CBSE Test Paper 05 CH-09 Sequences and Series

- 1. If a, 4, b are in A.P.; a, 2, b are in G.P.; then a, 1, b are in
 - a. A.P.
 - b. none of these
 - c. G.P.
 - d. H.P.
- 2. If a, b, c, d, e are in G. P., then $\frac{e}{c}$ equals
 - a. $\frac{b}{a}$ b. $\frac{c}{b}$ c. $\frac{d}{b}$ d. $\frac{d}{c}$
- 3. The A.M. between two positive numbers a and b is twice the G.M. between them. The ratio of the numbers is
 - a. none of these

b.
$$(\sqrt{3}+1): (\sqrt{3}-1)$$

c. $(2+\sqrt{3}): (2-\sqrt{3})$
d. $(2+3): (\sqrt{2}-3)$

4. The first, second and last terms of an A.P. are a, b and 2 a. The number of terms in the

A.P. is

- a. $\frac{b}{b-a}$
b. $\frac{a}{b-a}$
c. $\frac{a}{b+a}$
d. $\frac{b}{b+a}$
- 5. The nth term of the sequence $5 + 55 + 555 + \dots$ is
 - a. none of these

b.
$$\frac{5}{9}(10^n - 1)$$

- c. $5 \times 10^{n-1}$
- d. $5 imes 11^{n-1}$
- 6. Fill in the blanks:

The sum of the following series of n terms: $2^3 + 4^3 + 6^3 + 8^3 + \dots$ is _____.

7. Fill in the blanks:

7th term of an arithmetic sequence whose first term is 2 and the common difference of zero is

- 8. How many numbers of two digits are divisible by 7?
- 9. Find the sum of n terms of an A.P. whose k^{th} term is 5k + 1.
- Find the 10th term of GP: 5, 25, 125 ...
 Also, find its nth term.
- The sum of n terms of two A. P are in the ratio (3n+8) : (7n+15). Find the ratio of their 12th terms.
- 12. Is 667 a term of an AP 11, 18, 25,...?
- 13. If the sum of first pterms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
- 14. If $\frac{a^n+b^n}{a^{n-1}+b^{n-1}}$ is the A. M. between a and b. Then find the value of n.
- 15. If the sum of p terms of an A.P. is q and p, show that the sum of p + q terms is (p + q).

CBSE Test Paper 05 CH-09 Sequences and Series

Solution

1. (d) H.P.

Explanation:

As a,4,b are in AP so,(i) Also a,2,b are in GP so, ab = 4.....(ii) from (i) and (ii) a+b=2ab $\frac{1}{a} + \frac{1}{b} = 2\frac{2}{\frac{1}{a} + \frac{1}{b}} = 1$

hence a, 1 , b are in HP

2. (c)
$$\frac{d}{b}$$

Explanation:

If a, b, c, d, e are in G.P we have $\frac{b}{a} = \frac{c}{b} = \frac{d}{c} = \frac{e}{d}$. $\frac{c}{b} = \frac{e}{d} \Rightarrow \frac{e}{c} = \frac{d}{b}$

3. (c)
$$(2+\sqrt{3}):(2-\sqrt{3})$$

Explanation:

Given a and b are two positive numbers

Also given A.M=2.G.M

$$rac{a+b}{2}=2\sqrt{ab}\ \Rightarrowrac{a+b}{2\sqrt{ab}}=rac{2}{1}$$

Applying componendo dividendo

$$\frac{a+b+2\sqrt{ab}}{a+b-2\sqrt{ab}} = \frac{2+1}{2-1}$$
$$\Rightarrow \frac{(\sqrt{a}+\sqrt{b})^2}{(\sqrt{a}-\sqrt{b})^2} = \frac{3}{1}$$
$$\Rightarrow \frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}} = \frac{\sqrt{3}}{1}$$

Applying componendo dividendo again we get

$$\Rightarrow \frac{2\sqrt{a}}{2\sqrt{b}} = \frac{\sqrt{3}+1}{\sqrt{3}-1}$$
$$\Rightarrow \frac{a}{b} = \frac{(\sqrt{3}+1)^2}{(\sqrt{3}-1)^2} = \frac{4+2\sqrt{3}}{4+2\sqrt{3}} = \frac{2(2+\sqrt{3})}{2(2-\sqrt{3})} = \frac{2+\sqrt{3}}{2-\sqrt{3}}$$

4. (a)
$$\frac{b}{b-a}$$

Explanation:

Given $a_1=a,a_2=b$ and $a_n=2a$

Hence d=b-a Now $a_n = a + (n-1)d \Rightarrow 2a = a + (n-1)(b-a)$ $\Rightarrow a = (n-1)(b-a)$ $\Rightarrow \frac{a}{b-a} + 1 = n \Rightarrow n = \frac{b}{b-a}$ 5. (b) $\frac{5}{9}(10^n - 1)$

Explanation:

5+55+555+......
=
$$\frac{5}{9}$$
 {9+99+999+....}
= $\frac{5}{9}$ {[10-1] + [10² - 1] + [10³ - 1] +....+[10ⁿ - 1] +....}

Hence by inspection we get nth term is $rac{5}{9}[10^n-1]$

$$6. 8\left[\frac{n(n+1)}{2}\right]^2$$

7. 2

 First two digit number divisible by 7 is 14 and last two digit number divisible by 7 is 98. So, we have to determine the number of terms in the sequence 14,21,28,..., 98. Let there be n terms in this sequence. Then,

98 = nth term \Rightarrow 98 = 14 + (n -1) \times 7 \Rightarrow 7n = 91 \Rightarrow n = 13

9. Given: a_k = 5k + 1

Putting k = 1 and k=n , we get a = 5 \times 1 + 1 = 6 and a_n = 5_n + 1

$$egin{array}{lll} \therefore S_n &= rac{n}{2}(a+l) \ \Rightarrow S_n &= rac{n}{2}(6+5n+1) = rac{n}{2}(5n+7) \end{array}$$

- 10. We have, 5 + 25 + 125 + ... is GP. Here, a = 5 and r = $\frac{25}{5}$ = 5 We know that, T_n = arⁿ⁻¹ = 5 (5)ⁿ⁻¹ = 5ⁿ and T₁₀ = 5 (5)¹⁰⁻¹ = 5¹⁰
- 11. Let a₁, a₂ and d₁, d₂ are the first term and common difference of two A. P. S respectively.

A T Q
$$\frac{\frac{n}{2}}{\frac{n}{2}} \frac{[2a_1+(n-1)d_1]}{[2a_2+(n-1)d_2]} = \frac{3n+8}{7n+15}$$

 $\frac{12 \text{ th term of Ist A.P}}{12 \text{ th term of 2ndA.P}} = \frac{a_1+11d_1}{a_2+11d_2}$
put n = 23 in eq (i)
 $\frac{2a_1+22d_1}{2a_2+22d_2} = \frac{3\times23+8}{7\times23+15}$
 $\frac{a_1+11d_1}{a_2+11d_2} = \frac{7}{16}$
Given AP is 11, 18, 25,...

12.

Here, a = 11, d = 18 - 11 = 7 and $a_n = 667$ $\therefore a + (n - 1)d = a_n$ $\therefore 11 + (n - 1)7 = 667$ $\Rightarrow 11 + 7n - 7 = 667$ $\Rightarrow 7n + 4 = 667$ $\Rightarrow 7n = 667 - 4$ $\Rightarrow 7n = 663$ $\therefore n = \frac{663}{7}$, which is not a whole number. Hence, it is not the term of the given AP.

13. Let a be the first term and d be the common difference of given A.P.

$$\therefore S_p = rac{p}{2} [2a + (p-1)d]$$
 and $\mathrm{S}_q = rac{q}{2} [2a + (q-1)d]$

According to question, $S_p = S_q$

$$\Rightarrow \frac{p}{2} [2a + (p-1)d] = \frac{q}{2} [2a + (q-1)d]
\Rightarrow 2ap + p^{2}d - pd = 2aq + q^{2}d - qd
\Rightarrow 2ap - 2aq = q^{2}d - p^{2}d + pd - qd
\Rightarrow 2a(p - q) = [-(p^{2} - q^{2})d + (p - q)d]
\Rightarrow 2a(p - q) = [-(p - q) (p + q)d + (p - q)d]
\Rightarrow 2a(p - q) = (p - q) [1 - p - q]d
\Rightarrow a = \frac{(1-p-q)d}{2}
Now S_{p+q} = \frac{p+q}{2} \left[\frac{2(1-p-q)d}{2} + (p + q - 1)d \right]
= \frac{p+q}{2} [d - pd - qd + pd + qd - d]
\Rightarrow S_{p+q} = \frac{p+q}{2} \times 0 = 0
14. $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}} = \frac{a+b}{2}
2a^{n} + 2b^{n} = (a + b) (a^{n-1} + b^{n-1})
2a^{n} + 2b^{n} = a^{n} + ab^{n-1} + b.a^{n-1} + b^{n}
a^{n} + b^{n} = a.b^{n-1} - b^{n}
a^{n-1}(a - b) = b^{n-1} (a - b)
 $\left(\frac{a}{b}\right)^{n-1} = \frac{a-b}{a-b}
\left(\frac{a}{b}\right)^{n-1} = \left(\frac{a}{b}\right)^{0} \left(\because \left(\frac{a}{b}\right)^{0} = 1\right)$
n - 1 = 0
n = 1$$$

15. Let a be the first term and d the common difference of the given A.P. $\therefore S_p = \frac{p}{2} [2a + (p - 1)d] = q$ $\Rightarrow 2a + (p - 1)d = \frac{2q}{p} \dots (i)$

And
$$S_q = \frac{q}{2} [2a + (q - 1)d] = p$$

 $\Rightarrow 2a + (q - 1)d = \frac{2p}{q} \dots (ii)$
Subtracting eq. (ii) from eq. (i) we get
 $(p - q)d = \frac{2q}{p} - \frac{2p}{q} \Rightarrow (p - q)d = \frac{2(q^2 - p^2)}{pq}$
 $\Rightarrow (p - q)d = \frac{-2}{pq} (p^2 - q^2)$
 $\Rightarrow (p - q)d = \frac{-2}{pq} (p + q)(p - q) \Rightarrow d = \frac{-2}{pq} (p + q)$
Substituting the value of d in eq. (i) we get
 $2a + (p - 1) \left[\frac{-2(p+q)}{pq}\right] = \frac{2q}{p}$
 $\Rightarrow 2a = \frac{2q}{p} + \frac{2(p-1)(p+q)}{pq}$
 $\Rightarrow a = \frac{q}{p} + \frac{(p-1)(p+q)}{pq}$
 $a = \frac{q^2 + p^2 + pq - p - q}{pq}$
Now $S_{p+q} = \frac{p+q}{2} [2a + (p + q - 1)d]$
 $= \frac{p+q}{2} \left[\frac{2q^2 + 2p^2 + 2pq - 2q - 2q}{pq} + \frac{(p+q-1)[-2(p+q)]}{pq}\right]$
 $= \frac{p+q}{2} \left[\frac{-2pq}{pq}\right] = -(p + q)$ hence proved.