1.1 Set Theory

1.1.1 Definitions

A set is a well-defined class or collection of objects. By a well defined collection we mean that there exists a rule with the help of which it is possible to tell whether a given object belongs or does not belong to the given collection. The objects in sets may be anything, numbers, people, mountains, rivers etc. The objects constituting the set are called elements or members of the set.

A set is often described in the following two ways.

(1) **Roster method or Listing method :** In this method a set is described by listing elements, separated by commas, within braces {}. The set of vowels of English alphabet may be described as $\{a, e, i, o, u\}$.

The set of even natural numbers can be described as {2, 4, 6......}. Here the dots stand for 'and so on'.

Wate : \Box The order in which the elements are written in a set makes no difference. Thus $\{a, e, e\}$

i, o, u and $\{e, a, i, o, u\}$ denote the same set. Also the repetition of an element has no effect. For example, $\{1, 2, 3, 2\}$ is the same set as $\{1, 2, 3\}$

(2) **Set-builder method or Rule method :** In this method, a set is described by a characterizing property P(x) of its elements x. In such a case the set is described by $\{x : P(x) \text{ holds}\}$ or $\{x \mid P(x) \text{ holds}\}$, which is read as 'the set of all x such that P(x) holds'. The symbol '|' or ':' is read as 'such that'.

The set *E* of all even natural numbers can be written as

 $E = \{x \mid x \text{ is natural number and } x = 2n \text{ for } n \in N\}$

or
$$E = \{x \mid x \in N, x = 2n, n \in N\}$$

or
$$E = \{x \in N \mid x = 2n, n \in N\}$$

The set $A = \{0, 1, 4, 9, 16,\}$ can be written as $A = \{x^2 | x \in Z\}$

Wate : D Symbols

Symbol	Meaning
\Rightarrow	Implies
E	Belongs to
$A \subset B$	A is a subset of B
\Leftrightarrow	Implies and is implied by

∉	Does not belong to	
s.t.	Such that	
\forall	For every	
Э	There exists	
Symbol	Meaning	
iff	If and only if	
&	And	
a b	a is a divisor of b	
Ν	Set of natural numbers	
I or Z	Set of integers	
R	Set of real numbers	
С	Set of complex numbers	
Q	Set of rational numbers	

Example: 1The set of intelligent students in a class is[AMU 1998](a) A null set(b) A singleton set(c) A finite set(d) Not a well defined collection

Solution: (d) Since, intelligency is not defined for students in a class *i.e.*, Not a well defined collection.

1.1.2 Types of Sets

(1) **Null set or Empty set:** The set which contains no element at all is called the null set. This set is sometimes also called the 'empty set' or the 'void set'. It is denoted by the symbol ϕ or {}.

A set which has at least one element is called a non-empty set.

Let $A = \{x : x^2 + 1 = 0 \text{ and } x \text{ is real}\}$

Since there is no real number which satisfies the equation $x^2 + 1 = 0$, therefore the set *A* is empty set.

Wole : \Box If *A* and *B* are any two empty sets, then $x \in A$ iff $x \in B$ is satisfied because there is no element *x* in either *A* or *B* to which the condition may be applied. Thus A = B. Hence, there is only one empty set and we denote it by ϕ . Therefore, article 'the' is used before empty set.

(2) **Singleton set:** A set consisting of a single element is called a singleton set. The set {5} is a singleton set.

(3) **Finite set:** A set is called a finite set if it is either void set or its elements can be listed (counted, labelled) by natural number 1, 2, 3, ... and the process of listing terminates at a certain natural number n (say).

Cardinal number of a finite set: The number n in the above definition is called the cardinal number or order of a finite set A and is denoted by n(A) or O(A).

(4) **Infinite set:** A set whose elements cannot be listed by the natural numbers 1, 2, 3, ..., *n*, for any natural number *n* is called an infinite set.

(5) **Equivalent set:** Two finite sets *A* and *B* are equivalent if their cardinal numbers are same *i.e.* n(A) = n(B).

Example: $A = \{1, 3, 5, 7\}$; $B = \{10, 12, 14, 16\}$ are equivalent sets [:: O(A) = O(B) = 4]

(6)**Equal set:** Two sets *A* and *B* are said to be equal *iff* every element of *A* is an element of *B* and also every element of *B* is an element of *A*. We write "A = B" if the sets *A* and *B* are equal and " $A \neq B$ " if the sets *A* and *B* are not equal. Symbolically, A = B if $x \in A \Leftrightarrow x \in B$.

The statement given in the definition of the equality of two sets is also known as the axiom of extension.

Example: If $A = \{2, 3, 5, 6\}$ and $B = \{6, 5, 3, 2\}$. Then A = B, because each element of A is an element of B and vice-versa.

Wole : D Equal sets are always equivalent but equivalent sets may need not be equal set.

(7) **Universal set :** A set that contains all sets in a given context is called the universal set.

or

A set containing of all possible elements which occur in the discussion is called a universal set and is denoted by *U*.

Thus in any particular discussion, no element can exist out of universal set. It should be noted that universal set is not unique. It may differ in problem to problem.

(8) **Power set :** If *S* is any set, then the family of all the subsets of *S* is called the power set of *S*.

The power set of *S* is denoted by *P*(*S*). Symbolically, *P*(*S*) = { $T : T \subseteq S$ }. Obviously ϕ and *S* are both elements of *P*(*S*).

Example : Let $S = \{a, b, c\}$, then $P(S) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$.

Wate : \Box If $A = \phi$, then P(A) has one element ϕ , $\therefore n[P(A)] = 1$

□ Power set of a given set is always non-empty.

- □ If *A* has *n* elements, then P(A) has 2^n elements.
- $\square \quad P(\phi) = \{\phi\}$

 $P(P(\phi)) = \{\phi, \{\phi\}\} \implies P[P(P(\phi))] = \{\phi, \{\phi\}, \{\{\phi\}\}, \{\phi, \{\phi\}\}\}\}$

Hence $n\{P[P(P(\phi))]\} = 4$.

(9) **Subsets (Set inclusion) :** Let *A* and *B* be two sets. If every element of *A* is an element of *B*, then *A* is called a subset of *B*.

If *A* is subset of *B*, we write $A \subseteq B$, which is read as "*A* is a subset of *B*" or "*A* is contained in *B*".

Thus, $A \subseteq B \Rightarrow a \in A \Rightarrow a \in B$.

Wole : D Every set is a subset of itself.

□ The empty set is a subset of every set.

\Box The total number of subset of a finite set containing *n* elements is 2^n .

Proper and improper subsets: If *A* is a subset of *B* and $A \neq B$, then *A* is a proper subset of *B*. We write this as $A \subset B$.

The null set ϕ is subset of every set and every set is subset of itself, *i.e.*, $\phi \subset A$ and $A \subseteq A$ for every set *A*. They are called improper subsets of *A*. Thus every non-empty set has two improper subsets. It should be noted that ϕ has only one subset ϕ which is improper. Thus *A* has two improper subsets iff it is non-empty.

All other subsets of *A* are called its proper subsets. Thus, if $A \subset B$, $A \neq B$, $A \neq \phi$, then *A* is said to be proper subset of *B*.

Example: Let $A = \{1, 2\}$. Then A has $\phi; \{1\}, \{2\}, \{1, 2\}$ as its subsets out of which ϕ and $\{1, 2\}$ are improper and $\{1\}$ and $\{2\}$ are proper subsets.

Example: 2	:2 Which of the following is the empty set [1			[Karnataka CET 1990]	
	(a) $\{x : x \text{ is a real number}\}$	er and $x^2 - 1 = 0$ }	(b) $\{x : x \text{ is a real number and } x^2 + 1 = 0\}$		
	(c) $\{x : x \text{ is a real number}\}$	er and $x^2 - 9 = 0$ }	(d) { <i>x</i> : <i>x</i> is a real num	ber and $x^2 = x + 2$ }	
Solution: (b)	Since $x^2 + 1 = 0$, gives x^2	$=-1 \implies x = \pm i$			
	$\therefore x$ is not real but x is	real (given)			
	\therefore No value of x is possib	ole.			
Example: 3	The set $A = \{x : x \in R, x^2 =$	= 16 and $2x = 6$ } equals		[Karnataka CET 1995]	
	(a) <i>\phi</i>	(b) [14, 3, 4]	(c) [3]	(d) [4]	
Solution: (a)	$x^2 = 16 \implies x = \pm 4$				
	$2x = 6 \implies x = 3$				
	There is no value of $x w$	hich satisfies both the abov	e equations. Thus, $A = \phi$		
Example: 4 Karnataka CET	If a set <i>A</i> has <i>n</i> elements 1992, 2000]	s, then the total number of s	subsets of A is	[Roorkee 1991;	
	(a) <i>n</i>	(b) <i>n</i> ²	(c) 2 ^{<i>n</i>}	(d) 2 <i>n</i>	
Solution: (c)	Number of subsets of A	$=^{n}C_{0} + ^{n}C_{1} + \dots + ^{n}C_{n} = 2^{n}$.			
Example: 5	Two finite sets have m and n elements. The total number of subsets of the first set is 56 more that the total number of subsets of the second set. The values of m and n are [MNR 1998, 91; UPSEAT 1999, 2000]			e first set is 56 more than [MNR	
	(a) 7, 6	(b) 6, 3	(c) 5, 1	(d) 8, 7	
Solution: (b)	Since $2^m - 2^n = 56 = 8 \times 7 =$	$= 2^3 \times 7 \implies 2^n (2^{m-n} - 1) = 2^3 \times 7$			
	:. $n = 3$ and $2^{m-n} = 8 = 2^3$:. $n = 3$ and $2^{m-n} = 8 = 2^3$			
	$\Rightarrow m - n = 3 \Rightarrow m - 3 = 3 \Rightarrow m = 6$				

: m = 6, n = 3.

Example: 6 The number of proper subsets of the set {1, 2, 3} is (a) 8 (b) 7 (c) 6 (d) 5 Solution: (c) Number of proper subsets of the set {1, 2, 3} = $2^3 - 2 = 6$. Example: 7 If $X = \{8^n - 7n - 1 : n \in N\}$ and $Y = \{49(n - 1) : n \in N\}$, then (a) $X \subseteq Y$ (b) $Y \subseteq X$ (c) X = Y (d) None of these Solution: (a) Since $8^n - 7n - 1 = (7 + 1)^n - 7n - 1 = 7^n + {}^nC_17^{n-1} + {}^nC_27^{n-2} + + {}^nC_{n-1}7 + {}^nC_n - 7n - 1$

$$= {}^{n}C_{2}7^{2} + {}^{n}C_{3}7^{3} + \dots + {}^{n}C_{n}7^{n} \qquad ({}^{n}C_{0} = {}^{n}C_{n}, {}^{n}C_{1} = {}^{n}C_{n-1} \text{ etc.})$$

= 49[{}^{n}C_{2} + {}^{n}C_{3}(7) + \dots + {}^{n}C_{n}7^{n-2}]

 $\therefore 8^n - 7n - 1$ is a multiple of 49 for $n \ge 2$.

For
$$n=1$$
, $8^n - 7n - 1 = 8 - 7 - 1 = 0$; For $n=2$, $8^n - 7n - 1 = 64 - 14 - 1 = 49$

 $\therefore 8^n - 7n - 1$ is a multiple of 49 for all $n \in N$.

 \therefore X contains elements which are multiples of 49 and clearly Y contains all multiplies of 49.

 $\therefore X \subseteq Y$.

1.1.3 Venn-Euler Diagrams

The combination of rectangles and circles are called *Venn-Euler diagrams* or simply **Venn-diagrams**.

In venn-diagrams the universal set U is represented by points within a rectangle and its subsets are represented by points in closed curves (usually circles) within the rectangle. If a set A is a subset of a set B, then the circle representing A is drawn inside the circle representing B. If A and B are not equal but they have some common

elements, then to represent *A* and *B* we draw two intersecting circles. Two disjoints sets are represented by two non-intersecting circles.

1.1.4 Operations on Sets

(1) **Union of sets :** Let *A* and *B* be two sets. The union of *A* and *B* is the set of all elements which are in set *A* or in *B*. We denote the union of *A* and *B* by $A \cup B$

which is usually read as "A union B".

symbolically, $A \cup B = \{x : x \in A \text{ or } x \in B\}.$

It should be noted here that we take standard mathematical usage

of "or". When we say that $x \in A$ or $x \in B$ we do not exclude the possibility that x is a member of both A and B.

Vote : \Box If A_1, A_2, \dots, A_n is a finite family of sets, then their union is denoted by $\bigcup_{i=1}^n A_i$ or

$$A_1 \cup A_2 \cup A_3 \dots \cup A_n$$
.

(2) **Intersection of sets :** Let *A* and *B* be two sets. The intersection of *A* and *B* is the set of all those elements that belong to both *A* and *B*.

The intersection of A and B is denoted by $A \cap B$ (read as "A intersecti

Thus, $A \cap B = \{x : x \in A \text{ and } x \in B\}.$

Clearly, $x \in A \cap B \Leftrightarrow x \in A$ and $x \in B$.

In fig. the shaded region represents $A \cap B$. Evidently $A \cap B \subseteq A$, $A \cap B \subseteq B$.

Note:
$$\Box$$
 If $A_1, A_2, A_3, \dots, A_n$ is a finite family of sets, then their intersection is denoted by
$$\bigcap_{i=1}^n A_i \text{ or } A_1 \cap A_2 \cap A_3 \cap \dots \cap A_n.$$

(3) **Disjoint sets :** Two sets *A* and *B* are said to be disjoint, if $A \cap B = \phi$. If $A \cap B \neq \phi$, then *A* and *B* are said to be non-intersecting or non-overlapping sets.

In other words, if A and B have no element in common, then A and B are called disjoint sets.

Example : Sets {1, 2}; {3, 4} are disjoint sets.

(4) **Difference of sets :** Let *A* and *B* be two sets. The difference of *A* and *B* written as A - B, is the set of all those elements of *A* which do not belong to *B*.

Thus, $A - B = \{x : x \in A \text{ and } x \notin B\}$

or
$$A - B = \{x \in A : x \notin B\}$$

Clearly, $x \in A - B \Leftrightarrow x \in A$ and $x \notin B$. In fig. the shaded part represents A - B.

Similarly, the difference B - A is the set of all those elements of B that do not belong to A *i.e.*

$$B - A = \{x \in B : x \notin A\}$$

Example: Consider the sets $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$, then $A - B = \{1, 2\}; B - A = \{4, 5\}$

As another example, R - Q is the set of all irrational numbers.

(5) **Symmetric difference of two sets:** Let *A* and *B* be two sets. The symmetric difference of sets *A* and *B* is the set $(A - B) \cup (B - A)$ and is denoted by $A \Delta B$. Thus, $A \Delta B = (A - B) \cup (B - A) = \{x : x \notin A \cap B\}$

(6) **Complement of a set :** Let *U* be the universal set and let *A* be a set such that $A \subset U$. Then, the complement of *A* with respect to *U* is denoted by *A'* or *A^c* or *C*(*A*) or *U* – *A* and is defined the set of all those elements of *U* which are not in *A*.

Thus,	$A' = \{x \in U : x \notin A\}.$			
Clearly,	$x\in A'\Leftrightarrow x ot\in A$			
Example:	Consider $U = \{1, 2,, V\}$.,10} and $A = \{1, 3, 5, 7, 9\}$		
Then A' =	= {2, 4, 6, 8, 10}			
Example: 8	Given the sets $A = \{1, 2, 3\}, B = \{3, 4\}, C = \{4, 5, 6\}$, then $A \cup (B \cap C)$ is CEE 19961			[MNR 1988; Kurukshetra
	(a) {3}	(b) {1, 2, 3, 4}	(c) {1, 2, 4, 5}	(d) {1, 2, 3, 4, 5, 6}
Solution: (b)	$B \cap C = \{4\}, \therefore A \cup (B \cap C)$	$f(x) = \{1, 2, 3, 4\}.$		
Example: 9	If $A \subseteq B$, then $A \cup B$ is e	equal to		
	(a) <i>A</i>	(b) $B \cap A$	(c) B	(d) None of these
Solution: (c)	Since $A \subseteq B \Rightarrow A \cup B = B$			
Example: 10	If A and B are any two s	ets, then $A \cup (A \cap B)$ is equal	to	
	(a) A	(b) B	(c) A^{c}	(d) B^c
Solution: (a)	$A \cap B \subseteq A$. Hence $A \cup (A$	$A \cap B) = A$.		
Example: 11	If A and B are two given 1998; Kurukshetra CEE 19	sets, then $A \cap (A \cap B)^c$ is eq 99]	ual to	[AMU
	(a) A	(b) B	(c) <i>\phi</i>	(d) $A \cap B^c$
Solution: (d)	$A \cap (A \cap B)^c = A \cap (A^c \cup B^c)$	$= (A \cap A^c) \cup (A \cap B^c) = \phi \cup (A \cap B^c)$	$A \cap B^c) = A \cap B^c$.	
Example: 12	If $N_a = \{an : n \in N\}$, then	$N_3 \cap N_4 =$		
	(a) N ₇	(b) N ₁₂	(c) N ₃	(d) N ₄
Solution: (b)	$N_3 \cap N_4 = \{3, 6, 9, 12, 15, \dots, \}$	∩{4,8,12,16,20,}		
	= {12, 24, 36	$\} = N_{12}$		
	Trick: $N_3 \cap N_4 = N_{12}$		[∵ 3, 4 are relatively p	orime numbers]
Example: 13	If $aN = \{ax : x \in N\}$ and bN	$N \cap cN = dN$, where $b, c \in N$	are relatively prime, the	en
	(a) $d = bc$	(b) $c = bd$	(c) $b = cd$	(d) None of these
Solution: (a)	bN = the set of positive i	integral multiples of <i>b</i> , <i>cN</i> :	= the set of positive inte	gral multiplies of c.
	$\therefore bN \cap cN$ = the set of po	ositive integral multiples of	$bc = b \subset N$	[$\because b,c$ are prime]
	d = bc.			-
Example: 14	If the sets <i>A</i> and <i>B</i> are de	efined as		
-	$A = \{(x, y) : y = \frac{1}{x}, 0 \neq x \in R$	}		
	$B = \{(x, y) : y = -x, x \in R\}$,	then		
	(a) $A \cap B = A$	(b) $A \cap B = B$	(c) $A \cap B = \phi$	(d) None of these
Solution: (c)	Since $y = \frac{1}{x}, y = -x$ meet	when $-x = \frac{1}{x} \Rightarrow x^2 = -1$, v	which does not give any :	real value of x
	Hence $A \cap B = \phi$.			
Example: 15	Let $A = [x : x \in R, x < 1];$	$B = [x : x \in R, x-1 \ge 1]$ and A	$A \cup B = R - D$, then the set	t D is

(a)
$$[x:1 < x \le 2]$$
 (b) $[x:1 \le x < 2]$ (c) $[x:1 \le x \le 2]$ (d) None of these
Solution: (b) $A = [x:x \in R, -1 < x < 1]$
 $B = [x:x \in R: x - 1 \le -1$ or $x - 1 \ge 1] = [x:x \in R: x \le 0 \text{ or } x \ge 2]$
 $\therefore A \cup B = R - D$
Where $D = [x:x \in R, 1 \le x < 2]$
Example: 16 If the sets A and B are defined as
 $A = \{(x,y): y = e^x, x \in R\}$
 $B = \{(x,y): y = x, x \in R\}$, then [UPSEAT 1994, 2002]
(a) $B \subseteq A$ (b) $A \subseteq B$ (c) $A \cap B = \phi$ (d) $A \cup B = A$
Solution: (c) Since, $y = e^x$ and $y = x$ do not meet for any $x \in R$
 $\therefore A \cap B = \phi$.
Example: 17 If $X = \{4^n - 3n - 1: n \in N\}$ and $Y = \{9(n - 1): n \in N\}$, then $X \cup Y$ is equal to [Karnataka CET 1997]
(a) X (b) Y (c) N (d) None of these
Solution: (b) Since, $4^n = 3n - 1 = 3^n + n - 3^n + n - 3^n + n - 3^n + n - 3^n - 1$
 $= {}^n C_2 3^2 + n C_3 3^3 + \dots + n^n C_n 3^n$ (${}^n C_0 = {}^n C_n \cdot {}^n C_1 = {}^n C_{n-1} = (x - x)$
 $= 9[{}^n C_2 + {}^n C_3 (3) + \dots + n^n C_n 3^n$ (${}^n C_0 = {}^n C_n \cdot {}^n C_1 = {}^n C_{n-1} = (x - x)$
 $= 9[{}^n C_2 + {}^n C_3 (3) + \dots + n^n C_n 3^n$ (${}^n C_0 = {}^n C_n \cdot {}^n C_1 = {}^n C_{n-1} = (x - x)$
 $= 9[{}^n C_2 + {}^n C_3 (3) + \dots + n^n C_n 3^n$ (${}^n C_0 = {}^n C_n \cdot {}^n C_1 = {}^n C_{n-1} = (x - x)$
 $= 9[{}^n C_2 + {}^n C_3 (3) + \dots + n^n C_n 3^n$ (${}^n C_0 = {}^n C_n \cdot {}^n C_1 = {}^n C_{n-1} = (x - x)$
 $= 9[{}^n C_2 + {}^n C_3 (3) + \dots + n^n C_n 3^n$ (${}^n C_0 = {}^n C_n \cdot {}^n C_1 = {}^n C_{n-1} = (x - x)$
 $\therefore A^n - 3n - 1 = a - 3 - 1 = 0$, For $n = 2$, $A^n - 3n - 1 = 16 - 6 - 1 = 9$
 $\therefore A^n - 3n - 1 = a - 3 - 1 = 0$, For $n = 2$, $A^n - 3n - 1 = 16 - 6 - 1 = 9$
 $\therefore A^n - 3n - 1 = a - 3 - 1 = 0$, For $n = 2$, $A^n - 3n - 1 = 16 - 6 - 1 = 9$
 $\therefore A^n - 3n - 1 = a - 3 - 1 = 0$, For $n = 2$, $A^n - 3n - 1 = 16 - 6 - 1 = 9$
 $\therefore X \ Contains elements which are multiples of 9 and clearly Y contains all multiples of 9.$
 $\therefore X \ Contains elements which are multiples of 9 and clearly Y contains all multiples of 9.$
 $\therefore X \ Contains elements which are multiples of 9 and clearly Y contains all multiples of 9.$

1.1.5 Some Important Results on Number of Elements in Sets

If *A*, *B* and *C* are finite sets and *U* be the finite universal set, then

$$(1) n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

 $(2)n(A \cup B) = n(A) + n(B) \Leftrightarrow A, B$ are disjoint non-void sets.

$$(3)n(A - B) = n(A) - n(A \cap B) i.e. n(A - B) + n(A \cap B) = n(A)$$

 $(4)n(A \Delta B)$ = Number of elements which belong to exactly one of A or B

$$= n((A - B) \cup (B - A))$$

$$= n (A - B) + n(B - A)$$
 [:: $(A - B)$ and $(B - A)$ are disjoint]

$$= n(A) - n(A \cap B) + n(B) - n(A \cap B) = n(A) + n(B) - 2n(A \cap B)$$

 $(5)n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$

(6) *n* (Number of elements in exactly two of the sets *A*, *B*, *C*) = $n(A \cap B) + n(B \cap C) + n(C \cap A) - 3n(A \cap B \cap C)$

(7)n(Number of elements in exactly one of the sets A, B, C) = n(A) + n(B) + n(C)- $2n(A \cap B) - 2n(B \cap C) - 2n(A \cap C) + 3n(A \cap B \cap C)$

$$(8)n(A' \cup B') = n(A \cap B)' = n(U) - n(A \cap B)$$

(9)n(A' \cap B') = n(A \cap B)' = n(U) - n(A \cap B)

Example: 18 Sets *A* and *B* have 3 and 6 elements respectively. What can be the minimum number of elements in $A \cup B$

[MNR 1987; Karnataka CET 1996]

	(a) 3	(b) 6	(c) 9	(d) 18	
Solution: (b)	$n(A \cup B) = n(A) + n(B) -$	$n(A \cap B) = 3 + 6 - n(A \cap B)$			
	Since maximum number	of elements in $A \cap B = 3$			
	\therefore Minimum number of ϵ	elements in $A \cup B = 9 - 3 = 6$.			
Example: 19	If A and B are two sets s	uch that $n(A) = 70$, $n(B) = 60$	and $n(A \cup B) = 110$, then	$n(A \cap B)$ is equal to	
	(a) 240	(b) 50	(c) 40	(d) 20	
Solution: (d)	$n(A \cup B) = n(A) + n(B) - n(A \cap$	<i>B</i>)			
	\Rightarrow 110 = 70 + 60 - $n(A \cap$	<i>B</i>)			
	$\therefore n(A \cap B) = 130 - 110 = 20$				
Example: 20	Let $n(U) = 700, n(A) = 200, n(A)$	$(B) = 300$ and $n(A \cap B) = 100$, t	then $n(A^c \cap B^c) =$	[Kurukshetra CEE 1999]	
	(a) 400	(b) 600	(c) 300	(d) 200	
Solution: (c) 300.	$n(A^{c} \cap B^{c}) = n[(A \cup B)^{c}]$	$] = n(U) - n(A \cup B) = n(U) - [$	$[n(A) + n(B) - n(A \cap B)] = 70$	00 - [200 + 300 - 100] =	
Example: 21 2002]	If $A = [(x, y): x^2 + y^2 = 25]$	and $B = [(x, y): x^2 + 9y^2 = 144]$], then $A \cap B$ contains	[AMU 1996; Pb. CET	
	(a) One point	(b) Three points	(c) Two points	(d) Four points	
Solution: (d)	A = Set of all values (x, y	$x^2 + y^2 = 25 = 5^2$		r^{2} v^{2}	
	$B = \frac{x^2}{144} + \frac{y^2}{16} = 1 i.e., \ \frac{x^2}{(12)}$	$\frac{y^2}{2} + \frac{y^2}{(4)^2} = 1$.		$\frac{x}{(12)^2} + \frac{y}{(4)^2} = 1$	
	Clearly, $A \cap B$ consists of	of four points.		$x^{2} + u^{2} - r^{2}$	
Example: 22	In a town of 10,000 families it was found that 40% family $x^2 + y^2 = 5^2$ paper and 10% families buy newspaper <i>C</i> , 5% families buy <i>A</i> and <i>B</i> , 3% buy <i>B</i> and <i>C</i> and 4% buy <i>A</i> and 2% families buy all the three newspapers, then number of families which buy <i>A</i> only is				
	(a) 3100	(b) 3300	(c) 2900	(d) 1400	
Solution: (b)	n(A) = 40% of 10,000 =	4,000			
	n(B) = 20% of 10,000 =	2,000			
	n(C) = 10% of 10,000 =	1,000			
	$n (A \cap B) = 5\%$ of 10,000	$D = 500, n (B \cap C) = 3\%$ of 1	10,000 = 300		
	$n(C \cap A) = 4\%$ of 10,000	$a = 400, n(A \cap B \cap C) = 2\%$	of 10,000 = 200		
	We want to find $n(A \cap B)$	$C^{c} \cap C^{c} = n[A \cap (B \cup C)^{c}]$			
	$= n(A) - n[A \cap (B \cup C)] = n(A) - n[(A \cap B) \cup (A \cap C)] = n(A) - [n(A \cap B) + n(A \cap C) - n(A \cap B \cap C)]$ = 4000 - [500 + 400 - 200] = 4000 - 700 = 3300.				

Example: 23	In a city 20 percent of the population travels by car, 50 percent travels by bus and 10 percent travels by both car and bus. Then persons travelling by car or bus is			
	(a) 80 percent	(b) 40 percent	(c) 60 percent	(d) 70 percent
Solution: (c)	n(C) = 20, n(B) = 50, n(C)	$C \cap B$) = 10		
	Now, $n(C \cup B) = n(C) + n(B) - n(C \cap B) = 20 + 50 - 10 = 60$. Hence, required number of persons = 60%.			
Example: 24	Suppose $A_1, A_2, A_3,, A_4$	A_{30} are thirty sets each have	ing 5 elements and B_1, B_2	B_2 ,, B_n are n sets each
	with 3 elements. Let $\int_{i=1}^{3}$	$\int_{-1}^{0} A_i = \bigcup_{j=1}^{n} B_j = S$ and each elex	ments of S belongs to	exactly 10 of the $A_i^{\prime s}$ and
	exactly 9 of the B_{js} . The	en <i>n</i> is equal to		
	(a) 15	(b) 3	(c) 45	(d) None of these
Solution: (c)	$O(S) = O\left(\bigcup_{i=1}^{30} A_i\right) = \frac{1}{10}(5 \times 3)$	30) = 15		
	Since, element in the un	ion S belongs to 10 of A_{i} 's		
	Also, $O(S) = O\left(\bigcup_{j=1}^{n} B_{j}\right) = \frac{3}{2}$	$\frac{n}{2} = \frac{n}{3}$, $\therefore \frac{n}{3} = 15 \Longrightarrow n = 45$.		
Example: 25	In a class of 55 students, the number of students studying different subjects are 23 in Mathematics, 24 in Physics, 19 in Chemistry, 12 in Mathematics and Physics, 9 in Mathematics and Chemistry, 7 in Physics and Chemistry and 4 in all the three subjects. The number of students who have taken exactly			
	(a) 6	(b) 9	(c) 7	(d) All of these
Solution: (d)	n(M) = 23, n(P) = 24, n(P)	(C)= 19		
	$n(M \cap P) = 12, n(M \cap C)$	= 9, $n(P \cap C)$ = 7		
	$n(M \cap P \cap C) = 4$			
	We have to find $n(M \cap R)$	$P' \cap C'), n(P \cap M' \cap C'), n$ ($\mathcal{C} \cap M \ ' \cap P \ '$)	
	Now $n (M \cap P' \cap C') = n$	$[M \cap (P \cup C)']$		
	$= n(M) - n(M \cap (P \cup C))$	$= n(M) - n[(M \cap P) \cup (M \cap C)]$		
	$= n(M) - n(M \cap P) - n(M \cap C) + n(M \cap P \cap C) = 23 - 12 - 9 + 4 = 27 - 21 = 6$			
	$n(P \cap M' \cap C') = n[P \cap (M \cup C)']$			
	$= n(P) - n[P \cap (M \cup C)] = n(P) - n[(P \cap M) \cup (P \cap C)] = n(P) - n(P \cap M) - n(P \cap C) + n(P \cap M \cap C)$			
	= 24 - 12 - 7 + 4 = 9			
	$n(C \cap M' \cap P') = n(C) - n$	$n(C \cap P) - n(C \cap M) + n(C \cap P)$	$P \cap M$) = 19 - 7 - 9 + 4 =	23 - 16 = 7
	Hence (d) is the correct	answer.		

1.1.6 Laws of Algebra of Sets

(1) Idempotent laws :	For any	set A,	we have
-----------------------	---------	--------	---------

(i) $A \cup A = A$ (ii) $A \cap A = A$

(2) **Identity laws :** For any set *A*, we have

(i) $A \cup \phi = A$ (ii) $A \cap U = A$

i.e. ϕ and U are identity elements for union and intersection respectively.

(3) **Commutative laws :** For any two sets A and B, we have

- (i) $A \cup B = B \cup A$ (ii) $A \cap B = B \cap A$ (iii) $A \Delta B = B \Delta A$
- *i.e.* union, intersection and symmetric difference of two sets are commutative.
- (iv) $A B \neq B A$ (iv) $A \times B \neq B \times A$

i.e., difference and cartesian product of two sets are not commutative

(4) **Associative laws :** If *A*, *B* and *C* are any three sets, then

(i) $(A \cup B) \cup C = A \cup (B \cup C)$ (ii) $A \cap (B \cap C) = (A \cap B) \cap C$ (iii) $(A \Delta B) \Delta C = A \Delta (B \Delta C)$

i.e., union, intersection and symmetric difference of two sets are associative.

(iv) $(A - B) - C \neq A - (B - C)$ (v) $(A \times B) \times C \neq A \times (B \times C)$

i.e., difference and cartesian product of two sets are not associative.

(5) **Distributive law :** If *A*, *B* and *C* are any three sets, then

(i) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (ii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

i.e. union and intersection are distributive over intersection and union respectively.

(iii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$ (iv) $A \times (B \cup C) = (A \times B) \cup (A \times C)$ (v) $A \times (B - C) = (A \times B) - (A \times C)$

(6) **De-Morgan's law :** If A and B are any two sets, then

(i) $(A \cup B)' = A' \cap B'$ (ii) $(A \cap B)' = A' \cup B'$

(iii) $A - (B \cup C) = (A - B) \cap (A - C)$ (iv) $A - (B \cap C) = (A - B) \cup (A - C)$

Wole : **D** Theorem 1: If *A* and *B* are any two sets, then

(i) $A - B = A \cap B'$ (ii) $B - A = B \cap A'$ $A - B = A \Leftrightarrow A \cap B = \phi$ (iv) $(A - B) \cup B = A \cup B$ (iii) $(\mathbf{v})(A-B) \cap B = \phi$ (vi) $A \subset B \Leftrightarrow B' \subset A'$ (viii) $(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$ **Theorem 2 :** If *A*, *B* and *C* are any three sets, then (i) $A - (B \cap C) = (A - B) \cup (A - C)$ (ii) $A - (B \cup C) = (A - B) \cap (A - C)$ (iii) $A \cap (B - C) = (A \cap B) - (A \cap C)$ (iv) $A \cap (B \land C) = (A \cap B) \land (A \cap C)$ **Example: 26** If A, B and C are any three sets, then $A \times (B \cap C)$ is equal to (a) $(A \times B) \cup (A \times C)$ (b) $(A \times B) \cap (A \times C)$ (c) $(A \cup B) \times (A \cup C)$ (d) $(A \cap B) \times (A \cap C)$ **Solution:** (b) $A \times (B \cap C) = (A \times B) \cap (A \times C)$. It is distributive law. **Example: 27** If *A*, *B* and *C* are any three sets, then $A \times (B \cup C)$ is equal to (a) $(A \times B) \cup (A \times C)$ (b) $(A \cup B) \times (A \cup C)$ (c) $(A \times B) \cap (A \times C)$ (d) None of these **Solution:** (a) It is distributive law.

Example: 28 If A, B and C are any three sets, then $A - (B \cup C)$ is equal to

(a) $(A - B) \cup (A - C)$ (b) $(A - B) \cap (A - C)$ (c) $(A - B) \cup C$ (d) $(A - B) \cap C$

Solution: (b) It is De' Morgan law.

Example: 29 If A = [x : x is a multiple of 3] and B = [x : x is a multiple of 5], then A - B is $(\overline{A} \text{ means complement of } A)$ [AMU 1998]

(a)
$$\overline{A} \cap B$$
 (b) $A \cap \overline{B}$ (c) $\overline{A} \cap \overline{B}$ (d) $\overline{A \cap B}$

Solution: (b) $A - B = A \cap B^c = A \cap \overline{B}$.

Example: 30 If *A*, *B* and *C* are non-empty sets, then $(A - B) \cup (B - A)$ equals [AMU 1992, 1998; DCE 1998]

(a)
$$(A \cup B) - B$$
 (b) $A - (A \cap B)$

(c) $(A \cup B) - (A \cap B)$ (d) $(A \cap B) \cup (A \cup B)$

Solution: (c) $(A - B) \cup (B - A) = (A \cup B) - (A \cap B).$

1.1.7 Cartesian Product of Sets

Cartesian product of sets : Let *A* and *B* be any two non-empty sets. The set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$ is called the cartesian product of the sets *A* and *B* and is denoted by $A \times B$.

Thus, $A \times B = [(a, b) : a \in A \text{ and } b \in B]$

If $A = \phi$ or $B = \phi$, then we define $A \times B = \phi$.

Example : Let $A = \{a, b, c\}$ and $B = \{p, q\}$.

Then $A \times B = \{(a, p), (a, q), (b, p), (b, q), (c, p), (c, q)\}$

Also $B \times A = \{(p, a), (p, b), (p, c), (q, a), (q, b), (q, c)\}$

Important theorems on cartesian product of sets :

Theorem 1 : For any three sets *A*, *B*, *C*

(i) $A \times (B \cup C) = (A \times B) \cup (A \times C)$ (ii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$

Theorem 2 : For any three sets *A*, *B*, *C*

 $A \times (B - C) = (A \times B) - (A \times C)$

Theorem 3 : If *A* and *B* are any two non-empty sets, then

 $A\times B=B\times A \Leftrightarrow A=B$

Theorem 4 : If $A \subseteq B$, then $A \times A \subseteq (A \times B) \cap (B \times A)$

Theorem 5 : If $A \subseteq B$, then $A \times C \subseteq B \times C$ for any set *C*.

Theorem 6 : If $A \subseteq B$ and $C \subseteq D$, then $A \times C \subseteq B \times D$

Theorem 7 : For any sets *A*, *B*, *C*, *D*

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$$

Theorem 8 : For any three sets *A*, *B*, *C*

(i)
$$A \times (B' \cup C')' = (A \times B) \cap (A \times C)$$
 (ii) $A \times (B' \cap C')' = (A \times B) \cup (A \times C)$

Theorem 9 : Let *A* and *B* two non-empty sets having *n* elements in common, then $A \times B$ and $B \times A$ have n^2 elements in common.

Example: 31	uple: 31 If $A = \{0, 1\}$, and $B = \{1, 0\}$, then $A \times B$ is equal to					
	(a) {0, 1, 1, 0} {(0,1),(0,0),(1,1),(1,0)}	(b) {(0, 1), (1, 0)}	(c) {0, 0}	(d)		
Solution: (d)	By the definition of cart	esian product of sets				
	Clearly, $A \times B = \{(0, 1), $	$(0, 0), (1, 1), (1, 0)\}.$				
Example: 32	If $A = \{2, 4, 5\}, B = \{7, 8, 9\}$	}, then $n(A \times B)$ is equal to				
	(a) 6	(b) 9	(c) 3	(d) o		
Solution: (b)	$A \times B = \{(2, 7), (2, 8), (2,$	2, 9), (4, 7), (4, 8), (4, 9),	(5, 7), (5, 8), (5, 9)}			
	$n(A\times B)=n(A)\ .\ n(B)=$	$n(A \times B) = n(A) \cdot n(B) = 3 \times 3 = 9.$				
Example: 33	If the set A has p elements, B has q elements, then the number of elements in $A \times B$ is					
	(a) $p+q$	(b) $p + q + 1$	(c) <i>pq</i>	(d) p^2		
Solution: (c)	$n(A \times B) = pq$.					
Example: 34	If $A = \{a, b\}, B = \{c, d\}, C =$	$\{d, e\}$, then $\{(a, c), (a, d), (a, e)\}$	$(b,c),(b,d),(b,e)\}$ is equal	to [AMU 1999; Him. CET		
2002]						
	(a) $A \cap (B \cup C)$	(b) $A \cup (B \cap C)$	(c) $A \times (B \cup C)$	(d) $A \times (B \cap C)$		
Solution: (c)	$B \cup C = \{c, d\} \cup (d, e\} =$	$\{c, d, e\}$				
	$\therefore A \times (B \cup C) = \{a, b\} \times \{c, d, e\} = \{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e)\}.$					
Example: 35	If $A = \{x : x^2 - 5x + 6 = 0\}$	$B = \{2, 4\}, C = \{4, 5\}, \text{ then } A$	$\times (B \cap C)$ is	[Kerala (Engg.) 2002]		
	(a) {(2, 4), (3, 4)}	(b) {(4, 2), (4, 3)}	(c) {(2, 4), (3, 4), (4	$\{4,4\}$ (d){(2,2), (3,3), (4,4), (5,5)		
Solution: (a)	Clearly, $A = \{2, 3\}, B = \{2, 3\}, B = \{2, 3\}, B = \{2, 3\}, B = \{3, 3\}, B = \{3,$	$\{2, 4\}, C = \{4, 5\}$				
	$B \cap C = \{4\}$					
	$\therefore A \times (B \cap C) = \{(2, 4)\}$), (3, 4)}.				
Example: 36	If P, Q and R are subsets of a set A, then $R \times (P^c \cup Q^c)^c =$					
	(a) $(R \times P) \cap (R \times Q)$	(b) $(R \times Q) \cap (R \times P)$	(c) $(R \times P) \cup (R \times Q)$	(d) None of these		
Solution: (a, b	b) $R \times (P^c \cup Q^c)^c = R \times [(P^c)^c]$	$\cap (Q^c)^c] = R \times (P \cap Q) = (R \times P)$	$(R \times Q) = (R \times Q) \cap (R \times P)$?)		