producer to write to. The place-
holder variables, denoted by P, Q, R, and S, in the
code below can be assigned either empty or full. The
valid semaphore operations are: wait () and signal ().

7.34 | Unit 7 • Operating System

answer Keys

Practice Problems 1
 1. C 2. A 3. C 4. D 5. C 6. C 7. C 8. D 9. D 10. B
 11. D 12. B 13. B 14. B 15. C 16. A 17. D

Practice Problems 2
 1. B 2. A 3. D 4. B 5. D 6. C 7. B 8. B 9. B 10. A
 11. B 12. C 13. D 14. D 15. C

Previous Years’ Questions
 1. D 2. A 3. C 4. A 5. A 6. A 7. A 8. B 9. D 10. C
 11. C 12. 3 13. A 14. A 15. C 16. 7 17. D 18. C

Producer Consumer

do {
 wait(P);
 wait (mutex);
 //Add item to
 buffer
 signal (mutex);
 signal (Q);
} while (1);

do {
 wait(R);
 wait (mutex);
 //Consume item
 from buffer
 signal (mutex);
 signal (S);
} while (1);

 Which one of the following assignments to P, Q, R
and S will yield the correct solution? [2018]
(A) P: full, Q: full, R: empty, S: empty
(B) P: empty, Q: empty, R: full, S: full
(C) P: full, Q: empty, R: empty, S: full
(D) P: empty, Q: full, R: full, S: empty

	Unit 7: Operating System
	Chapter 2: Interprocess Communication, Concurrency and Synchronization
	BasIc Concepts
	PrIncIples of Concurrency
	Process Interaction (IPC)
	Basic Definitions
	Critical Section
	Mutual Exclusion
	Other Mechanisms for Mutual Exclusion
	Classical Problems of Synchronization
	Monitors
	Message Passing
	Exercises
	Previous Years’ Questions
	Answer Keys

