ENGINEERING MATHEMATICS TEST 5

Number of Questions: 25

Time: 60 min.

NUMERICAL METHODS

Directions for questions 1 to 25: Select the correct alternative from the given choices.

- 1. In the process of finding an approximate root of f(x) = 0 in [a, b] (where f(a) and f(b) are of opposite signs) by Regula – Falsi method, we assume that the curve f(x) = 0 in between x = a and x = b can be approximated to
 - (A) a parabola
 - (B) a straight line
 - (C) a hyperbola
 - (D) a rectangular hyperbola
- 2. The iterative formula to find a root of the equation $f(x) = x^3 - 5x + 7 = 0$ by Newton Raphson method is _____.

(A)
$$x_{k+1} = \frac{x_k^3 + 5x - 7}{3x_k^2 + 5}$$
 (B) $x_{k+1} = \frac{2x_k^3 + 5x}{3x_k^2 + 7}$
(C) $x_{k+1} = \frac{2x_k^3 - 7}{3x_k^2 - 5}$ (D) $x_{k+1} = \frac{x_k^3 - 5x}{3x_k^2 + 7}$

- 3. With $x_0 = 0.5$ as the initial approximation, the value of the root of $f(x) = x + \sin x - 1 = 0$, after first iteration by Newton Raphson method is ____
 - (B) 0.5110 (A) 0.7456

(C)	0.4998	(D)	0.2644
-----	--------	-----	--------

- 4. Applying the secant method, the first approximation to the root of $f(x) = xe^x - 2 = 0$, starting with function value at x = 0.5 and x = 1 is _____.
 - (A) 1.1756 (B) 0.4035 (C) 0.8104 (D) 0.5473
- 5. The extreme (minimum or maximum) point of a function f(x) is to be determined by solving $\frac{df(x)}{dr} = 0$ using the Newton Raphson method. Let $f(x) = x^3 - 4x^2 + 5$ and $x_0 = 3$ be the initial guess of x. The value of x after first iteration (x_1) is _____. (A) 2.70 (B) 4.33 (C) 3.30
 - (D) 1.77
- 6. In the process of evaluating $\int_{-\infty}^{\frac{\pi}{2}} (x^3 + \sin 2x + 5) dx$ using Simpson's Rule with $h = \frac{\pi}{8}$, the absolute value of the

error does not exceed (A) 0.12351×10^{-4} (B) 1.03503×10^{-4} (D) 6.2475×10^{-4} (C) 3.01243×10^{-4}

7. The following table gives the velocity v of a particle at time t.

T(in seconds)	0	2	4	6	8	10	12
n(in m/sec)	6	10	16	20	22	30	40

The distance moved by the particle in 12 seconds, when calculated by the Trapeziodal rule with h = 2is

- (A) 200 meters (B) 210 meters
- (C) 242 meters (D) 262 meters
- 8. A curve is drawn to pass through the points given by the following table

Х	1.0	1.5	2.0	2.5	3.0	3.5	4.0
Y	1.0	1.7	2.5	3.4	4.1	3.7	2.9

The area bounded by the curve, the x – axis and the lines x = 1 and x = 4, when calculated by the Simpson's $\frac{3}{8}$ th Rule is _____ square units.

(A)	8.7562	(B)	5.7435
(C)	6.7134	(D)	8.4296

9. The absolute error (correct up to 4 decimal places) in calculating the value log_2 by trapezoidal rule, with 4 intervals using the formulae $\log_e 2 = \int_{1}^{2} \frac{dx}{x}$ is _____.

(A) 0.1314 (B) 0.0039 (C) 0.0000 (D) 0.0004

- 10. With reference to finding solution of a differential equation by numerical methods, which of the following methods is NOT a predictor correct method?
 - (A) Picard's method
 - (B) Modified Euler's method
 - (C) Adams Bash forth method
 - (D) Milne's method

11. The differential equation $\frac{dy}{dx} - x^2 = y$; y(0) = 1 is to be solved by the modified Euler's method. With h = 0.1, the value of y_1 correct to four decimal places is _____. (B) 1.1058 (A) 1.2046 (C) 0.9954 (D) 0.8764

12. Using Taylor's series method, the solution of the differential equation $\frac{dy}{dx} - xy = 1$ with y(0) = 3 at x = 0.1 with

h = 0.1 is correct up to three decimal places is _____. (A) 3.1153 (B) 2.9847 (C) 4.1572 (D) 3.7893

2.30 | Engineering Mathematics Test 5

13. The solution of the differential equation $\frac{dy}{dx} = x + y;$

y(0) = 0 at x = 0.2 by Runge Kutta method of fourth order with h = 0.2 is _____.

(A)	1.0034	(B)	0.0456
(C)	0.9984	(D)	0.0214

- 14. Consider an equation f(x) = 0 for which x = 4.50 is an exact root. In the process of finding a root of f(x) = 0 by a numerical method, the approximations obtained in four successive iterations are 4.45, 4.54, 4.47 and 4.52 respectively. Then these approximate values of the root of f(x) = 0 are _____.
 - (A) precise but not accurate
 - (B) not precise but accurate
 - (C) both precise and accurate
 - (D) neither precise nor accurate
- **15.** For an equation f(x) = 0, if x_e is the exact root and x_a is the approximate root, then the percentage error is _____.

(A)
$$(x_e - x_a) \times 100$$
 (B) $|x_e - x_a| \times 100$
(C) $\frac{(x_e - x_a)}{x_e} \times 100$ (D) $\frac{|x_e - x_a|}{|x_e|} \times 100$

16. Consider the following two statements

- *P*: Truncation error in numerical analysis arise when approximations are used to estimate some quantity.
- *Q*: Round off error in numerical analysis occurs because of the computing devices inability to deal with certain number.

Then

- (A) Both P and Q are true
- (B) P is true but Q is false
- (C) P is false but Q is true
- (D) Both P and Q are false
- 17. In the process of fitting a quadratic equation of the form $y = a + bx + cx^2$ to a set of n points $(x_1, y_1), (x_2y_2), \dots, (x_ny_n)$ by the method of least squares, which of the following is not a normal equation?
 - (A) $\sum y_i = na + b \sum x_i + c \sum x_i^2$
 - (B) $\sum x_i y_i = a \sum x_i + b \sum x_i^2 + c \sum x_i^3$
 - (C) $\sum x_i y_i^2 = a \sum x_i^2 + b \sum x_i^3 + c \sum x_i^4$
 - (D) $\sum x_i^2 y_i = a \sum x_i^2 + b \sum x_i^3 + c \sum x_i^4$
- **18.** If y = 3x + 7 is the best fit for 6 pairs of values of *x* and *y* by the method of least squares and $\sum y = 150$, then \sum

x 1S		•	
(A)	144		

19. In the process of fitting a curve $y = \frac{x^2}{ax+b}$ to a given

set of *n* pairs of values of *x* and y by converting it into a

(B) 102

linear form Y = a + bX, X and Y respectively stand for _____.

(A)
$$\frac{1}{x^2}$$
 and $\frac{x^2}{y}$ (B) $\frac{1}{x}$ and $\frac{x}{y}$
(C) x^2 and $\frac{y}{x^2}$ (D) x and $\frac{y}{x}$

- **20.** In the process of fitting a curve $\exp(y) = ab^x$ to a given set of n pairs of values of x and y by converting it into a linear form y = A + Bx, A and B respectively stand for _____
 - (A) $\ln a$ and $\ln b$ (B) $\ln a$ and $\log_{10}b$ (C) $\log_{10}a$ and $\ln b$ (D) $\log_{10}a$ and $\log_{10}b$

21. If Δ denotes the forward difference operator then the value of $\Delta^{18} \left[(1+2x^3)(1-3x^4)(1+4x^5)(1-5x^6) \right]$

- is _____. (A) 5!×18! (B) 6!×18! (C) 5!×17!
- (D) $6! \times 17!$
- **22.** The central difference operator δ is defined as
 - $y_r y_{r-1} = \delta y_{r-\frac{1}{2}}$

Then which of the following is an identity? (Note that Δ and ∇ denote the forward and the backward difference operators respectively)

- (A) $\Delta y_5 = \nabla y_4 = \delta y_{\frac{7}{2}}$ (B) $\Delta y_5 = \nabla y_4 = \delta y_4$ (C) $\Delta y_4 = \nabla y_5 = \delta y_{\frac{9}{2}}$ (D) $\Delta y_4 = \nabla y_5 = \delta y_4$
- 23. Match the following

	Group – I		Group – II
Ρ.	To extrapolate the values of y to the left of y_0 when x values are equally spaced	1.	Newton's divided difference formula
Q.	To interpolate the values of y near the end value y _n when x values are equally spaced	2.	Lagrange's interpolation formula
R.	To split the given func- tion into partial fractions	3.	Newton's forward interpolation formula
S.	To interpolate the values of y when x values are unequally spaced.	4.	Newton's backward interpolation formula

(A) P - (1), Q - (2), R - (3), S - (4)

(B) P - (3), Q - (2), R - (4), S - (1)

(C) P - (3), Q - (4), R - (2), S - (1)

(D) P - (2), Q - (1), R - (4), S - (3)

24. The 9th divided difference of a polynomial of degree 8

- is ____ (A) zero
- (B) a non zero constant
- (C) a linear polynomial
- (D) a quadratic polynomial

25. If f(0) = -12, f(3) = 6 and f(4) = 12, then the value of f(6) obtained by the Lagrange's interpolation formula is _____.

	ANSWER KEYS										
				ANSV	VER INETS						
1. B	2. C	3. B	4. C	5. A	6. B	7. C	8. A	9. B	10. A		
11. B	12. A	13. D	14. B	15. D	16. A	17. C	18. D	19. B	20. A		
21. A	22. C	23. C	24. A	25. B							

HINTS AND EXPLANATIONS

1. Standard Result.

Choice (B)

.

2. Given, $f(x) = x^3 - 5x + 7 = 0$ $\Rightarrow f^1(x) = 3x^2 - 5.$

By Newton Raphson's method, the interative formulae to find a root is

$$x_{k+1} = x_k - \frac{f(x_k)}{f^1(x_k)} = x_k - \frac{(x_k^3 - 5x_k + 7)}{(3x_k^2 - 5)}$$

$$\therefore \quad x_{k+1} = \frac{2x_k^3 - 7}{3x_k^2 - 5}.$$
 Choice (C)

3. Given, $f(x) = x + \sin x - 1 = 0$ $\Rightarrow f^{1}(x) = 1 + \cos x$ and $x_{0} = 0.5$ By Newton Raphson's method

$$x_{1} = x_{0} - \frac{f(x_{0})}{f^{1}(x_{0})}$$

= (0.5) - $\frac{(0.5 + \sin(0.5) - 1)}{(1 + \cos(0.5))}$
= 0.5110. Choice (B)

4. Here, $f(x) = xe^x - 2 = 0$ By the secant method, the approximate root of f(x) = 0after first iteration is given by

$$x_{2} = \frac{x_{0}f(x_{1}) - x_{1}f(x_{0})}{f(x_{1}) - f(x_{0})}$$
 ------(1)

Here, $x_0 = 0.5$ and $x_1 = 1$ \therefore $f(x_0) = f(0.5) = -1.1756$ and $f(x_1) = f(1) = 0.7183$ Substituting these in (1) we have

$$x_2 = \frac{(0.5)(0.7183) - (1)(-1.1756)}{(0.7183) - (-1.1756)}$$

:.
$$x_2 = 0.8104$$
. Choice (C)
5. Given, $f(x) = x^3 - 4x^2 + 5$

$$\frac{df(x)}{dx} = 0 \Rightarrow 3x^2 - 8x = 0$$

Let, $g(x) = 3x^2 - 8x = 0$.

We have to find the approximate root of g(x) =*.*.. 0 after first interaction by the Newton Raphson method with $x_0 = 3$.

$$\therefore g^{1}(x) = 6x - 8$$

By Newton Raphson method

$$x_{1} = x_{0} - \frac{g(x_{0})}{g^{1}(x_{0})}$$

= 3 - $\frac{(3(3)^{2} - 8(3))}{6(3) - 8} = 2.7.$ Choice (A)

6. We have
$$\int_{0}^{\frac{\pi}{2}} (x^3 + \sin 2x + 5) dx$$
.

Let
$$y = f(x) = x^3 + \sin 2x + 5$$
.

The absolute value of the maximum error in Simpson's Rule is

$$|E|_{\max} = \frac{(b-a)h^4}{180}m$$
 ------(1)

Where $m = \max - \{y_0^{(iv)}, y_2^{(iv)}, y_4^{(iv)}\}$ Here, $h = \frac{\pi}{8}$ and $y^{(iv)} = 16 \sin 2x$, a = 0, $b = \frac{\pi}{2}$

$$\therefore \quad m = \max\left[16\sin 0, \, 16\sin\left(2 \times \frac{\pi}{4}\right), \\ 16\sin\left(2 \times \frac{\pi}{2}\right)\right] = 16$$

From (1)

$$E_{\rm max}| = \frac{\left(\frac{\pi}{2}\right)\left(\frac{\pi}{8}\right)}{180} \times 16 = 1.0350 \times 10^{-4}$$

The absolute value of the maximum error cannot exceed 1.03503×10^{-4} .

Choice (B)

2.32 | Engineering Mathematics Test 5

7. Given velocity of the particle at various times is

Т	0	2	4	6	8	10	12
n	6	10	16	20	22	30	40

Distance traveled in 12 seconds =
$$\int_{0}^{12} v dt$$

By trapezoidal rule

$$\int_{0}^{12} v dt = \frac{h}{2} [(v_0 + v_6) + 2 (v_1 + v_2 + v_3 + v_4 + v_5)]$$

= $\frac{2}{2} [(6 + 40) + 2(10 + 16 + 20 + 22 + 30)]$
= 242 meters. Choice (C)

8. Let y = f(x) be the curve, that pass through the points

Х	1.0	1.5	2.0	2.5	3.0	3.5	4.0
Υ	1.0	1.7	2.5	3.4	4.1	3.7	2.9

... The area bounded by the curve y = f(x), x - axisand the lines x = 1 and x = 4 is $\int_{1}^{4} f(x) dx$.

By Simpson's
$$\frac{3}{8}th$$
 Rule, we have

$$\int_{1}^{4} f(x)dx = \frac{3h}{8} [(y_0 + y_6) + 3(y_1 + y_2 + y_4 + y_5) + 2y_3]$$

$$= \frac{3 \times (0.5)}{8} [(1.0 + 2.9) + 3(1.7 + 2.5 + 4.1 + 3.7) + 2 \times 3.4] = 8.7562.$$
Choice (A)

9. Let $y = f(x) = \frac{1}{x}$

Here, a = 1, b = 2 and n = 4

$$\therefore \quad h = \frac{b-a}{n} = 0.25$$

Х	1	1.25	1.5	1.75	2
F(x)	1	0.8	0.667	0.5714	0.5

We have
$$\log_e 2 = \int_1^2 \frac{dx}{x}$$

By the trapezoidal rule, we have

The exact value of $\log_e 2 = 0.6931$ ------ (2)

The absolute error in calculating $\log_e 2$ by the trapezoidal rule = 0.6970 - 0.6931 = 0.0039. Choice (B)

10. A predictor corrector method is one in which we predict the solution first and then we improve it for accuracy Picard's method is not a predictor corrector method and all other methods are predictor corrector methods. Choice (A)

11. Given different equation is
$$\frac{dy}{dx} - x^2 = y$$
 and $y(0) = 1$

$$\Rightarrow \frac{dy}{dx} = x^2 + y$$

$$\therefore \quad f(x, y) = x^2 + y, x_0 = 0, y_0 = y(x_0) = 1 \text{ and } h = 0.1$$
By Euler's method

$$y_1^{(0)} = y_0 + h (f(x_0, y_0) = y_0 + h (x_0^2 + y_0))$$

$$= 1 + (0.1) (0 + 1)$$

$$y_1^{(0)} = 1.1$$

By modified Euler's method

$$y_{1}^{(1)} = y_{0} + \frac{h}{2} \left[f(x_{0}, y_{0}) f(x_{1}y_{1}^{(0)}) \right]$$

$$= y_{0} + \frac{h}{2} \left[\left(x_{0}^{2} + y_{0}\right) + \left(x_{1}^{2} + y_{1}^{(0)}\right) \right]$$

$$= 1 + \frac{(0.1)}{2} \left[(0 + 1) + (10.1)^{2} + 1.1) \right] = 1.1055$$

$$y_{1}^{(2)} = y_{0} + \frac{h}{2} \left[f(x_{0}, y_{0}) + f(x_{1}, y_{1}^{(1)}) \right]$$

$$= y_{0} + \frac{h}{2} \left[\left(x_{0}^{2} + y_{0}\right) + \left(x_{1}^{2} + y_{1}^{(1)}\right) \right]$$

$$= 1 + \frac{(0.1)}{2} \left[(0 + 1) + ((0.1)^{2} + 1.1055) \right]$$

$$= 1.1058$$

$$y_{1}^{(3)} = y_{0} + \frac{h}{2} \left[f(x_{0}, y_{0}) + f(x_{1}, y_{1}^{(2)}) \right]$$

$$= y_{0} + \frac{h}{2} \left[(x_{0}^{2} + y_{0}) + (x_{1}^{2} + y_{1}^{(2)}) \right]$$

$$= 1 + \frac{(0.1)}{2} \left[(0 + 1) + ((0.1)^{2} + 1.1058) \right]$$

= 1.1058 solution of a given diff

The solution of a given different equation at $x_1 = 0.1$ is $y_1 = 1.1058$. Choice (B)

12. Given differential equation is
$$\frac{du}{dx} - xy = 1$$
 and $y(0) = 3$

$$\Rightarrow \quad \frac{dy}{dx} = 1 + xy$$

Here f(x, y) = 1 + xy, $x_0 = 0$, $y_0 = y(x_0) = 3$ and h = 0.1By Taylar's series we have $y_1 = y(x_1) = y_0 + h_0 y_0^1 + \frac{h^2}{2!} y_0^{11} + \frac{h^3}{3!} y_0^{111} + \dots \infty$ ----(1)

Engineering Mathematics Test 5 | 2.33

$$y_{0}^{1} = \left(\frac{dy}{dx}\right)_{x=0} = f(x_{0}, y_{0}) = 1 + x_{0} y_{0} = 1 + (0)(3) = 1$$

$$\frac{d^{2}y}{dx^{2}} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} (1 + xy) = xy^{1} + y$$

$$\therefore \quad y_{0}^{11} = \left(\frac{d^{2}y}{dx^{2}}\right)_{atx=x_{0}} = x_{0} y_{0}^{1} + y_{0} = 0 \times 1 + 3 = 3$$

$$\frac{d^{3}y}{dx^{3}} = \frac{d}{dx} \left(\frac{d^{2}y}{dx^{2}}\right) = \frac{d}{dx} (xy^{1} + y) = xy^{11} + 2y^{1}$$

$$\therefore \quad y_{0}^{111} = \frac{d^{3}y}{dx^{3}}_{atx=x_{0}} = x_{0} y_{0}^{11} + 2y_{0}^{1} = 0 \times 3 + 2 \times 1 = 2$$

$$\frac{d^{4}y}{dx^{4}} = \frac{d}{dx} \left(\frac{d^{3}y}{dx^{3}}\right) = \frac{d}{dx} (xy^{11} + 2y^{1}) = xy^{111} + 3y^{11}$$

$$y_{0}^{(iv)} = \frac{d^{4}y}{dx^{4}}_{atx=x_{0}} = x_{0} y_{0}^{111} + 3y_{0}^{11} = 0 \times 2 + 3 \times 3 = 9$$

Substituting these in (1), we have

$$y_{1} = 3 + (0.1) \times 1 + \frac{(0.1)^{2}}{2!} \times 3 + \frac{(0.1)^{3}}{3!} \times 2 + \frac{(0.1)^{4}}{4!} \times 3$$

$$9 + ... = 3.1153.$$
 Choice (A)

- **13.** Given differential equation is $\frac{dy}{dx} = x + y, y(0) = 0$
 - Here f(x, y) = x + y, $x_0 = 0$; $y_0 = 0$ and h = 0.2 $\therefore x_1 = x_0 + h = 0.2$ By R – K method of fourth order we have $Y_{atx=0.1} = y_1 = y_0 + \Delta y$ ------(1) Where $\Delta y = \frac{1}{6} [k_1 + 2k_2 + 2k_3 + k_4]$ ------(2)

Here
$$k_1 = h f(x_0, y_0) = h(x_0 + y_0)$$

= (0.2) (0 + 0)
 $\therefore k_1 = 0$

$$k_{2} = h f \left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{1}}{2} \right)$$
$$= h \left(\left(x_{0} + \frac{h}{2} \right) + \left(y_{0} + \frac{k_{1}}{2} \right) \right)$$
$$= (0.2) \left[\left(0 + \frac{(0.2)}{2} \right) + \left(0 + \frac{0}{2} \right) \right]$$

- $\therefore \quad k_2 = 0.02 \\ K_3 = 0.022 \text{ and } k_4 = h f(x_0 + h, y_0 + k_3) \\ = h [(x_0 + h) + (y_0 + k_3)] \\ = (0.2) [(0 + 0.2) + (0 + 0.022)] \\ \therefore \quad k_4 = 0.0444$
- :. From (2), $\Delta y = \frac{1}{6} [0 + 2 \times 0.02 + 2 \times 0.022 + 0.0444]$ $\Delta y = 0.0214$

:. From (1),
$$y_1 = y_0 + \Delta y = 0 + 0.0214 = 0.0214$$

Choice (D)

- 14. The four approximations given are not relatively close to each other. So, they are not precise. All the four approximations are close to the exact root x = 4.50. So, they are accurate. Choice (B)
- **15.** By definition. Choice (D)
- **16.** By definitions of the round off and the truncation errors. Choice (A)
- 17. Given set of *n* points are $(x_1, y_1, y_1, y_1, y_1, y_2, y_2, y_2, y_2, y_1, y_n)$ We have to fit the quadratic equation $y = a + bx + cx^2$ \rightarrow (1) to the given set of *n* points

Here a, b and c are constants to be determined such that

$$S = \sum \left[y_i - \left(a + bx_i + cx_i^2 \right) \right]^2 \longrightarrow (2)$$

is minimum

S is minimum for those values of a, b and c at which

$$\frac{\partial S}{\partial a} = 0, \frac{\partial S}{\partial b} = 0 \text{ and } \frac{\partial S}{\partial c} = 0.$$

i.e., $-2\left(\sum \left[y_i - \left(a + bx_i + cx_i^2\right)\right]\right) = 0$
 $-2x_i\left(\sum \left[y_i - \left(a + bx_i + cx_i^2\right)\right]\right) = 0$
and $-2x_i^2\left(\sum \left[y_i - \left(a + bx_i + cx_i^2\right)\right]\right) = 0$
 \therefore the normal equations are
 $\Rightarrow \sum y_i = na + b\sum x_i + c\sum x_i^2$
 $\sum x_i y_i = a\sum x_i + b\sum x_i^2 + c\sum x_i^3$
And $\sum x_i^2 y_i = a\sum x_i^2 + b\sum x_i^3 + c\sum x_i^4$

- ∴ the equation given in option (C) is not a normal equation. Choice (C)
- **18.** Given that y = 3x + 7 is the best fit for 6 pairs of values of x and y also given $\sum y = 150$

$$\therefore \text{ We know that} \\ \Sigma y = 3\Sigma x + n7 \\ (\text{Here } n = \text{number of points} = 6) \\ \Rightarrow 150 = 3\Sigma x + 6x7 \\ \Rightarrow 3\Sigma x = 108 \\ \Rightarrow \Sigma x = 36. \qquad \text{Choice (D)} \\ \text{Given curve is } y = \frac{x^2}{2}$$

19. Given curve is $y = \frac{x}{ax+b}$

$$\Rightarrow \frac{1}{y} = \frac{ax+b}{x^2}$$
$$\Rightarrow \frac{1}{y} = \frac{a}{x} + \frac{b}{x}$$
$$\Rightarrow \frac{x}{y} = a + \frac{b}{x}$$
$$\Rightarrow \frac{x}{y} = a + \frac{b}{x}$$

2.34 | Engineering Mathematics Test 5

Which is of the linear from Y = a + bX

Where
$$X = \frac{1}{x}$$
 and $Y = \frac{x}{y}$ Choice (B)

20. Given curve is $\exp(y) = ab^x$

i.e., $e^y = ab^x$ Applying logarithm (ln) on both sides, We have $\ln (e^y) = \ln (ab^x)$ $\Rightarrow y = \ln a + \ln b^x$ $\Rightarrow y = \ln a + x \ln b$ Which is of the form y = A + BxWhere $A = \ln a$ and $B = \ln b$. Choice (A)

21. We have
$$\Delta^{18} \left[(1+2x^3)(1-3x^4)(1+4x^5)(1-5x^6) \right]$$

$$= \Delta^{18} \left[2x(-3)x4x(-5)x^{18} + k_1x^{17} + k_2x^{16} + \dots + k_{15}x^3 + 1 \right]$$

$$= 5! \Delta^{18} \left[x^{18} \right]$$
($\because \Delta^{18} [x^n] = 0$ for $n < 18$)

$$= 5! \times 18!.$$
 Choice (A)

22. We know that
$$\Delta y_{r-1} = y_r - y_{r-1} \rightarrow (1)$$

 $\nabla y_r = y_r - y_{r-1} \rightarrow (2)$

and given that
$$\delta y_{-1} = y_r - y_{r-1} \rightarrow (3)$$

and given that
$$\mathbf{o}y_{r-\frac{1}{2}} = y_r - y_{r-1} \longrightarrow (3)$$

From (1), (2) and (3), we have

$$\Delta y_{r-1} = \nabla y_r = \delta y_{r-\frac{1}{2}}$$
 \rightarrow (4)

Among the options given, we can get option (C) by taking r = 5 in (4),

$$\therefore \quad \Delta y_4 = \nabla y_5 = \delta y_{\frac{9}{2}} \qquad \text{Choice (C)}$$

- **23.** Standard result Choice (C)
- **24.** We know that the n^{th} divided difference of any polynomial of degree less than n is always zero. Choice (A)
- **25.** Given pairs of values of x and f(x) are

Х	0	3	4
f(x)	-12	6	12

By Lagrange's interpolation formula, we have

$$f(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} f(x_0)$$

+ $\frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} f(x_1) + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} f(x_2)$
= $\frac{(x-3)(x-4)}{(0-3)(0-4)} \times (-12) + \frac{(x-0)(x-4)}{(3-0)(3-4)} \times 6$
+ $\frac{(x-0)(x-3)}{(4-0)(4-3)} \times 12$

By taking x = 6 on both sides, We have

$$f(6) = \frac{(6-3)(6-4)}{3\times 4} \times (-12) + \frac{(6-0)(6-4)}{3\times (-1)} \times 6$$

+ $\frac{(6-0)(6-3)}{4\times 1} \times 12$
 $\therefore f(6) = 24$ Choice (B)