Chapter 8

Conservation Laws

8.1 Charge and Energy

8.1.1 The Continuity Equation

In this chapter we study conservation of energy, momentum, and angular momentum, in
electrodynamics. But I want to begin by reviewing the conservation of charge, because it is
the paradigm for all conservation laws. What precisely does conservation of charge tell us?
That the total charge in the universe is constant? Well, sure—that’s global conservation of
charge; but local conservation of charge is a much stronger statement: If the total charge
in some volume changes, then exactly that amount of charge must have passed in or out
through the surface. The tiger can’t simply rematerialize outside the cage; if it got from
inside to outside it must have found a hole in the fence.
Formally, the charge in a volume V is

o) = fv p(r, 1) dr, &1

and the current flowing out through the boundary S is f sJ - da, so local conservation of
charge says

dQ /
—_— = - da. 8.2
7 g J-da (8.2)
Using Eq. 8.1 to rewrite the left side, and invoking the divergence theorem on the right, we
have g
f—"m:—fv-m, (8.3)
v ot v
and since this is true for any volume, it follows that
dp
—=-V.]J. 8.4
o J (8.4)
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346 CHAPTER 8. CONSERVATION LAWS

This is, of course, the continuity equation—the precise mathematical statement of local
conservation of charge. As I indicated earlier, it can be derived from Maxwell’s equations—
conservation of charge is not an independent assumption, but a consequence of the laws of
electrodynamics.

The purpose of this chapter is to construct the corresponding equations for conservation
of energy and conservation of momentum. In the process (and perhaps more important) we
will learn how to express the energy density and the momentum density (the analogs to p).
as well as the energy “current” and the momentum “current” (analogous to J).

8.1.2 Poynting’s Theorem

In Chapter 2, we found that the work necessary to assemble a static charge distribution
(against the Coulomb repulsion of like charges) is (Eq. 2.45)

W, = E—Oszdr,
2

where E is the resulting electric field. Likewise, the work required to get currents going
(against the back emf) is (Eq. 7.34)

1 2
Wm =— | B-dr,
2po

where B is the resulting magnetic field. This suggests that the total energy stored in elec-

tromagnetic fields is
1 1
Uem = = / (60E2 + —-B2> dr. (8.5)
2 Ko

I propose to derive Eq. 8.5 more generally, now, in the context of the energy conservation
law for electrodynamics.

Suppose we have some charge and current configuration which, at time ¢, produces
fields E and B. In the next instant, dt, the charges move around a bit. Question: How much
work, dW , is done by the electromagnetic forces acting on these charges in the interval dt?
According to the Lorentz force law, the work done on a charge ¢ is

F-di=¢qgE+vxB) -vdr =¢qE-vdt.

Now, ¢ = pdt and pv = J, so the rate at which work is done on all the charges in a volume
Vis
w / E-Dd (8.6)
_ = . T. .
dt %

Evidently E - J is the work done per unit time, per unit volume—which is to say, the
power delivered per unit volume. We can express this quantity in terms of the fields alone.
using the Ampere-Maxwell law to eliminate J:

1 JE
E-J=—E - (VxB)—¢E. —.
HO ot
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From product rule 6,
V(ExB)=B-(VXE)—E-(V xB).

Invoking Faraday’s law (V x E = —3B/dr), it follows that

E-(VxB):—B-%—V-(ExB).

Meanwhile,
B 139 (32 i E JE 139 (E2) 87)
— = - , an — = - s .
at 2 ot ) at 2 0t
SO
19 9 1, 1
EJ=——|e«E°+—B°}) - —V.-(ExB). (8.8)
2 0t o Ho

Putting this into Eq. 8.6, and applying the divergence theorem to the second term, we
have

dw d [ 1 1 1
- = ~ (60E2 + —B2> dt — — ¢ (E x B) - da, (8.9)

dt Jy 2 Mo mo Js

where S is the surface bounding V. This is Poynting’s theorem:; it is the “work-energy
theorem” of electrodynamics. The first integral on the right is the total energy stored in
the fields, Uem (Eq. 8.5). The second term evidently represents the rate at which energy
is carried out of V, across its boundary surface, by the electromagnetic fields. Poynting’s
theorem says, then, that the work done on the charges by the electromagnetic force is equal
to the decrease in energy stored in the field, less the energy that flowed out through the
surface.

The energy per unit time, per unit area, transported by the fields is called the Poynting
vector:

1
Ho

S=—(E x B). (8.10)

Specifically, S - da is the energy per unit time crossing the infinitesimal surface da—the
energy flux, if you like (so S is the energy flux density).! We will see many applications
of the Poynting vector in Chapters 9 and 11, but for the moment 1 am mainly interested in
using it to express Poynting’s theorem more compactly:

dw du,
— =— e‘“—ygs-da. (8.11)
dt dt S

r you’re very fastidious, you’ll notice a small gap in the logic here: We know from Eq. 8.9 that §S-da
is the total power passing through a closed surface, but this does not prove that /'S - da is the power passing
through any open surface (there could be an extra term that integrates to zero over all closed surfaces). This is,
however, the obvious and natural interpretation; as always, the precise location of energy is not really determined
in electrodynamics (see Sect. 2.4.4).
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Of course, the work W done on the charges will increase their mechanical energy
(kinetic, potential, or whatever). If we let umech denote the mechanical energy density, so

that aW 4
LA /V meen 7, (8.12)

and use Uy, for the energy density of the fields,

1 1
Uem = = (50E2 + —Bz>, (8.13)
2 Mo
then 4
—/(“mech‘l‘“em)df = —f S.da= —/(V -S)dr,
dt Jy S v
and hence
d
5(“mech + tem) ==V - S. (8.14)

This is the differential version of Poynting’s theorem. Compare it with the continuity
equation, expressing conservation of charge (Eq. 8.4):

o

=-V.J:
at I

the charge density is replaced by the energy density (mechanical plus electromagnetic), and
the current density is replaced by the Poynting vector. The latter represents the flow of
energy in exactly the same way that J describes the flow of charge.”

Example 8.1

When current flows down a wire, work is done, which shows up as Joule heating of the wire
(Eq. 7.7). Though there are certainly easier ways to do it, the energy per unit time delivered to
the wire can be calculated using the Poynting vector. Assuming it’s uniform, the electric field

parallel to the wire is
Vv

E=—,
L
where V is the potential difference between the ends and L is the length of the wire (Fig. 8.1).
The magnetic field is “circumferential”’; at the surface (radius @) it has the value
_ pol

2ra’
Accordingly, the magnitude of the Poynting vector is

1 Vol VI
o L 2ma ~ 2mal’

2In the presence of linear media, one is typically interested only in the work done on free charges and currents
(see Sect. 4.4.3). In that case the appropriate energy density is %(E -D+ B - H), and the Poynting vector becomes
(E x H). See 1. D. Jackson, Classical Electrodynamics, 3rd. ed., Sect. 6.7 (New York: John Wiley, 1999).
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L

Figure 8.1

and it points radially inward. The energy per unit time passing in through the surface of the
wire is therefore

/S-da =SQ2ral)=VI,

which is exactly what we concluded, on much more direct grounds, in Sect. 7.1.1.

Problem 8.1 Calculate the power (energy per unit time) transported down the cables of Ex.7.13
and Prob. 7.58, assuming the two conductors are held at potential difference V', and carry current
I (down one and back up the other).

Problem 8.2 Consider the charging capacitor in Prob. 7.31.

(a) Find the electric and magnetic fields in the gap, as functions of the distance s from the axis
and the time ¢. (Assume the charge is zero at t = 0.)

(b) Find the energy density uem and the Poynting vector S in the gap. Note especially the
direction of S. Check that Eq. 8.14 is satisfied.

(c) Determine the total energy in the gap, as a function of time. Calculate the total power
flowing into the gap, by integrating the Poynting vector over the appropriate surface. Check
that the power input is equal to the rate of increase of energy in the gap (Eq. 8.9—in this case
W = 0, because there is no charge in the gap). [If you’re worried about the fringing fields, do
it for a volume of radius b < a well inside the gap.]

8.2 Momentum

8.2.1 Newton’s Third Law in Electrodynamics

Imagine a point charge ¢ traveling in along the x axis at a constant speed v. Because it is
moving, its electric field is nor given by Coulomb’s law; nevertheless, E still points radially
outward from the instantaneous position of the charge (Fig. 8.2a), as we’ll see in Chapter 10.
Since, moreover, a moving point charge does not constitute a steady current, its magnetic
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(@) ()

Figure 8.2

field is not given by the Biot-Savart law. Nevertheless, it’s a fact that B still circles around
the axis in a manner suggested by the right-hand rule (Fig. 8.2b); again, the proof will come
in Chapter 10.

Now suppose this charge encounters an identical one, proceeding in at the same speed
along the y axis. Of course, the electromagnetic force between them would tend to drive
them off the axes, but let’s assume that they’re mounted on tracks, or something, so they’re
forced to maintain the same direction and the same speed (Fig. 8.3). The electric force
between them is repulsive, but how about the magnetic force? Well, the magnetic field of
41 points into the page (at the position of ¢5), so the magnetic force on ¢, is toward the
right, whereas the magnetic field of g, is out of the page (at the position of ¢1), and the
magnetic force on g is upward. The electromagnetic force of q1 on q» is equal but not
opposite to the force of g2 on qi, in violation of Newton’s third law. In electrostatics and
magnetostatics the third law holds, but in electrodynamics it does not.

F, ~ B,
%4 .,
BN F,
\{) AN
B ] 1
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Well, that’s an interesting curiosity, but then, how often does one actually use the third
law, in practice? Answer: All the time! For the proof of conservation of momentum rests
on the cancellation of internal forces, which follows from the third law. When you tamper
with the third law, you are placing conservation of momentum in jeopardy, and there is no
principle in physics more sacred than rhat.

Momentum conservation is rescued in electrodynamics by the realization that the fields
themselves carry momentum. This is not so surprising when you consider that we have
already attributed energy to the fields. In the case of the two point charges in Fig. 8.3,
whatever momentum is lost to the particles is gained by the fields. Only when the field
momentum is added to the mechanical momentum of the charges is momentum conservation
restored. You’ll see how this works out quantitatively in the following sections.

8.2.2 Maxwell’s Stress Tensor

Let’s calculate the total electromagnetic force on the charges in volume V:
F:/(E+va)pdt:/(pE—l—JxB)dt. (8.15)
1% 1%

The force per unit volume is evidently
f=pE+JxB. (8.16)

As before, I propose to write this in terms of fields alone, eliminating p and J by using
Maxwell’s equations (i) and (iv):

1 E
f=60(V-E)E+(—V xB—eoa—) x B.
o at

a oE aB
—(ExB)={-— xB Ex —|,
a:( B (th )+( Xat>

B V xE
v«
at ’

Now

and Faraday’s law says

SO

JE
ExB:%(ExB)-}-EX(VxE).

Thus

f =€[(V-E)E—E x (V x E)] - LB« (V xB)]— 60%(E x B). (8.17)
©o
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Just to make things look more symmetrical, let’s throw in a term (V - B)B; since V - B = 0,
this costs us nothing. Meanwhile, product rule 4 says

V(E*) =2(E-V)E + 2E x (V x E),

SO
Ex(VXE)= %V(Ez) — (E-V)E,

and the same goes for B. Therefore,

1
f= &l(V-E)E+(E-V)E] + M—[(V ‘B)B + (B - V)B|
0

(8.18)
1 1 d
—=V{eE?+ —B?) —¢—(E x B).
5 (60 + p” ) €05 (B x B)
Ugly! But it can be simplified by introducing the Maxwell stress tensor,
- 1 2 1 1 2

The indices / and j refer to the coordinates x, ¥, and z, so the stress tensor has a total of nine
components (Tyy, Tyy, Tx;, Tyx, and so on). The Kronecker delta, §; 7, is 1 if the indices
are the same (8, = 8, = 8;; = 1) and zero otherwise (Oxy = 8x; = 8y; = 0). Thus

1 T [P S
To= B~ E} = ED+ - (82— B~ BY)

1
Txy = EO(ExEy) + %(BxBy)s

and so on. Because it carries two indices, where a vector has only one, T;; is sometimes
written with a double arrow: T. One can form the dot product of T with a vector a:

(a'?)j = Z a; Ty, (8.20)

i=x,y,2

the resulting object, which has one remaining index, is itself a vector. In particular, the
divergence of T has as its Jth component

1
(V-?)]‘ = € [(V-E)Ej—l-(E-V)Ej - —Z-VjEzjl

1 1
- ——I:(V-B)Bj+(B-V)Bj——VjB2].
KO 2
Thus the force per unit volume (Eq. 8.18) can be written in the much simpler form
as
f=V~?—eopc0—8?, (8.21)
where S is the Poynting vector (Eq. 8.10).



8.2. MOMENTUM 353

The rotal force on the charges in V (Eq. 8.15) is evidently

d
F=7§ ?-da—eouo—f Sdx. (8.22)
S at Jy

(I used the divergence theorem to convert the first term to a surface integral.) In the static
case (or, more generally, whenever f S dz is independent of time), the second term drops
out, and the electromagnetic force on the charge configuration can be expressed entirely
in terms of the stress tensor at the boundary. Physically, T is the force per unit area
(or stress) acting on the surface. More precisely, T;; is the force (per unit area) in the ith
direction acting on an element of surface oriented in the jth direction—*“diagonal” elements
(Tix, Tyy, T;) represent pressures, and “off-diagonal” elements (T, Ty, etc.) are shears.

Example 8.2

Determine the net force on the “northern” hemisphere of a uniformly charged solid sphere of
radius R and charge Q (the same as Prob. 2.43, only this time we’ll use the Maxwell stress
tensor and Eq. 8.22).

Disk

Figure 8.4

Solution: The boundary surface consists of two parts—a hemispherical “bowl” at radius R,
and a circular disk at @ = /2 (Fig. 8.4). For the bowl,

da=R*>sin0dodot
and
1 Q0

r.
dmweg R?

E=

=

In Cartesian components,
F=sinfcos¢ R +sinfsingy + cosh 2,

SO

0 )2 .
T,y =€oE;Ey =¢g| ——— | sinfBcosfcosg,
x 0tz Lbx 0<4n60R2 ¢

2
T,y =¢EE, = ¢ sin 6@ cos 6 sin ¢,
zy 0Lz~Ly 0 <4n60R2) ¢
To= DE2-F2 ()= o (cos® 6 — sin? 9) (8.23)
TT oyt * ¥ 2 \dnegR? ' ’
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The net force is obviously in the z-direction, so it suffices to calculate

2
€
(T - da), = Tyy day + Toy day + Toz day = 2 sin® cos 8 df d.
: 2 \4megR
The force on the “bowl” is therefore
2 /2 1 2
Foowt = 2 (2 2n/ sinf cos 6 do = o (8.24)
2 \4mepR 0 4meg 8R2
Meanwhile, for the equatorial disk,
da=—rdrdgi (8.25)

and (since we are now inside the sphere)

1 90 1Y A
= Treq = r= dmeg —Igr(cosqﬁx +sing y).

Thus

2
€0 .0 2 2 € Y 2
T, = —(E—E:—E)=—=
2z 2( z X )) ) (47{EOR3) r,
and hence

a0 (_ 2 Vs
(T - da), = 5 (4MOR3) r3drdg.

The force on the disk is therefore

2 R 2
€ 1
Fyisk = 0 ( e 27t/ rdr = L (8.26)
2 \4megR3 0 dmeg 16R2
Combining Eqgs. 8.24 and 8.26, I conclude that the net force on the northern hemisphere is
1 307
- 30" (8.27)
4mey 16R?

Incidentally, in applying Eq. 8.22, any volume that encloses all of the charge in question (and
no other charge) will do the job. For example, in the present case we could use the whole region
z > 0. In that case the boundary surface consists of the entire xy plane (plus a hemisphere at
r = 00, but E = 0 out there anyway, so it contributes nothing). In place of the “bowl,” we
now have the outer portion of the plane (» > R). Here

T — €0 Q 2 1
R dey ) rt

(Eq. 8.23 with & = /2 and R — r), and da is given by Eq. 8.25, so

2
(‘T*.da)z=%°( 0 ) %drdq&,

4dmeg r

and the contribution from the plane for r > R is

o 0\, [®1 1 Q?
— 2 —dr=———,
2 \2meg R r3 4mey 8R2

the same as for the bowl (Eq. 8.24).




8.2. MOMENTUM 355

I'hope you didn’t get too bogged down in the details of Ex. 8.2. If so, take a moment to
appreciate what happened. We were calculating the force on a solid object, but instead of
doing a volume integral, as you might expect, Eq. 8.22 allowed us to set it up as a surface
integral; somehow the stress tensor sniffs out what is going on inside.

Problem 8.3 Calculate the force of magnetic attraction between the northern and southern
hemispheres of a uniformly charged spinning spherical shell, with radius R, angular velocity
o, and surface charge density o. [This is the same as Prob. 5.42, but this time use the Maxwell
stress tensor and Eq. 8.22.]

Problem 8.4

(a) Consider two equal point charges g, separated by a distance 2a. Construct the plane
equidistant from the two charges. By integrating Maxwell’s stress tensor over this plane,
determine the force of one charge on the other.

(b) Do the same for charges that are opposite in sign.

8.2.3 Conservation of Momentum

According to Newton’s second law, the force on an object is equal to the rate of change of
its momentum:

F = dpmech.
dt
Equation 8.22 can therefore be written in the form
dPmech d / %
—== = —copo—- | Sdr+ ¢ T -da, 8.28
o oro s + A (8.28)

where Pmecn is the total (mechanical) momentum of the particles contained in the volume V.
This expression is similar in structure to Poynting’s theorem (Eq. 8.9), and it invites an anal-
ogous interpretation: The first integral represents momentum stored in the electromagnetic
fields themselves:

Pem = /Loéo/VSdt, (8.29)

while the second integral is the momentum per unit time flowing in through the surface.
Equation 8.28 is the general statement of conservation of momentum in electrodynamics:
Any increase in the fotal momentum (mechanical plus electromagnetic) is equal to the
momentum brought in by the fields. (If V is all of space, then no momentum flows in or
out, and Pmech + Pem iS constant.)

As in the case of conservation of charge and conservation of energy, conservation of
momentum can be given a differential formulation. Let .., be the density of mechanical
momentum, and ., the density of momentum in the fields:

830
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Then Eq. 8.28, in differential form, says

P
5 @reen + em) = V- T 8.31)

Evidently ~ T is the momentum flux density, playing the role of J (current density) in the
continuity equation, or S (energy flux density) in Poynting’s theorem. Specifically, —7;; is
the momentum in the i direction crossing a surface oriented in the j direction, per unit area,
per unit time. Notice that the Poynting vector has appeared in two quite different roles: S
itself is the energy per unit area, per unit time, transported by the electromagnetic fields,
while 1p€pS is the momentum per unit volume stored in those fields. Similarly, T plays
a dual role: T itself is the electromagnetic stress (force per unit area) acting on a surface,
and —T describes the flow of momentum (the momentum current density) transported by
the fields.

Example 8.3

Along coaxial cable, of length /, consists of an inner conductor (radius a) and an outer conductor
(radius b). It is connected to a battery at one end and a resistor at the other (Fig. 8.5). The inner
conductor carries a uniform charge per unit length , and a steady current 7 to the right; the
outer conductor has the opposite charge and current. What is the electromagnetic momentum
stored in the fields?

Solution: The fields are

The Poynting vector is therefore
g M

= —13
4n2eps?

Evidently energy is flowing down the line, from the battery to the resistor. In fact, the power

transported is

A b by
P:/S.da: / —2nsds = In(b/a) =1V,
dn2eq J, 52 2meg

Figure 8.5
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as it should be. But that’s not what we're interested in right now. The momentum in the fields

18
porl . b

I All
pemzﬂOGO/SdTZﬁZ —2127TSdS:M0
a

v

In(h/a)i.
T s
This is an astonishing result. The cable is not moving, and the fields are static, and yet we are
asked to believe that there is momentum in the system. If something tells you this cannot be the
whole story, you have sound intuitions. In fact, if the center of mass of a localized system is at
rest, its total momentum must be zero. In this case it turns out that there is “hidden” mechanical
momentum associated with the flow of current, and this exactly cancels the momentum in the
fields. But locating the hidden momentum is not easy, and it is actually a relativistic effect,
so I shall save it for Chapter 12 (Ex. 12.12).

Suppose now that we turn up the resistance, so the current decreases. The changing magnetic
field will induce an electric field (Eq. 7.19):

uo dl .
E=|-"*—Ins+ K]z
[27‘[0’! e ]z

This field exerts a force on £A:

M dl
Inb + K:| p= PN ey,

T dt

po dl . po dI
F=u |08 p k| a—n |0l
[271 a et ]z [2 2 di

The total momentum imparted to the cable, as the current drops from 7 to 0, is therefore

Al
“g In(b/a) 3,

v

Pmech = ]Fd’ =

which is precisely the momentum originally stored in the fields. (The cable will not recoil,
however, because an equal and opposite impulse is delivered by the simultaneous disappearance
of the hidden momentum.)

Problem 8.5 Consider an infinite parallel-plate capacitor, with the lower plate (at z = —d/2)
carrying the charge density —o, and the upper plate (at z = +d/2) carrying the charge density
+o.

(a) Determine all nine elements of the stress tensor, in the region between the plates. Display

your answer as a 3 X 3 matrix:
Tix Txy Ty

Tye Tyy Ty
Iix Ty T

(b) Use Eq. 8.22 to determine the force per unit area on the top plate. Compare Eq. 2.51.

(c) What is the momentum per unit area, per unit time, crossing the xy plane (or any other
plane parallel to that one, between the plates)?

(d) At the plates this momentum is absorbed, and the plates recoil (unless there is some
nonelectrical force holding them in position). Find the recoil force per unit area on the top
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Figure 8.6

plate, and compare your answer to (b). [Note: This is not an additional force, but rather an
alternative way of calculating the same force—in (b) we got it from the force law, and in (d)
we did it by conservation of momentum.]

Problem 8.6 A charged parallel-plate capacitor (with uniform electric field E = E 2) is placed
in a uniform magnetic field B = B &, as shown in Fig. 8.6.3

(a) Find the electromagnetic momentum in the space between the plates.
(b) Now a resistive wire is connected between the plates, along the z axis, so that the capacitor

slowly discharges. The current through the wire will experience a magnetic force; what is the
total impulse delivered to the system, during the discharge?

(c) Instead of turning off the electric field (as in (b)), suppose we slowly reduce the magnetic
field. This will induce a Faraday electric field, which in turn exerts a force on the plates. Show
that the total impulse is (again) equal to the momentum originally stored in the fields.

8.2.4 Angular Momentum

By now the electromagnetic fields (which started out as mediators of forces between charges)
have taken on a life of their own. They carry energy (Eq. 8.13)

1 1
Uem = = (60E2 + —BZ> , (8.32)
2 MO
and momentum (Eq. 8.30)
Pem = Ho€oS = €p(E x B), (8.33)

and, for that matter, angular momentum:

bem =T X . =eo[r x (E x B)]. (8.34)

3See F. S. Johnson, B. L. Cragin, and R. R. Hodges, Am. J. Phys. 62, 33 (1994).
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Even perfectly static fields can harbor momentum and angular momentum, as long as E x B
is nonzero, and it is only when these field contributions are included that the classical
conservation laws hold.

Example 8.4

Imagine a very long solenoid with radius R, n turns per unit length, and current /. Coaxial
with the solenoid are two long cylindrical shells of length /—one, inside the solenoid at radius
a, carries a charge +Q, uniformly distributed over its surface; the other, outside the solenoid
at radius b, carries charge —Q (see Fig. 8.7; [ is supposed to be much greater than ). When
the current in the solenoid is graduilly reduced, the cylinders begin to rotate, as we found in
Ex. 7.8. Question: Where does the angular momentum come from?*

Solution: It was initially stored in the fields. Before the current was switched off, there was
an electric field,

1
= 0 —8(a < s < b).
2mepl s

Figure 8.7

4This is a variation on the “Feynman disk paradox” (R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman
Lectures, vol 2, pp. 17-5 (Reading, Mass.: Addison-Wesley, 1964) suggested by F. L. Boos, Jr. (Am. J. Phys. 52,
756 (1984)). A similar model was proposed earlier by R. H. Romer (Am. J. Phys. 34, 772 (1966)). For further
references, see T.-C. E. Ma, Am. J. Phys. 54, 949 (1986).
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in the region between the cylinders, and a magnetic field,
B = uonli(s < R),
inside the solenoid. The momentum density (Eq. 8.33) was therefore

_MonlQ 4
2nls T

Pem =

in the region @ < s < R. The angular momentum density was

1
_HonlQ p

lem=r><@em: 7l s

which is constant, as it turns out; to get the total angnlar momentum in the fields, we simply
multiply by the volume, 7 (R% — a2)l:

1
Lem = —EuonIQ(Rz —adi (8.35)

When the current is turned off, the changing magnetic field induces a circumferential electric
field, given by Faraday’s law:

1 dIR?.

Mg e 2R
E:

1 d] A

—Euond—tscﬁ, (s < R).

Thus the torque on the outer cylinder is
1 odl
Np =rx (—QE) = = R —12,
b (—QE) 2MonQ 7

and it picks up an angular momentum
1 5, [OdI 1 2.
Ly = -upnQR“12 —dt = ——uonl QR* 7.
b= HonQ /1 dz FHonlQ
Similarly, the torque on the inner cylinder is

N 1 0 2dl
= ——pupn — Z,
a 2#0 a dr

and its angular momentum increase is
] 2 A
L, = Euolea Z.
So it all works out: Lem = Ly + Lj. The angular momentum Jost by the fields is precisely

equal to the angular momentum gained by the cylinders, and the total angular momentum
(fields plus matter) is conserved.
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Incidentally, the angular case is in some respects cleaner than the linear analog (Ex. 8.3),
because there is no “hidden” angular momentum to compensate for the angular momentum in
the fields, and the cylinders really do rotate when the magnetic field is turned off. If a localized
system is not moving, its total /inear momentum /s to be zero,> but there is no corresponding
theorem for angular momentum, and in Prob. 8.12 you will see a beautiful example in which
nothing at all is moving—not even currents—and yet the angular momenturn is nonzero.

Problem 8.7 In Ex. 8.4, suppose that instead of turning off the magneric field (by reducing
I) we turn off the electric field, by connecting a weakly® conducting radial spoke between
the cylinders. (We’ll have to cut a slot in the solenoid, so the cylinders can still rotate freely.)
From the magnetic force on the current in the spoke, determine the total angular momentum
delivered to the cylinders, as they discharge (they are now rigidly connected, so they rotate
together). Compare the initial angular momentum stored in the fields (Eq. 8.35). (Notice that
the mechuanism by which angular momentum is transferred from the fields to the cylinders is
entirely different in the two cases: in Ex. 8.4 it was Faraday’s law, but here it is the Lorentz
force law.)

! Problem 8.8” Imagine an iron sphere of radius R that carries a charge Q and a uniform
magnetization M = MZ. The sphere is initially at rest.

(a) Compute the angular momentum stored in the electromagnetic fields.

(b) Suppose the sphere is gradually (and uniformly) demagnetized (perhaps by heating it up
past the Curie point). Use Faraday’s law to determine the induced electric field, find the torque
this field exerts on the sphere, and calculite the total angular momentum imparted to the sphere
in the course of the demagnetization.

(c) Suppose instead of demagnetizing the sphere we discharge it, by connecting a grounding
wire to the north pole. Assume the current flows over the surface in such a way that the
charge density remains uniform. Use the Lorentz force law to determine the torque on the
sphere, and cdlculate the total angular momentum imparted to the sphere in the course of the
discharge. (The magnetic field is discontinuous at the surface ... does this matter?) [Answer:

$HoMQR?]

More Problems on Chapter 8

Problem 8.93 A very long solenoid of radius a, with n turns per unit length, carries a current
I;. Coaxial with the solenoid, at radius b >> a, is a circular ring of wire, with resistance R.
When the current in the solenoid is (gradually) decreased, a current /, is induced in the ring.

5S. Coleman and J. H. van Vleck, Phys. Rev. 171, 1370 (1968).

%Tn Ex. 8.4 we turned the current off slowly, to keep things quasistatic; here we reduce the electric field slowly
to keep the displacement current negligible.

TThis version of the Feynman disk paradox was proposed by N. L. Sharma (Am. J. Phys. 56, 420 (1988));
similar models were analyzed by E. M. Pugh and G. E. Pugh, Am. J. Phys. 35, 153 (1967) and by R. H. Romer,
Am. J. Phys. 35,445 (1967).

8For extensive discussion, see M. A. Heald, Am. J. Phys. 56, 540 (1988).
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(a) Calculate I, in terms of d I /dt.

(b) The power (I,2 R) delivered to the ring must have come from the solenoid. Confirm this
by calculating the Poynting vector just outside the solenoid (the electric field is due to the
changing flux in the solenoid; the magnetic field is due to the current in the ring). Integrate
over the entire surface of the solenoid, and check that you recover the correct total power.

Problem 8.10° A sphere of radius R carries a uniform polarization P and a uniform magneti-
zation M (not necessarily in the same direction). Find the electromagnetic momentum of this
configuration. [Answer: (4/9)m /L0R3(M x P)]

Problem 8.111 Picture the electron as a uniformly charged spherical shell, with charge e and
radius R, spinning at angular velocity w.

(a) Calculate the total energy contained in the electromagnetic fields.
(b) Calculate the total angular momentum contained in the fields.

(c) According to the Einstein formula (E = me?), the energy in the fields should contribute
to the mass of the electron. Lorentz and others speculated that the entire mass of the electron
might be accounted for in this way: Uem = mec?. Suppose, moreover, that the eiectron’s
spin angular momentum is entirely attributable to the electromagnetic fields: Ley = /2. On
these two assumptions, determine the radius and angular velocity of the electron. What is their
product, @wR? Does this classical model make sense?

Problem 8.12!! Suppose you had an electric charge g, and a magnetic monopole g,,. The
field of the electric charge is
= 1 ey

dmeq 42

of course, and the field of the magnetic monopole is

B=Hodny
dm 42

Find the total angular momentum stored in the fields, if the two charges are separated by a
distance d. [Answer: (u0/47r)qeqm.]]2

Problem 8.13 Paul DeYoung, of Hope College, points out that because the cylinders in Ex. 8.4
are left rotating (at angular velocities w, and wy, say), there is actually a residual magnetic
field, and hence angular momentum in the fields, even after the current in the solenoid has been
extinguished. If the cylinders are heavy, this correction will be negligible, but it is interesting
to do the problem without making that assumption.

9For an interesting discussion and references, see R. H. Romer, Am. J. Phys. 63,777 (1995).

10gee J. Higbic, Am. J. Phys. 56,378 (1988).

This system is known as Thomson’s dipole. See I Adawi, Am. J. Phys. 44, 762 (1976) and Phys. Rev. D31,
3301 (1985), and K. R. Brownstein, Am. J. Phys. 57, 420 (1989), for discussion and references.

12Note that this result is independent of the separation distance d (!); it points from g, toward g, . In quantum
mechanics angular momentum comes in half-integer multiples of 7, so this result suggests that if magnetic
monopoles exist, electric and magnetic charge must be quantized: pogeqgm/4m = nh/2,forn =1,2,3,..., an
idea first proposed by Dirac in 1931. If even one monopole exists somewhere in the universe, this would “explain”
why electric charge comes in discrete units.
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(a) Calculate (in terms of w, and wy) the final angular momentum in the fields.

(b) As the cylinders begin to rotate, their changing magnetic field induces an extra azimuthal

electric field, which, in turn, will make an additional contribution to the torques. Find the re-

sulting extra angular momentum, and compare it to your result in (a). [Answer: uq Q2wb (-
2

a“)/4ml]

Problem 8.1413 A point charge g is a distance a > R from the axis of an infinite solenoid
(radius R, n turns per unit length, current /). Find the linear momentum and the angular
momentum in the fields. (Put g on the x axis, with the solenoid along z; treat the solenoid as
a nonconductor, so you don’t need to worry about induced charges on its surface.) [Answer:

Pem = (1ognlR%/2a) §; Lem = 0]

Problem 8.15'4 (a) Carry through the argument in Sect. 8.1.2, starting with Eq. 8.6, but using
J 7 in place of J. Show that the Poynting vector becomes

S=E xH,
and the rate of change of the energy density in the fields is

fuem _p D OB
ot ot ot

For linear media, show that
1

(b) In the same spirit, reproduce the argument in Sect. 8.2.2, starting with Eq. 8.15, with p f
and J ¢ in place of p and J. Don’t bother to construct the Maxwell stress tensor, but do show

that the momentum density is
» =D xB.

135ee F. §. Johnson, B. L. Cragin, and R. R. Hodges, Am. J. Phys. 62, 33 (1994), for a discussion of this and
related problems.

14This problem was suggested by David Thouless of the University of Washington. Refer to Sect. 4.4.3 for the
meaning of “energy” in this context.



