GOVERNMENT OF KARNATAKA

KARNATAKA SCHOOL EXAMINATION & ASSESSMENT BOARD

Cl	ass: I Year PUC	MODEL QUE	STION PAPER	Academic Year: 2023-24
Su	bject: Chemistry (34)			Maximum Marks: 70
Tiı	me: 3.15hours			Number of questions: 52
Ins	structions:			
1. (Question paper has FIV	E parts having 52 q	uestions. All parts are c	ompulsory.
2.	a. Part-A carries 20 ma	_		
	b. Part-B carries 10 m	arks. Each question	n carries 2 marks.	
	c. Part-C carries 18 ma	orks. Each question	carries 3 marks.	
	d. Part-D carries 10 ma	arks. Each question	carries 5 marks.	
	e. Part-E carries 12 ma	arks. Each question	carries 3 marks.	
3.]	In Part- A questions, fir	st attempted answ	er will be considered fo	r awarding marks.
		=	=	s and graphs wherever necessary.
5.		umerical problems	without detailed steps a	nd specific unit for final answer wil
6 1	not carry any marks.	la aslaulatan if mass	aggamy (was of aciontific	calculator is not allowed)
0.	Ose log tables and simp	ie calculator ii fiece	• ,	calculator is not allowed).
T (C 41 : 1	PART-A	15 1 . 15
	Select the correct option	_		$15 \times 1 = 15$
I.	The number of significa	_		0.1
	a) 3	b) 4	c) 2	d) 1
2.]	Molarity is defined as the		-	
	a) one litre of solution		o) one litre of solvent	
	c) one kg of solution		d) one kg of solvent	
3.]	Rutherford's α - ray sca	ttering experiment i	is related to the size of t	he
	a) nucleus	b) atom	c) electron	d) neutrons
4.]	Mendeleev`s periodic ta	able is based on		
	a) atomic weight	ł	o) atomic number	
	c) number of neutrons	S	d) number of electrons	
5.]	In XeF4 molecule, numb	per of lone pairs and	d shared pairs of electro	ns respectively are
	a) 4, 1	b) 2, 4	c) 4, 3	d) 4, 2
6. `	Which of the following	is true for ionic cor	npounds?	
	a) conduct electricity	in solid state	b) have direction	al bonds
	c) soluble in polar sol	vents	d) are non-electron	olytes in molten state
7. ′	The second law of therm	nodynamics introdu	iced the concept of:	
	a) enthalpy	b) work	c) entropy	d) internal energy
8. '	, 10	,	,	neat of reaction at constant volume is
	greater than RT when		1	
	a) $\Delta n_g = 1$	b) $\Delta n_g > 1$	c) $\Delta n_g < 1$	d) $\Delta n_g \neq 1$

9. 1	f a catalyst is used in a re	eversible reaction	on,								
	a) backward reaction be	ecomes faster	b) forward read	b) forward reaction becomes faster							
	c) equilibrium constant	decreases	d) equilibrium	d) equilibrium is attained more quickly							
10.	Lewis acids are										
	a) proton donors		b) electron pai	r acceptors							
	c) electron pair donors		d) proton acce	ptors							
11.	During reduction, oxida	tion number									
	a) increases		b) decreases								
	c) do not changes		d) depends on	the reaction							
12.	The property catenation	is more marked	in the case of								
	a) silicon	b) carbon	c) tin	d) copper							
13.	Methoxy methane and e	thyl alcohol are									
	a) position isomers		b) chain isome	ers							
	c) functional isomers		d) metamers								
14.	According to Markown hydrogen of HX attach		hen hydrogen halides	add to an unsymmetrical	alkene, the						
	a) carbon at the end of	the molecule									
	b) carbon in the middle	of the molecule									
	c) carbon with least num	mber of hydroge	en atoms								
	d) carbon with maximu	m number of hy	drogen atoms								
15.	Which of the following	hydrocarbon dai	mage DNA and cause ca	ancer in the human body							
	a) 1,2-Benzanthracene		b) 1,2-Benzpyrene								
	c) 3-Methylcholanthrer	ie	d) all of these								
II.	Fill in the blanks by choo		`	given in the brackets:							
16	(aromatisation, zero, in				$5 \times 1 = 5$						
	The outer shell of the m			hy convention							
	When the pH of a soluti			by convention.							
				sive members differ from ϵ	anch other in						
	molecular formula by a	ı group) .								
20.	n-Hexane on heating to molybdenum forms ber		-	the presence of oxides o	f vanadium,						
			PART - B								
Ш	. Answer any five of the	following. Each	question carries two m	narks.	$5\times 2=10$						
21.	Define entropy? What h	appens to the en	tropy when liquid chan	iges into vapour?							
22.	What is the heterogeneous	us equilibrium?	Give an example.								
23.	What are isoelectronic s	pecies? Select is	soelectronic pair among	g the following: Na ⁺ , Cl ⁻ , F ⁻	, Li ⁺						
24.	Give any two limitation	s of octet rule.									

- 25. Define hydrogen bond? Name a compound having intra molecular H-bond.
- 26. Helium is monoatomic. Explain on the basis of Molecular Orbital Theory.
- 27. Using the stock notation, represent the following compound (i) HauCl₄, (ii) Fe₂O₃.
- 28. For the compound $CH \equiv C CH = CH CH_3$
 - i) Write the bond-line formula for the above compound.
 - ii) Mention whether the compound is saturated or unsaturated?
- 29. Write geometrical isomers of but-2-ene.

PART - C

IV. Answer any three of the following. Each question carries three marks.

 $3 \times 3 = 09$

- 30. Define electronegativity of an element. How does it vary along a period and down a group in the periodic table?
- 31. Explain the shape of ammonia molecule using VSEPR theory?
- 32. a. Define dipole moment. What is its unit?
 - b. Sigma bond is stronger than pi bond. Give reason.
- 33. Write Lewis dot structure for NO₂⁻ molecule. Calculate the formal charge on each oxygen atoms present in it.
- 34. Balance the chemical equation by oxidation number method (in acidic medium)

$$Fe^{+2} + MnO_4 \rightarrow Fe^{+3} + Mn^{2+}$$

V. Answer any three of the following. Each question carries three marks.

 $3 \times 3 = 09$

- 35. Write the any three postulates of Dalton's atomic theory.
- 36. Write any three limitations of Bohr model of an atom.
- 37. For the element with atomic number 24.
 - i) Write the electronic configuration ii) How many unpaired electrons present in it?
 - iii) To which block of the periodic table it belongs?
- 38. Derive the relationship between C_p and C_v for an ideal gas.
- 39. State Lechatlier's principle. What is the effect of temperature on the equilibrium if the reaction is exothermic?
- 40. How are K_p and K_c related? Give one reaction each in which (i) $K_p > K_c$ (ii) $K_p = K_c$

PART - D

VI. Answer any two of the following. Each question carries five marks.

 $2\times 5=10$

41. a) What is the type of hybridisation of carbon atoms marked as a, b and c in the following compound?

$$H_3C^a - HC^c = C^b = CH_2$$
.

- b) What is carbocation? Write the decreasing order of stability among 1^0 , 2^0 and 3^0 carbocations. (3 + 2)
- 42. a) Explain the principle and calculations involved in the estimation of carbon in the organic compound.
 - b) What are electrophiles?

(4+1)

- 43. a) An alkene 'A' on ozonolysis gives a mixture of ethanal and propan-2-one. Write the chemical reaction and IUPAC name of 'A'.
 - b) Explain Wurtz reaction with a suitable example.

(3 + 2)

- 44. a) Explain the mechanism of nitration of benzene.
 - b) Draw the staggered conformation of ethane.

(3+2)

VII. Answer any four of the following. Each question carries three marks.

 $4 \times 3 = 12$

- 45. An Organic compound contains 26.66% carbon, 2.22% hydrogen and 71.12% oxygen. The molecular mass of the compound is 90. Find molecular formula.
- 46. Dinitrogen and dihydrogen react with each other to produce ammonia according to the following chemical equation.

$$N_2(g) + 3H_2(g) \implies 2NH_3(g)$$

Calculate the mass of ammonia produced if 2×10^3 g dinitrogen reacts with 1×10^3 g of dihydrogen.

- 47. Calculate the wave number and wave length of first line in Balmer series of hydrogen spectrum. (Given: $R_H = 1.09677 \times 10^7 \, \text{m}^{-1}$)
- 48. Calculate the energy of one mole of photon of radiation whose frequency is $5x10^{14}$ Hz.
- 49. The standard enthalpies of combustion of carbon, hydrogen and C₆H₆ are -393.5 kJmol⁻¹, -285.83 kJmol⁻¹ and -3267 kJmol⁻¹ respectively. Calculate the standard enthalpy of formation of C₆H₆.
- 50. Calculate the total work done when one mole of a gas expands isothermally and reversibly from an initial volume of 10 dm³ to a final volume of 20 dm³ at 298 K. (R = 8.314 JK⁻¹ mol⁻¹)
- 51. Calculate ΔG^0 for the hydrolysis of sucrose. The equilibrium constant K_C is 2×10^{-3} at 300 K. (R = 8.314 JK⁻¹ mol⁻¹)
- 52. Reaction between N₂ and O₂ take place as follows

$$2N_2(g) + O_2(g) = 2N_2O(g)$$

If a mixture of 0.482 mol of N_2 and 0.933 mol of O_2 is placed in a 10L vessel and allowed to form N_2O at a room temperature at which $K_c = 2 \times 10^{-37}$, determine the composition of equilibrium mixture.

Question Paper Part	Question Type	Number of Questions	Marks
PART - A	MCQ	15/15	15/15
PART - A	Fill in the blank	05/05	05/05
PART -B Short Answer (SA = 02 Marks)		05/09	10/18
DADE C	Short Answer (SA = 03 Marks) Inorganic Chemistry	03/05	09/15
PART - C	Short Answer (SA = 03 Marks) Physical Chemistry	03/06	09/18
PART- D	Long Answer (LA = 05Marks)	02/04	10/20
PART - E	Small Answer (SA = 03Marks) Numerical problems	04/08	12/24
	Total	37/52	115

WEIGHTAGE

Objectives	Number of Questions	Marks	Percentage		
Remember	22	46	40%		
Understanding	15	34	30%		
Apply	07	17	14%		
HOTS	08	18	16%		
TOTAL	52	115	100%		

SUBJECT: CHEMISTRY (34)					BLUE PRINT			CLASS: I PUC										
	er Irs	S	Re	emember (≈ 40%)		Understand (≈ 30%)			Apply (≈ 15 TO 20%)				HOTS (≈ 10 TO 15%)					
Chapter/ Content domain/ Unit/ Theme	Number of Hours Marks	Mark	VSA (01 Mark)	SA (02 Marks)	SA (03 Marks)	LA	VSA (01 Mark)	SA (02 Marks)	SA (03 Marks)	LA		SA (02 Marks)	SA (03 Marks)	LA	VSA (01 Mark)	SA (02 Marks)	SA (03 Marks)	LA
Physical Chemistry																		
Some Basic Concepts of Chemistry	11	11	1	-	1 (NP)	-	1	-	1 (T)	ı	-	1	-	1	-	-	1 (NP)	-
Structure of Atom	13	13	1	-	1 (T)	-	-	-	1 (T)	ı	-	ı	1 (NP)	-	-	-	1 (NP)	-
Thermodynamics	15	14	1	-	1 (T)	ı	1	-	1 (NP)	ı	1	1	-	1	1	-	1 (NP)	-
Equilibrium	18	17	1	1	1 (T)	-	2	-	1 (T)	-	-	-	-	1	-	-	2 (NP)	-
	Inorganic Chemistry																	
Classification of Elements & Periodicity in Properties	06	06	1	1	1	1	-	-	-	-	-	-	-	1	-	-	-	-
Chemical Bonding and Molecular Structure	17	16	1	-	1	-	-	1	1	-	1	1	1	-	1	-	-	-
Redox Reactions	06	06	1	-	-	-	-	1	1	-	-		-	-	-	-	-	-
						(Organic	Chemis	try									
Organic chemistry - Some Basic Principles and Techniques	18	17	2	1	-	1	-	1	-	-	1	-	-	1	-	-	-	-
Hydrocarbons	16	15	1	1	-	1	1	-	-	1	-	-	-	-	1	-	-	-
Total Teaching Hours	120	115	10	08	18	10	05	06	18	05	02	04	06	05	03	00	15	00
and Marks	120			45				35				17	7			1	18	
Total Questions		52	10	04	06	02	05	03	06	01	02	02	02	01	03	00	05	00

^{1.} Weightage = Total marks/Number of teaching hours = 115/120 = 0.96 (i.e., 0.96marks for each hour)

Note: T = Theory; NP = Numerical Problems; VSA = Very Short Answer (MCQ's and Fill in the Blanks); SA= Short Answer; LA = Long Answer

^{2.} Choice = out of 52 Questions only 37 Questions are to be answered.

GENERAL GUIDE LINES:

- 1. Questions should not be vague and ambiguous. Answers should be available in the prescribed NCERT text book or based on the contents in the prescribed text book.
- 2. Intermixing of questions of different units is not allowed. 5 marks question may be framed as (3+2) as far as possible.
- 3. Avoid questions from:
- a. Drawings involving 3D diagrams
- b. The boxed materials with deep yellow bar in the text book are to bring additional life to the topic and are non-evaluative.
- 4. Questions on numerical data given in the form of appendix, numbered tables containing experimental data and life history of scientists given in the chapters should be avoided.
- 5. Frame the questions in such a way to strictly avoid ½ mark evaluation (or avoid value points for ½ marks.).
- 6. While framing Physical chemistry units (Unit 1, 2 3 & 4) questions for Part -A, B and C should not be Numerical problems. The Numerical Problems of these Units should be framed only in Part-E. This division is done to make for the students to learn and attempt to solve the Numerical Problems.
- 7. Application and HOTS (Higher Order Thinking Skills) questions can be selected from any chapter without changing the weightage of the chapter.